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ABSTRACT Face presentation attack detection (PAD) is considered to be an essential and critical step in
modern face recognition systems. Face PAD aims at exposing an imposter or an unauthorized person seeking
to deceive the authentication system. Presentation attacks are typically made using a fake ID through a
digital/printed photograph, video, paper mask, 3D mask, and make-up etc. In this research, we propose
a novel face PAD solution using an interpolation-based image diffusion augmented by transfer learning
of a MobileNet convolutional neural network. The proposed interpolation-based image diffusion method
and face PAD approach, implemented in a single framework, shows promising results on various anti-
spoofing databases. The experimental results illustrate that the proposed face PAD method shows superior

performance compared to most of the state-of-the-art methods.

INDEX TERMS Anti-spoofing, deep learning, face liveness detection, face presentation attack detection,

interpolation-based image diffusion.

I. INTRODUCTION

Biometric authentication systems such as face recognition
and fingerprint have gained a lot of popularity over the past
decade due to the increased security and reliability compared
to the conventional password-based authentication systems.
Face recognition, in particular, due to its non-intrusive nature,
high accuracy, and usability has led to its applications
in various domains including surveillance [1], classroom
attendance systems [2], school examination monitoring [3],
mobile phone unlock [4], and access control systems [5]
to name a few. This has been made possible due to the
availability of large databases and greater computing power
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due to which, many deep learning-based automatic face
recognition systems have been reported to achieve accuracy
of over 99% [6]. However, face authentication systems suffer
from an intrinsic drawback of false acceptance which can
entail a security risk due to the possibility that the system
security can be vulnerable under a spoofing attack by a
malicious adversary/imposter attempting to spoof the face
recognition system.

Face spoofing attacks or face presentation attacks are
referred to attacks where an adversary obtains unautho-
rized access to a face recognition system by camouflag-
ing/imposing as an authorized person. Acquiring facial
images using social media has also enabled the attackers to
spoof the face recognition systems using a variety of attacks
such as print photo attacks, recorded facial videos, and 3D
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mask attacks. Therefore, the demand of efficient face anti-
spoofing systems or face presentation attack detection (PAD)
systems has also risen to alleviate the spoofing risks to the
face recognition applications.

During the past decade, a large number of face PAD
methods have been reported. These methods put their prime
focus towards the exploration of efficient features for face
PAD. Such methods can be divided into different categories
such as distortion, motion, texture, and deep learning-based
face PAD techniques. Each of the aforementioned techniques
have made important contributions in the performance of face
PAD systems. Distortion-based techniques focus on utilizing
the distortion sensitive features to perform face anti-spoofing.
Motion based techniques focus on extracting motion features
such as blinking of the eyes, optical flow, head movement,
and lip movement to perform face liveness detection. Texture-
based face PAD techniques aim to adopt texture features such
as local binary patterns (LBP) to detect face spoofing. Deep
learning-based techniques perform anti-spoofing by learning
the feature representation using deep neural networks.

Early face PAD solutions rely heavily on the motion-based
features such as movement of the head, blinking of the eyes,
and lip movement to detect 2D face spoofing attacks. In [7],
a face detection technique leveraging mouth localization
and utilizing lip motion analysis for face detection and
liveness detection by incorporating AdaBoost and SVM,
respectively, was presented. The authors in [8] performed
liveness detection using the difference of optical flow fields
generated by the movement of 3D objects (such as a face)
and 2D planes (such as a printed photograph). A face
liveness detection technique that analyzes the correlation
between the background and the fore-ground using optical
flow is presented in [9]. Motion-based face PAD techniques
also use eye-blinking movements [10], [11], dynamic facial
textures [12], nose and ear movement [13] among other facial
movement cues.

Most of the face PAD schemes presented in the liter-
ature focus on the detection of replay and print spoofing
attacks, which can be addressed using the texture and color
features. A number of early works incorporate hand-crafted
features such as color texture features and local binary
patterns (LBP) [14], [15], [16], histogram of oriented gra-
dients (HOG) [17]. Other texture-based methods employed
scale-invariant feature transform [4], [18], speeded-up
robust feature (SURF) [19], optical flow and texture
analysis [20], etc.

