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ABSTRACT Ferroresonance is a non-linear and dangerous resonance phenomenon that can affect power
networks and damage electrical equipment. The ferroresonance phenomenon is examined by dividing it into
classes, with chaotic ferroresonance being the most dangerous type that causes overvoltage’s. Detecting
chaotic ferroresonance in a short period of time is of great importance in terms of taking measures and
reducing equipment damage. In this study, we explored the application of deep convolutional neural networks
(DCNNs) for the identification and classification of chaotic ferroresonance phenomena. Two pre-trained
AlexNet models were adapted using transfer learning to perform these tasks. The first model was utilized to
identify chaotic ferroresonance, while the second was employed to distinguish between different subtypes
of chaotic ferroresonance by dividing voltage curve graphs into different periods and shapes. The training
and testing of both DCNN models were conducted using snapshot images extracted from the voltage curves
of all phase voltages. The results of the experiments showed high accuracy in both the identification and
classification of chaotic ferroresonance phenomena.

INDEX TERMS Alexnet, chaotic ferroresonance, classification, deep convolutional neural networks,
identification, transfer learning.

I. INTRODUCTION
Ferroresonance is an abnormal phenomenon in three-phase
electrical systems that can cause equipment failure due to
unstable high voltage. It involves interactions between capac-
itors and iron-core inductors, resulting in unusual voltages
and/or currents. Ferroresonance occurs when a nonlinear
inductor is connected to a series capacitor in power systems.
This phenomenon can occur when an unloaded three-phase
system, primarily consisting of inductive and capacitive com-
ponents, is disrupted by a single-phase disturbance. It is com-
monly observed in medium voltage distribution networks,
where transformers act as the inductive component and power
cables serve as the capacitive component [1], [2], [3].
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Temporary events such as the presence of inductance and
capacitance in electrical networks, interruptions that may
occur or break of the line, lightning, energizing of trans-
formers and loads may cause fluctuations in the network
voltage. These oscillations can evolve into unpredictable
over-voltages or different periodic structures and complex
harmonic voltages, a complex event referred to as ferrores-
onance. Detecting ferroresonance in advance is challenging
due to its dependence on various factors in power systems.
Ferroresonance causes high overvoltage, overcurrent, and
high-level harmonic distortion and cannot be eliminated by
conventional suppressionmethods, resulting in serious equip-
ment damage and long-term power supply failure. Thus,
it must be avoided. [1], [2], [3].

In the scientific literature, ferroresonance is catego-
rized into four main types: basic, subharmonic, quasiperi-
odic, and chaotic. The quasiperiodic and chaotic modes of
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FIGURE 1. Schematic ferroresonance circuit and its curve [10], [11], [12].

ferroresonance are characterized by non-periodic behavior.
Transitions between these modes can result in abrupt surges
and oscillations in the network voltage [4], [5], [6].

Chaotic ferroresonance can damage power system insula-
tors and continuous monitoring of the power system signal is
necessary to eliminate harmful effects [7], [8]. To investigate
the impact of ferroresonance on power quality and detect
disorders, various methods have been employed, including
fuzzy expert systems, wavelet analysis, Bayesian, and arti-
ficial neural networks. Case studies have been conducted to
reduce the effects of ferroresonance on power quality and
distribution networks [9].

In Figure 1, an alternating current circuit is shown schemat-
ically with elements represented as linear inductance (L),
resistance (R), and capacitance (C). When the natural fre-
quency of L and C is equal to the source frequency, high-
frequency over-voltages can occur between the components,
making the solution difficult due to the saturation of nonlinear
circuits. The frequency of harmonics in a transmission line or
electrical circuit varies based on the degree of saturation of
the core. In non-linear systems, mathematical analysis can be
used to obtain a system approach.

Figure 1 provides the schematic diagram and characteristic
curve to depict the ferroresonance event. Figure 1a shows the
free resonance of the circuit, while Figure 1b displays the
magnetization curve (8). The voltage at the ends of the capac-
itor is represented as Vo. According to Equation 1, the induc-
tive voltage is composed of a fixed component and a variable
component. In the context of an iron core transformer, as the
value of XL (inductive reactance) undergoes variation, the
probability of XC (capacitive reactance) closely aligning with

XL notably enhances. Equation 1 gives ω, equation 2 gives
magnetic flux (8), and equation 3 gives V [10], [11], [12].