Despite the recent trend towards detection of 3D mask
attacks [21], most works in literature focus on the detection of
2D spoofing attacks such as print photo attack, replay attacks,
masking attacks, etc. This is due to the reason that most 3D
face PAD approaches rely on the introduction of additional
hardware (cameras for multiple channels e.g. thermal, NIR,
etc.) and also due to the computational complexity of
such approaches, it makes such approaches infeasible for
application in low-cost systems. Wenyun Sun et. al. [22]
proposed to revisit the face PAD task using local label
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supervision where the pixel-level spoofing cues are classified
using the spoof fore-ground, genuine fore-ground, and the
genuine background by a depth-based fully convolutional
network (FCN). A face PAD method that utilized a shape-
from-surface algorithm to extract intrinsic properties such as
depth, reflectance, and albedo of the faces followed by a novel
shallow CNN architecture to learn useful features for the face
PAD task is presented in [23]. The work in [24] presented an
approach that uses a mix of real-word face images and deep
convolutional autoencoder generated images followed by a
CNN feature fusion layer to balance the fusion, in an adaptive
fashion, of the two images to efficiently perform face anti-
spoofing. A CNN-based face PAD approach that learns the
dynamic disparity maps based hand-crafted features within
the network using an additional disparity layer in the custom
CNN architecture is presented in [25]. The use of multiple
channels such as near-infrared (NIR), thermal, etc., besides
the visual spectra for face PAD has also been reported in
the literature. The authors of [26] presented a multi-channel
CNN-based technique that uses four channels namely color,
NIR, depth, and thermal to address the 2D and 3D face PAD
problem. A hybrid approach that uses a region based CNN
and an improved Retinex-based LBP in a cascade fashion to
perform face PAD is presented in [27].

In many deep learning and computer vision applications,
transfer learning has been readily used for the extraction of
deep convolutional features. This has been made possible
with the availability of very deep CNN architectures where
complex and discriminative features can be extracted using
pre-trained models or fine-tuning. These pre-trained CNN
architectures provide excellent feature extraction capabilities.
While most of the existing works design and train the CNN
models from scratch using face PAD datasets, such models
usually suffer from overfitting due to the unavailability of
large training datasets. In order to address such overfitting
problems and enhance the performance of computer vision
and deep learning tasks, the use of pre-trained models and
fine-tuning deep CNN models from large image classification
databases such as ImageNet [28], has been actively reported
in literature. In this regard, a two-stream CNN-based face
PAD technique which leverages a pre-trained ResNetl8
model to learn the features from RGB space and an
illumination-invariant space to be provided to an attention-
based feature fusion mechanism for efficient face PAD
performance, is presented in [29]. The use of pre-trained
deep CNN models in face PAD approaches that use multiple
channels such as RGB, depth, NIR, thermal, etc. as an input
to a pre-trained multi-channel CNN (MC-CNN) network
followed by a small network consisting of a few layers
to perform the classification of spoof vs. real faces have
also been presented in the literature [26], [30]. The hybrid
approach presented in [27] also uses deep features extracted
from a pre-trained VGG16 model which has been used as
a base network, as well as illumination features extracted
using an improved Retinex algorithm for the face anti-
spoofing task. The work presented in [31] also proposed to
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use a pre-trained InceptionV4 model as a liveness feature
extraction network in their face PAD framework.

In this context, however, most of the studies do not explore
the potential of some state-of-the-art deep CNN models
for e.g. MobileNet [32] in the face PAD problem. In this
research, we propose a framework for efficient deep learning-
based face PAD for 2D attacks. In the proposed approach,
a diffusion method is implemented that uses an interpolation-
based method to perform image diffusion to enhance the
distinguishing features in the real and spoof images. Since
image diffusion is a process to introduce smoothness into
an image, and it can be viewed as applying a Gaussian
filter on an image [33]. Therefore, this research presents an
interpolation-based technique to generate diffused images.
The diffused images are then fed to a deep CNN followed
by a detection model which classifies real and spoof images.
This study presents an end-to-end approach where diffusion
and the deep CNN are combined into a single model.

The rest of the paper is organized as: the proposed
method is outlined in section II, the details of datasets and
performance metrics are provided in section III followed by
the experimental results and conclusion in sections IV and V
respectively.

Il. PROPOSED METHOD

In this paper, we propose a face PAD approach by designing
an interpolation-based image diffusion mechanism followed
by a deep CNN-based face PAD network using a pre-trained
MobileNet [32] as our base model.

A. IMAGE DIFFUSION

Image diffusion is a process where input images are smoothed
either at a constant rate (linear diffusion) [33], where the
smoothness is achieved at a constant rate throughout the
image, or in a nonlinear fashion where the important image
features such as edges are retained in the diffused image [34],
[35]. In computer vision applications, linear diffusion is
among the oldest and most investigated partial differential
equation method which can be seen as an evolution process
where an image is diffused/smoothed in all directions at
a constant rate. Such diffusion processes tend to suppress
the finer scale structural details in the image subjected to
diffusion.

Contemporary image diffusion schemes include linear
and non-linear diffusion models. Gaussian smoothing is
considered the most popular diffusion scheme among the
linear diffusion schemes [36]. Among the non-linear diffu-
sion schemes, the Perona-Malik diffusion [34] or commonly
known as anisotropic diffusion is considered the most widely
used image diffusion technique in image processing. Other
non-linear diffusion techniques include continuous diffusion
filtering, semi-discrete diffusion filtering, and discrete dif-
fusion filtering schemes [36]. Other image diffusion models
include hybrid image diffusion [37], modified Perona-Malik
diffusion model [38], [39], etc.
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The proposed diffusion strategy is carried out as a pre-
processing step where the captured frames are subjected to
compression using inter-area interpolation scheme. During
the compression stage, the inter-area interpolation technique
calculates the ratios of the output image height and width to
input image height and width termed as scale, and scaley.
The product of these ratios is then used to calculate Area =
scale, x scaley. Then depending on the value of the ratios,
the number of corresponding pixels from each channel are
selected to form an array of pixels for each channel. These
selected pixel arrays are then added and divided by Area to
calculate the corresponding output image pixels. The values
of ratios can either be integer or fractional. If the ratios are
non-integer, then the sum is taken as a weighted sum and the
value of weight for each pixel depends on the percentage of a
pixel in a particular pixel array. The weight for each pixel is
calculated as the ratio of the percentage of the pixel being in
the pixel array to Area.

The compressed frames are then expanded keeping the
pixel-area relationships into consideration thereby resulting
in smooth/diffused images. The proposed image diffusion
method enhances the class discrimination cues in the images.
This is due to the reason that, in general, image diffusion
is mainly performed for noise removal while preserving the
important information such as lines, edges, and other content
that is vital for the interpretation of the image [34]. In general,
noise reduction can remove significant information from an
image. Therefore, using inter-area interpolation, where pixel-
area relationships are used for re-sampling can remove the
noise content as well as preserve the useful information in
the image and generates images free from Moires’ patterns.

To verify the effectiveness of the proposed diffusion
method, in Fig. 1 PCA embedding for CASIA-FASD
[40] database using the proposed diffusion is visualized
in comparison with anisotropic diffusion [34]. The green
regions in the figure represent the real class samples while
the red regions represent the attack/spoof class samples.
It can be observed that the PCA embedding of the proposed
technique show better class separability compared to that for
anisotropic diffusion (i.e. less overlap between the red and
green regions). It is also noteworthy that the class separability
shown in PCA embedding has been achieved in image
domain which can essentially aid in CNN training to obtain
superior classification ability. A comparison of different pre-
processing methods detailing different diffusion techniques is
discussed in section I'V-A.