ωVC =
1

C
, ωVL = Vs +

1

C
(1)

V voltage at the ends of the capacitance element,

8 = Vω(Vo.ω).sinωt (2)

VL = ωf (I ) (3)

A review of recent studies on ferroresonance has been sum-
marized as follows: Valverde et al. used Fourier transform
to examine the characteristic properties of ferroresonance
in electrical energy systems [12]. Akinrinde et al. studied
the dynamic behavior of a wind turbine generator under
high voltage ferroresonance conditions [13]. Negara and col-
leagues analyzed ferroresonance phenomena using wavelet
analysis in a typical single-phase ground fault scenario for
transformer ferroresonance stimulation [14].

Although there are many scientific studies on the inves-
tigation of ferroresonance voltage, ferroresonance problems
and properties, the number of investigations about the iden-
tification of ferroresonance is very limited. With the devel-
opment of the protection of power systems, the importance
of ferroresonance detection research is increasing. Differ-
ent new techniques proposed by researchers to analyze and
predict ferroresonance phenomena. Nowadays, scientists aim
to improve methods that can predict and differentiate fer-
roresonance from other temporary situations. Sharbain et al.
propose the use of artificial neural networks (ANN) with
wavelet transform to discriminate between ferroresonance
and capacitor switching. In the study, ferroresonance was
determined with an average accuracy of 97% [15]. In [16],
wavelet transform and an ANN were used to identify the
ferroresonance and distinguish it from other transient events.
The proposed algorithms can distinguish other transient phe-
nomena such as transformer, capacitors and load switchings
with ferroresonance. The authors chose Daubechies as the
main wavelet with level 6 decomposition and the powers
of the detailed signals were used as input. The algorithm
achieved a recognition rate of 93% on average. Besides,
researchers increased the recognition rate to 94.8% using
the Kernel Principal Component Analysis (KPCA) [17].
In another study by Mokryani et al., a ferroresonance detec-
tion method is introduced combining S-Transformer and
Support Vector Machine (SVM). Ferroresonance data were
collected from a 20kV radial distribution feeder in a real
network. Transient data is generated by simulation. As a
result, 97.5% accuracy was achieved with S-Transform and
SVM [18]. Ferroresonance effects of faults in power trans-
formers as a result of deformation of windings were inves-
tigated by Mikhak-Beyranvand et al. [19]. In another study,
a new strategy for the determination of ferroresonance was
attempted by utilizing the vibration of the inductive volt-
age transformer exposed to ferroresonance. In the labora-
tory environment, the ferroresonance conditions have been
established and the ferroresonance detection strategy from the
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transformer’s differences in vibration has been demonstrated
and succeeded [20].

The primary objective of power system studies is to iden-
tify and analyze potential risks associated with ferroreso-
nance phenomena. These investigations are typically carried
out using laboratory experiments involving simplified cir-
cuit models or numerical models. In order to comprehend
the diverse manifestations of ferroresonance, it is crucial to
develop a comprehensive understanding of the behavior of
soft magnetic materials within nonlinear inductors. Neglect-
ing certain factors and assuming idealized magnetic prop-
erties may result in inaccurate simulation outcomes if full
modeling is not performed. In particular, relying solely on
simulations based on idealized transformer and capacitance
conditions may not yield realistic results when dealing with
chaotic ferroresonance. In a previous study, a simulation
of a chaotic ferroresonance circuit was carried out, and an
elimination algorithm was developed and implemented to
iteratively eliminate ferroresonance by considering relevant
parameters [21].

In various studies, the impacts of ferroresonance have been
explored by analyzing the behavior of phase transformer
models in nonlinear transient operations within a labora-
tory setting [22]. Another study used software simulation
to analyze a ferroresonance event in a 0.4/22 kV distri-
bution transformer powered by a photovoltaic source [23].
Additionally, another study highlighted the importance of
protection against overcurrent during ferroresonance events
and discussed relevant overcurrent protection and delay solu-
tions [24].

The identification and monitoring of chaotic ferroreso-
nance is crucial for taking timely measures to prevent it.
In recent years, smart networks with online monitoring have
been considered as a promising solution to address fer-
roresonance. Electric load estimation is an essential aspect
of smart grids for efficient electrical power planning and
operation. Deep Convolutional Neural Network (DCNN) is
one of the popular deep learning methods used for electric
load estimation. In a study, a DCNN model was trained and
tested using two-dimensional photographs of long and short-
term load charts as the data set. Additionally, a Cycle-based
Long-Short Term Memory Network (C-LSTM) was applied
to enhance the short-term load estimate performance [25].
The study successfully achieved short-term electric load esti-
mation. Another study used a Smart Solid-State Ferroreso-
nance Limiter to stabilize the chaotic behavior of a voltage
transformer. The effectiveness of the proposed method in
reducing ferroresonance over-voltages was evaluated through
simulation and laboratory testing [26].

Identification systems always have two parts. The first one
is the feature extraction and the other is the classification.
If numerical data is to be used, these two parts are inevitable.
In many studies for feature extraction and voltage signal anal-
ysis, wavelet transform (WT) and short-term Fourier trans-
form (STFT) are commonly used time-frequency analysis

algorithms [27], [28], [29]. However, in DCNNmodels where
feature extraction is performed automatically based on image
data, feature extraction is not performed separately. Deep
convolutional neural networks in which graphical images are
used to detect ferroresonance may close this gap at this point.
Deep convolutional neural networks have been successfully
applying in many classification problems. It is especially
successful in the recognition or classification of image data
in applications where online data flow is available, espe-
cially with the use of too much data. In another study that
exemplifies the use of image data, wind power, which is the
most influential factor in the electrical grid power in wind
power plants, has been estimated for an ultra-short-term with
DCNN. In the final phase of the study, a combined system
with LightGBM classification algorithm was obtained. The
system was compared with the support vector machine and a
more successful result was observed [30]. Similarly, DCNN
is used in solar power estimation [31]. After reviewing the
previous works, at this point, the ferroresonance continues
to be a serious problem of the electricity grid. Studies on
the detection and classification of ferroresonance are still in
progress, and other satisfactory studies and alternative solu-
tions are still needed. Our study has three important originali-
ties in terms of both being complementary to previous studies
and contributing to the solution of the problem. We can list
them as follows:

1. Using two-dimensional graphical image data, which was
not used in any of the previous studies, we were able to
instantly detect the chaotic ferroresonance state with DCNN.

2. In previous studies, the way to use two-dimensional (2d)
DCNN could not be opened because the idea of reaching a
conclusion using graphical image data often did not seem
realistic due to some reasons such as the difficulty of feature
extraction. Instead of designing a DCNN algorithm from
scratch in order to use the (2d) DCNN method, which was
not used in previous studies, more effectively and actively
we implemented a pre-trained DCNN model by making use
of the transfer learning (TL) approach. For this, we revised
some layers in the AlexNet pre-trained model. Thus, we think
that we are the first to use and apply a pretrained 2d-DCNN
model in the detection of ferroresonance as far as we know.
Also, this approach can contribute to the development of a
fully automatic smart grid system by defining input-output
parameters and integrating it into a fully automatic smart grid
system as part of the sub-module.

3. In previous studies, the classification of chaotic ferrores-
onance phenomenon into subclasses was mostly neglected.
We have designed, implemented and proposed a robust and
powerful automatic detection method that can detect sub-
types of chaotic ferroresonance thanks to DCNN trained with
graphical image data.

The use of Deep Convolutional Neural Networks (DCNNs)
such as AlexNet for analyzing ferroresonance data in power
systems presents several advantages. Ferroresonance is a
nonlinear and complex phenomenon, and detecting and
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classifying ferroresonance events accurately is crucial for
maintaining power system stability and reliability. The poten-
tial advantages of using a DCNNAlexNet model for ferrores-
onance analysis are as follows:

• High Accuracy: DCNNs like AlexNet have shown
exceptional performance in image classification tasks.
Ferroresonance data can be transformed into spectro-
grams or other visual representations, which can be fed
into the AlexNet model for classification. This approach
has the potential to achieve high accuracy in detecting
and classifying ferroresonance events.