B. DEEP CNN-BASED FACE PAD MODEL

The proposed face PAD approach harnesses the concept
of transfer learning using a pre-trained deep CNN. The
methodology is motivated by the fact that the available face
PAD datasets are typically not sufficient for training a deep
CNN from scratch. Transfer learning is a technique where the
learned knowledge from a deep network trained on one task
is passed on to another network [41]. Transfer learning can
also overcome the overfitting problem caused by insufficient
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FIGURE 1. PCA embeddings for CASIA-FASD database, (a) Anisotropic
diffusion, (b) Proposed diffusion method.

and imbalanced training data. Transfer learning can be used
in two ways; (1) as a feature extractor [42] and (2) fine tuning
the source model [43].

For the proposed face PAD approach, we used a pre-trained
MobileNet [32] deep CNN architecture that was trained on
ImageNet dataset [28]. We used the MobileNet architecture in
a fine-tuning setting, where pre-trained weights of ImageNet
are used for fine-tuning the model on the face PAD
databases. The use of transfer learning a deep CNN model is
motivated by the strong feature extraction capability as well
as the reduced computational requirements of such training
methods. An experiment for the performance evaluation of
the two transfer learning strategies mentioned above. The
findings of the experiment suggest that fine tuning a pre-
trained model results in better performance. The details of
the experiment are presented in Section IV-B. The bock
diagram of the proposed deep CNN-based face PAD network
is presented in Fig. 2.

The MobileNet model is based on depth-wise separable
convolution [44] where a standard convolution is divided
into a depth-wise convolution and piece-wise convolution.
The filtering and combining of inputs into an output are
done in a single step in standard convolution, whereas the
depth-wise separable convolution splits this task into two
layers thereby significantly reducing the model size and the
number of computations performed in the model. A standard
convolution takes D4 x D4 x M input features and yields an
output feature map of the dimensions D4 x D4 x N, which
results in the number of computations as:

Dy -Di-M-N-Dy-Dy (1)

where Dy x Dy is the kernel size, M is the number of input
channels, N is the number of output channels, and Dy x Dy
is the size of the feature map. 3 x 3 depth-wise separable
convolutions are used in MobileNet architecture which can
reduce the computations substantially. Using depth-wise
separable convolution results in a computational cost of

M -Dy -Dy-Dy-Dg+N-M-Dy-Dy 2)
which can be simplified as
M Dy Dy - (Di - D+ N) 3)
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TABLE 1. Proposed face PAD model architecture.

Layer Type / Strides Input Shape Output Shape
Diffusion 30 x 40 x 3 244 x 244 x 3
Conv2D /2 244 x 244 x 3 112 x 112 x 32

Conv2D Depth-wise / 1
Conv2D Point-wise / 1
Zero Padding

112 x 112 x 32
112 x 112 x 32
112 x 112 x 64

112 x 112 x 32
112 x 112 x 64
113 x 113 x 64

Conv2D Depth-wise / 2 113 x 113 x 64 56 x 56 x 64
Conv2D Point-wise / 1 56 X 56 x 64 56 x 56 x 128
Conv2D Depth-wise / 1 56 X 56 x 128 56 X 56 x 128
Conv2D Point-wise / 1 56 x 56 x 128 56 x 56 x 128
Zero Padding 56 x 56 x 128 57 x 57 x 128
Conv2D Depth-wise / 2 57 x 57 x 128 28 x 28 x 128
Conv2D Point-wise / 1 28 x 28 x 128 28 x 28 x 256
Conv2D Depth-wise / 1 28 x 28 x 256 28 x 28 x 256
Conv2D Point-wise / 1 28 x 28 x 256 28 x 28 x 256
Zero Padding 28 x 28 x 256 29 x 29 x 256
Conv2D Depth-wise / 2 29 x 29 x 256 14 x 14 x 256
Conv2D Point-wise / 1 14 x 14 x 256 14 x 14 x 512
5x Conv2D Depth-wise / 1  14x14x51214x  14x14x 51214 X
5x Conv2D Point-wise / 1 14 x 512 14 x 512

Zero Padding 14 x 14 x 512 15 x 15 x 512
Conv2D Depth-wise / 2 15 x 15 x 512 7 X7 x512
Conv2D Point-wise / 1 7 xT7xb512 7 x 7 x 1024
Conv2D Depth-wise / 1 7 x7x1024 7 x7x1024
Conv2D Point-wise / 1 7 X7 x 1024 7 X7 x 1024
Dense / 1 50176 512

Sigmoid 512 1

where it can be seen that the computations are decreased
nearly by a factor of N as compared to that of standard
convolutions presented in (1).

The proposed face PAD method uses the MobileNet pre-
trained model as a base model. The proposed face PAD model
architecture is presented in Table. 1. The top layers of the
MobileNet base model are interchanged by a simple MLP
classifier network containing two fully-connected layers with
512 and 1 units respectively. All layers are followed by batch
normalization and activated by ReLU activation, except for
the final fully-connected layer where a Sigmoid activation is
used for binary classification. We used Adam optimizer with
a learning rate of 1 x 10~* for model compilation.

IIl. MATERIALS AND METHODS

A. DATASETS

The proposed deep learning framework was extensively
evaluated on four standard datasets namely: (1) Replay-
Attack, (2) Replay-Mobile, (3) CASIA-FASD, and (4)
ROSE-Youtu. Each dataset is described below.

1) REPLAY-ATTACK DATASET

The Replay-Attack dataset [45] is a 2D face presentation
attack dataset consisting of 1300 video clips (9-15 seconds
duration) of photo and video attack attempts for 50 clients.
The video clips are shot using different cameras and
under different controlled and adverse lighting conditions,
an example of real and attack video frames under adverse and
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FIGURE 2. Proposed face PAD network.

controlled lighting is presented in Fig. 3. The first, second,
and third columns represent the video frames for a real user,
attack using fixed stand, and attack using hands to hold
the spoofing device respectively. The first row represents
the video frames in adverse lighting and the second row
represents the video frames in controlled lighting conditions.
All the videos are recorded at a frame rate of 25FPS, and
have a resolution of 320 x 240. The dataset is divided into
training, testing, and development set. The dataset contains
4 real and 20 attack videos per client/subject. The training
and development set each contain 15 subjects with 360 video
clips while the test set consists of 20 subjects with 480 video
clips. The subjects present in one set do not appear in any
other sets. The dataset details are enlisted in Table. 2.

2) REPLAY-MOBILE DATASET

The Replay-Mobile dataset [46] was developed for face
recognition and face PAD in 2016. It contains 1030 video
clips of photo and video attacks of 40 subjects. These
video clips were recorded on different mobile devices under
different lighting conditions. The dataset is divided into train,
test, and development sets and the subjects present in one
set do not appear in any other sets. The details of Replay-
Mobile dataset are enlisted in Table. 2. Some examples of
the extracted frames from the Replay-Mobile dataset are
presented in Fig. 4.

3) CASIA-FASD DATASET

The CASIA-FASD dataset [40] developed for face anti-
spoofing was released in 2012. CASIA-FASD is a small
dataset containing diverse photo and video attacks of different
image qualities for 50 subjects. Each subject in the dataset
contains 3 genuine video clips and 9 attack video clips. Hence
the dataset contains 600 video clips for 50 subjects. The
dataset is divided into 20 subjects for training and 30 subjects
for testing, whereas, each subject appears only in one of
the sets. Some examples of the extracted frames from the
CASIA-FASD dataset are presented in Fig. 5.