• Reduced Complexity: Ferroresonance events are com-
plex and nonlinear, making them challenging to detect.
Traditional signal processing techniques are computa-
tionally expensive and time-consuming. However, using
a DCNN AlexNet model can reduce the complexity of
the ferroresonance analysis process since the model can
automatically learn and extract features from the input
data.

• Improved Efficiency: Traditional manual analysis meth-
ods require expert knowledge and significant time and
effort. Using a DCNN AlexNet model can improve the
efficiency of ferroresonance analysis, as the model can
quickly classify ferroresonance events and reduce the
need for manual analysis.

• Scalability: The DCNN AlexNet model can be trained
on large datasets, making it scalable for use in large
power systems. Additionally, the model can be easily
retrained or adapted for new data or different power
system configurations.

Using a DCNN AlexNet model for ferroresonance analysis
provided the benefits of improved accuracy, reduced com-
plexity, improved efficiency and scalability.

The rest of the article is organized as follows: In the sec-
ond section, the method used in the study, the data set, the
architecture of the DCNN models are explained. In the third
section, the results obtained from the study are given. In the
fourth section, the results are discussed and compared with
previous studies. In the last section, the fifth one, the results
of the study and what can be done in the future are explained.

II. INTRODUCTION ALGORITHM AND MATHEMATICAL
BACKGROUND
The study is comprised of two distinct phases. The objective
of the first phase is to identify chaotic ferroresonance, while
the goal of the second phase is to categorize chaotic ferrores-
onance into four subclasses. To achieve these objectives, two
separate deep convolutional neural network (DCNN) models
were employed. The first model, referred to as ‘‘Model 1,’’
was utilized for identification purposes, while the second
model, ‘‘Model 2,’’ was used for classification.

A. OBTAINED AND ARRANGING THE DATA SET
To create a data set and provide real solutions for ferroreso-
nance, it is necessary to make real electricity network mod-
elling in accordance with reality.

TABLE 1. Parameters in seyitomer-isiklar power network.

The main objective of this study was to investigate the
occurrence of ferroresonance in the ‘‘380 kV Seyitomer-
Isiklar, Turkey Electrical Power System’’ by simulating
sudden power cuts using cutters. To achieve this, we devel-
oped a simulation model of the system using the MATLAB-
Simulink
environment, which was based on real parameters.
Themodel was designed to represent the system as accurately
as possible, and its effectiveness was verified by comparing
the simulation results with the actual system behavior.

The modeled system is shown in Figure 2 and was based
on the parameters presented in Table 1, which were obtained
from the Seyitomer-Isiklar electrical grid. The fault line break
in the network was symbolized to simulate the sudden power
cuts induced by the cutters. The simulation was conducted
by running the model with different fault scenarios, and the
results were analyzed to determine the occurrence and char-
acteristics of ferroresonance in the system.

Overall, the study presented a comprehensive investigation
of ferroresonance in the Seyitomer-Isiklar electrical grid,
which was accomplished through the development and anal-
ysis of a detailed simulation model. The findings of this study
provide valuable insights into the behavior of power systems
under sudden power cuts, which can help in improving the
design and operation of electrical grids.

To generate medium to high voltage ferroresonance, it is
necessary to connect the load to the medium to the long
transmission line. In our system, the development of the
ferroresonance event is simulated realistically. The graph of
phase voltages before and after ferroresonance is shown in
Figure 3.
For the training and testing of Model 1, short-term snap-

shots of the R-S-T phase voltages were obtained. In Figure 4,
two sample data sets are randomly selected from the data used
in the training and testing of Model 1, which include both
ferroresonance and normal cases. Model 1 used 720 images,
with 320 of these images representing instances before fer-
roresonance and the rest representing instances after ferrores-
onance. 85% of each group of this data set was used for
training Model 1, while the remaining 15% was used for
validation.