4) ROSE-YOUTU DATASET

ROSE-Youtu face liveness detection dataset [47], [48] is
a comprehensive face anti-spoofing database. It covers a
variety of lighting conditions, attack types, and camera
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FIGURE 3. Example of real and attack video frames under adverse (first
row) and controlled (second row) lighting in replay-attack
dataset.

models. The database consists of 3350 video clips of
20 subjects. For each subject, there are around 150 ~
200 video clips with an average duration of 10 ~ 12 seconds.
There are three type of spoofing attacks covered in this
database including video replay attack, print photo attack, and
masking (paper mask) attack. The performance on ROSE-
Youtu database is usually measured in equal error rate (EER).
Some examples of the extracted frames from the ROSE-Youtu
dataset are presented in Fig. 6.

B. PERFORMANCE EVALUATION METRICS
Since face PAD is essentially a classification problem,
therefore, standard threshold dependent performance evalu-
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Real/Genuine Frames

Photo and Video Replay Attack Frames

Photo Replay Attack Video Replay Attack

FIGURE 4. Sample frames from real and attack video clips from
replay-mobile database.

Real/Genuine Frames

1S

Print Photo Attacks Photo Replay Attack

FIGURE 5. Sample frames from real and attack video clips from
CASIA-FASD database.

ation parameters such as sensitivity (Sen), specificity (Spe),
Youden’s index (YI), and Fl-score are reported in this
paper. Besides these metrics, face liveness classifiers or
commonly called face PAD methods can also be evaluated
on the basis of the classification accuracy achieved by the
algorithm [31]. Each of these parameters can be calculated
using the following equations:

P

Sen = ——— “
TP + FN

: TN )
e = ———
P¢ = TN+ FP

YI = Sensitivity + Specificity — 1 (6)
Prec x Recall

Fl1—Score=2x ———— @)
Prec + Recall
TP
Prec = —— (8)
TP + FP
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TABLE 2. Dataset description.

Dataset Year Number of Subjects  Real / Attack
Replay-Attack [45] 2012 50 200/ 1000
Replay-Mobile [46] | 2016 40 390/ 640
CASIA-FASD [40] 2012 50 150 /450
ROSE-Youtu [47] 2018 20 1000 / 2350

Real/Genuine Frames

abit

Paper Mask Attacks

FIGURE 6. Sample frames from real and attack (Masking attack) video
clips from ROSE-Youtu dataset.

where TP, FP, TN, and FN represent true positive, false
positive, true negative, and false negative, respectively.
Thus, sensitivity represents the fraction of real/genuine
face images correctly detected/classified as genuine faces
while specificity presents the fraction of spoof/attack faces
correctly classified as attack faces. The Youden’s index
integrates the sensitivity and specificity measures in a way
that emphasize both the sensitivity and specificity. The value
of Youden’s index ranges between 0 and 1, with O being
the worst result and 1 being the perfect value indicating no
false positives and false negatives. F1 score is also a popular
measure of test accuracy and it represents the harmonic mean
of the precision (Prec) and recall/sensitivity.

Besides these measures, most face PAD literature also
reported the half total error rate (HTER), which is defined
by the following equation:

FAR + FRR
HTER = ————— C))
2
where FAR and FRR are the false acceptance rate and false
rejection rate defined by the following equations respectively:

FP
FAR = —— (10)
FP+ 1N
FN
FRR = ——— (11)
FN + TP
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HTER is used as a performance metric in most face
anti-spoofing literature due to the reason that in most face
PAD databases, there is a significant imbalance between
the real and attack classes. This imbalance is mainly due
to the difficulties in obtaining real data as compared to
the imposter/attack data. Since FAR and FRR are database
distribution independent metrics and the HTER is the average
of the both, therefore, it is convenient to use HTER for
performance comparison than the standard classification
error metrics for face PAD methods.

For the performance evaluation on ROSE-Youtu and
CASIA-FASD database, it is recommended to use equal error
rate (EER) instead of HTER. EER can be defined by the
following equation. Both the HTER and EER are reported as
a percentage in literature.