The purpose of Model 1 is to determine whether a ferrores-
onance event is present for any three-phase voltage curve. For
Model 2, only the R-phase curve after the ferroresonance of
the R-S-T phase voltages, shown in Figure 3, was used.
The ferroresonance in the R-S-T three-phase graph is

known to be of the chaotic ferroresonance class, but it also
differs from time to time. Model 2 aims to classify these

58940 VOLUME 11, 2023



H. S. Nogay et al.: Diagnosis of Chaotic Ferroresonance Phenomena Using Deep Learning

FIGURE 2. Seyitomer-isiklar schematic block model.

FIGURE 3. Overall data of the voltage variation for the three-phase.

FIGURE 4. Sample images from data set for model 1.

differences in chaotic ferroresonance. Table 2 shows the dif-
ferent chaotic ferroresonance classes in the voltage curve
used in the study.

To obtain the data set for Model 2, a total of 880 short-
term images were taken from each chaotic class in Table 2.
75% of each class data set was used for training Model 2, and
the remaining 25% was used for validation. Figure 5 shows
randomly selected sample image data from the data set used
for the training of Model 2, regardless of their subclasses.

All data in the data set for model 1 and model2 are initially
547 × 1110×3 dimensions. These data were rearranged for
both model1 and model2 with dimensions of 227 × 227 x 3.

B. ARCHITECTURE OF THE MODELS
In this study, we used pre-trained AlexNet DCNN models to
the identification and classify chaotic ferroresonance event.

TABLE 2. Classification of chaotic ferroresonance.

FIGURE 5. Sample images from data set for model 2.

We used the transfer learning approach for DCNN architec-
ture. Transfer learning is a type of machine learning method
in which a model trained for a particular task can be used
to learn the new task by transferring information. The input
images for AlexNet were colour images with a resolution of
227 × 227×3 pixels.
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FIGURE 6. AlexNet architecture for chaotic ferroresonance identification
and classification.

The AlexNet model consists of 5 convolution layers and
3 max-polling layers. Each convolution layer in AlexNet
architecture is followed by a rectified linear unit (ReLU).
All parameters including filter sizes for each layer are shown
in Figure 6. In the pre-trained Alexnet model for transfer
learning, we have removed the fully connected layer, the
softmax layer and the classification layer, which are the last
three layers, which are trained to classify 1000 categories.
After removing these layers, we arranged this architecture
for two tasks: the detection and classification of chaotic
ferroresonance. To this end, in order to identification chaotic
ferroresonance (CF), another ‘‘fully connected layer’’ with
2 neurons was placed instead of ‘‘fully connected layer’’
with 1000 neurons, which was removed. Before the ‘‘Fully
connected’’ layer, there is a ‘‘softmax’’ function where all
units are fully connected to two outputs.

The softmax function layer for both model1 and model2
has been replaced with a new one. Thus, we have arranged
model1 to realize our first goal. Our second goal was to
classify the chaotic ferroresonance phenomenon to their sub-
types, namely C1, C2, C3 and C4, respectively. For this
purpose, we changed the last link layer of the architecture
to the probability of output from 2 classes to 4 classes, so we
obtained model 2. The rest of the layers were the same as the
CF identification. For Model 1 and model 2, the architecture
for CF identification and subtype classification, respectively,
is shown in Figure 6.

The network change rate is usually carried out with the
training rate. The study was carried out with the NVIDIA

TABLE 3. Accurancies (%) for DCNN models.

GeForce 940MX, 6040 MB GPU notebook for both models.
Model 1 training took about 1 minute and model 2 training
took about 4 minutes. For model 1, mini batch size 22 and
maximum epoch are set to 3. For model 2, mini batch size
22 and maximum epoch are set to 10. In this study, pre-
trained AlexNet convolutional neural network model was
reorganized with transfer learning method. Figure 6 shows
the pretrained model AlexNet and the changes made.

III. RESULTS
Pretrained DCNN models were used to automatically detect
and classify chaotic ferroresonance. Model 1 was used for
the identification of chaotic ferroresonance and Model 2 was
used for classification. With the data set of Model 1 and the
data set of models 2, we analysed the results obtained from
different training results. The number of training samples and
the accuracy rates of the models are given in Table 3. Both
models have provided a fair accuracy for the classification
and detection of data sets. The accuracy rate for both models
and data sets was 100%.

Figure 7 shows the process of accuracy rate for training
and validation obtained according to iteration for model 1.
Figure 8 shows the error curve of model 1 in the training
process. For Model 2, the training process accuracy rate
and loss graphs can be observed from Figures 9 and 10.
Figure 11 and 12 show confusion matrixes, respectively, for
the chaotic ferroresonance identification and subtype classi-
fication. As can be seen from both confusion matrix, it is
understood that there is not an incorrectly predicted image
for both classification and identification. The success of both
models can be easily seen from both the confusion matrices
and the accuracy graphs showing the training processes.

IV. DISCUSSION
Our study presents an automatic detection system for chaotic
ferroresonance and classifies the subtype into 4 classes
using deep learning techniques. Unlike previous classifica-
tion methods that required numerical data of voltage and
current information, our proposed method utilizes short-term
graphical images, eliminating the need for extra processing
such as feature extraction. Our system uses convolutional
layers and other hidden layers in a deep convolutional neu-
ral network (DCNN), which can automatically detect and
classify the graphic image dataset with superior accuracy
compared to standard methods.
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FIGURE 7. Accuracy per iteration for model 1.

FIGURE 8. Loss per iteration for model 1.

FIGURE 9. Accuracy per iteration for model 2.

Deep neural networks often required large amounts of
data for training. However, in this study, we were able to
obtain 100% accuracy in the determination of ferroresonance
and 100% accuracy in the chaotic ferroresonance subtype
classification using the short-term graphic image data and

FIGURE 10. Loss per iteration for model 2.

FIGURE 11. Confusion matrix for model 1.

FIGURE 12. Train and test results of the ANFIS models.

fine-tuning of the pre-trained DCNN despite our limited data
set. The highest accuracy rate was obtained for the definition
and classification of ferroresonance with 2 data sets. The
absence of a difference in the accuracy ratio between model
2 and model 1 indicates that the deep neural networks are
strong enough to detect both the subtypes of chaotic fer-
roresonance and the identification of chaotic ferroresonance.
Abundant studies in the literature suggested different fer-
roresonance detection techniques, but most studies neglected
the classification of subtypes due to inter-class similarity and
intra-class variability of chaotic or other type ferroresonance.
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Although these subtypes are difficult to use, they are of great
importance in the case of chaotic ferroresonance.

In this preliminary study, the automatic determination of
chaotic ferroresonance was performed and the subtypes were
classified into 4 classes based on the instant graphical images.
In a similar way to our study, each of the events that cause
ferroresonance can be obtained by simulation. Therefore,
the ferroresonance event can be obtained by simulation and
classification can be performed by using this simulation data.
However, if the materials such as inductance and capacitor
used in the simulation are modelled by taking into consid-
eration their ideal conditions, then the contribution of the
solution remains limited. In Mokryani and Haghifam studies,
they used multilayer perceptron to differentiate ferroreso-
nance from the distribution transformer from other transients
by using the data of ferroresonance and other transient events
obtained as a result of a simulation. Other transient events
simulated in the study are capacitor switching, transformer
switching and load switching. In the study, the wavelet trans-
form was used for the decomposition of the signals and the
feature extraction. In general, they achieved a classification
with a 93% accuracy [32]. In a study in which artificial
neural networks were used to classify different overvoltage
events in power transformers, in every overvoltage event the
secondary winding current of the transformer was analysed
using the discreet wavelet transform. Different load scenarios
were considered. As a result, the overvoltage classification
and ferroresonance classification were performed separately.
As a result, the overvoltage classification and ferroresonance
classification were carried out separately. Accuracy rate
detection of ferroresonance was 100% and overall, 98.75%
accuracy was achieved. In this study, however, the subtypes
of chaotic ferroresonance were neglected, just as in previous
studies [33]. The identification of ferroresonance phenomena
is also extremely important for smart grid systems such as
online monitoring. In a study in which a smart tracking and
suppression system based on a fuzzy logic approach was
examined and applied, the ferroresonance were defined by
diversifying as low frequency or high frequency according to
the frequency. In this study, according to the numerical data,
classification and identification was made by the fuzzy logic
algorithm based on frequency limits 0 or 1 judicial approach.
In the study, 8 different events were taken into consideration
and those who were known as ferroresonance were identified
with 100% accuracy [34].