FP+ FN
EER = (12)
TP+ FP+ FN + 1N

Among the various performance evaluation metrics, one
of the most important metric to evaluate the classification
performance of a binary classification system or any classifier
in general is the receiver operating characteristics (ROC)
curve. This is often called area under the curve - receiver
operating characteristics (AUC-ROC) or simply area under
the receiver operating characteristics (AUROC) curve. ROC
curve is a probability curve and AUC represents the degree or
extent of class separability. Therefore, the higher the AUC,
the better the classifier is at discriminating class O from
class 1. The ROC curve is a graph of sensitivity or true
positive rate (TPR) against false positive rate (FPR) (where
FPR = 1 — specificity).

C. TRAINING SETUP

Since face anti-spoofing datasets, in general, are imbalanced,
i.e. the number of real video clips are less than the
number of attack videos, therefore, for Replay-Attack and
Replay-Mobile datasets, we randomly selected 25 frames
of each video in the real training, development, and testing
sets. Whereas for the attack videos, we randomly selected
10 frames from each video in the training, development, and
testing sets. To keep the number of samples/images in both
the classes balanced, we captured 40 frames from the real
video clips in CASIA-FASD database and 15 frames from
the respective attack video clips. Similarly, for ROSE-Youtu
database 6 random frames were selected from each real video
clip, while 2 frames were randomly selected from the attack
video clips to maintain a balance between the two classes. The
frames were captured with the dimensions of 30 x 40 for all
the datasets used in this study except CASIA-FASD, where
the captured frame dimensions were kept 224 x 224.

The proposed model was trained for 50 epochs and we
used early stopping with the patience of 10 epochs to
avoid over-fitting, thereby stopping the model training if
the performance stopped improving. We used validation
loss as the metric for early stopping, and the best model
was saved to perform testing/inference on test set. The
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TABLE 3. Performance of the proposed method evaluated on standard
threshold-dependent metrics for Replay-Attack, Replay-Mobile,
CASIA-FASD, and ROSE-Youtu datasets.

Dataset Replay-Attack  Replay-Mobile = CASIA-FASD  ROSE-Youtu
Accuracy (%) 99.93 99.04 99.90 95.04
Sensitivity 0.9980 1.0 0.9902 0.9542
Specificity 1.0 0.9771 0.9709 0.9473
Youden Index 0.9980 0.9771 0.9612 0.9015
F1-Score 0.9990 0.9917 0.9738 0.9461

code for training and testing of the proposed method on
CASIA-FASD database has been made available in the
authors’ github repository (https://github.com/mhdshl/Face-
PAD-transfer-learning-diffusion).

IV. EXPERIMENTAL RESULTS

Extensive experiments were conducted to evaluate the effi-
cacy of the proposed framework. For the proposed approach,
five independent simulation runs were performed to calculate
the standard threshold-dependent metrics and the results for
accuracy, sensitivity, specificity, Youden’s index, F1-Score,
etc., for all the datasets are reported in Table. 3. The results
clearly show the superior discriminating capability of the
proposed approach in terms of these standard threshold-
dependent metrics.

To verify the robustness of the proposed approach, data
visualization was performed for all four databases using PCA
embedding, refer to Fig. 7. The PCA plots of the diffused
input images and the plots of latent feature space of the
proposed face PAD network are presented. The latent features
are extracted from the MLP network hidden layer with
512 nodes. The data visualization exercise not only verifies
the effectiveness of the proposed image diffusion scheme,
but also shows the discriminating capability of the proposed
face PAD model. The latent feature space PCA embeddings
presented in Fig. 7 show the strong discriminating capability
of the proposed face PAD technique.

We also calculated AUC and plotted the AUC-ROC curves
for the performance evaluation of the proposed technique
on each dataset. The AUC-ROC curves for Replay-Attack,
Replay-Mobile, ROSE-Youtu, and CASIA-FASD datasets
are presented in Fig. 8a, 8b, 8c, and 8d respectively. The
AUC-ROC curves and the AUC values presented in Fig. 8
showcase the promising face PAD performance of the
proposed approach with an AUC of 0.9995, 0.9918, 0.9496,
and 0.9989 units for Replay-Attack, Replay-Mobile, ROSE-
Youtu, and CASIA-FASD databases respectively.