In an article, a system based on the Sparse Autoen-
coder (SAE) is proposed for the detection and classifica-
tion of overvoltage in power distribution systems caused by
ferroresonance. The system uses single-layer and stacked
Sparse Autoencoders (SSAEs) to extract automatic fea-
tures and reduce the dimensionality of ferroresonance over-
voltage waveforms, without requiring feature engineering.
The different modes of ferroresonance are then classified
using a softmax classifier, achieving a high accuracy rate
of 97% [35]. In another study, Djebli et al. investigated the
sensitivity of ferroresonance to eddy currents in the iron

TABLE 4. Comparison of modern classifiers and classification accuracy.

core [36], while Majka and Klimas designed hardware for
diagnosing ferroresonant circuits [37]. Negara et al. investi-
gated the influence of special transformer core types on the
formation of ferroresonance modes. Through a comprehen-
sive cumulative energy analysis, significant distinctions were
determined among normal waves, harmonics, and ferrores-
onances [38]. Heidary et al. recommended the use of fer-
roresonance for dual function protection element limiting by
fault currents [39]. Abdel-Hamed et al. conducted a study on
ferroresonance in integrated distribution systems with mul-
tiple distributed generations. They proposed a new method
utilizing an RLC shunt limiter to mitigate ferroresonance in
distribution networks. The study investigated ferroresonance
in an IEEE-33 bus radial distribution system with multi-
ple distributed generations. Their findings demonstrated the
superior effectiveness of the shunt limiter, which was con-
nected using a negative sequence detector, when compared to
existing methods [40].

In this study, we conducted an investigation into the use
of a Deep Convolutional Neural Network (DCNN) model
for the identification and classification of chaotic ferroreso-
nance phenomena and subtypes. The proposed model utilized
instantaneous waveform images, eliminating the need for
additional processing such as feature extraction. Our experi-
mental results demonstrated that the DCNN model achieved
the highest classification accuracy compared to all previously
reported methods in the literature. Unlike previous studies,
we utilized image data instead of digital data.

Table 4 compares the performance of the proposed method
with other methods presented in the literature. It should be
noted that the training and testing processes were performed
on a limited amount of data. Therefore, our future goal is to
develop algorithms that provide more generalizable solutions
by utilizing a larger amount of image data.

V. CONCLUSION AND FUTURE DIRECTION
In this study, we investigated the application of a DCNN
using pre-trained AlexNet to identify and classify chaotic
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ferroresonance phenomena and subtypes. We achieved 100%
accuracy for sub-type classification and 100% accuracy for
the identification of chaotic ferroresonance phenomena by
using a dataset created from short-time graphical images.
The automatic identification and classification system can
help in the early detection of ferroresonance phenomena,
providing opportunities for effective prevention. In the future,
researchers may use different deep learning architectures to
classify and identify any type of ferroresonance, and compare
these architectures to determine the best network for ferrores-
onance detection. Additionally, deep learning models can
be trained from scratch using larger image datasets, making
the detection system usable in everyday life in the industry
and helping researchers and industry workers identify the
phenomenon of ferroresonance more effectively. Such deep
learning studies need to be generalizable to be usable in
real life. Therefore, it is necessary to use more image data.
It should not be forgotten that our study should be done with
more image data in this sense and should be more generaliz-
able. In the future, we aim to go further in this regard and to
carry out more generalizable studies. This approach can also
be developed into a fully automatic intelligent grid system
by defining input-output parameters, and integrated as a sub-
module into a fully automatic smart grid system. Another
direction for researchers is to develop an automatic detection
system for the phenomenon of ferroresonance, so that all
types can be automated.
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