A. COMPARISON OF DIFFERENT PRE-PROCESSING
SCHEMES

In order to evaluate the effectiveness of the proposed diffusion
technique and its utility in model training, an experiment
is designed to evaluate the performance of the proposed
face PAD model on ROSE-Youtu database with different
pre-processing schemes including: (1) model trained without
any diffusion in pre-processing module, (2) model trained
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ROSE-Youtu database, (d) CASIA-FASD database.
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FIGURE 8. Receiver operating characteristics (ROC) curves. (a) AUC-ROC curve for training and testing on Replay-Attack database ((AUC = 0.9995,
EER(%) = 0.06). (b) AUC-ROC curve for training and testing on Replay-Mobile database (AUC = 0.9918, EER(%) = 0.96). (c) AUC-ROC curve for
training and testing on ROSE-Youtu database (AUC = 0.9496, EER(%) = 4.95). (d) AUC-ROC curve for training and testing on CASIA-FASD database

(AUC = 0.9989, EER(%) = 0.09).

with Perona-Malik anisotropic diffusion in pre-processing
module, (3) model training done with Gaussain filtering-
based diffusion in pre-processing module, and (4) model
trained with the proposed diffusion scheme in pre-processing
module. The training setup for these experiments is kept the
same as outlined in the previous section.
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For Perona-Malik anisotropic diffusion, the parameters
such as number of iterations, conduction coefficient, stability
constant, step size (distance between the adjacent pixels), etc.,
are kept the same as the default values. Similarly, for diffusion
using Gaussian filtering, the standard deviation for Gaussian
filter is also kept as the default value. Table 4 presents the
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TABLE 4. Comparison of the performance of the face PAD model with
different pre-processing schemes on ROSE-Youtu database.

Pre-Processing Scheme Accuracy (%) HTER/EER (%)
No Diffusion 90.99 8.56/9.01
Perona-Malik Diffusion [34], [35] 79.26 17.03/20.74
Gaussian Filtering [36] 90.52 8.9/9.48
Proposed 95.04 4927495

TABLE 5. Performance comparison for different learning schemes on
ROSE-Youtu database.

Performance Metric | Scheme-1  Scheme-2  Scheme-3
Accuracy (%) 89.35 91.91 95.04
Sensitivity 0.8692 0.9392 0.9542
Specificity 0.9216 0.8958 0.9473
Youden Index 0.7908 0.8350 0.9015
F1-Score 0.8975 0.9257 0.9461
HTER (%) 10.46 8.25 4.92

TABLE 6. Comparative test results for replay-attack dataset.

Method HTER (%)
Diffusion Speed [49] (2015) 12.5
FASNet [50] (2017) 1.20
Diffusion-CNN [51] (2017) 10.0
SfSNet [23] (2020) 3.1
InceptionV4 [31] (2020) 13.54
SCNN [31] (2020) 7.53
SE-ResNet-18 [52] (2020) 33
CompactNet [53] (2020) 0.7
VGG16+GMM [54] (2021) 1.46
GoogleNet+GMM [54] (2021) 3.76
WA (PSO+PS) [55] (2021) 0.0
WA (GA+MMS+PS) [56] (2022) 0.0
Proposed Method 0.09

TABLE 7. Comparative test results for replay-mobile dataset.

Method HTER (%)
SR Arashloo et. al. [57] (2020) 6.7
InceptionV4 [31] (2020) 5.94
SCNN [31] (2020) 4.96
VGG16+GMM [54] (2021) 17.21
MKL [57] (2021) 6.7
GoogleNet+GMM [54] (2021) 13.56
WA (PSO+PS) [55] (2021) 5.85
WA (GA+MMS+PS) [56] (2022) 5.12
Proposed Method 1.14

accuracy and HTER/EER scores of the models trained with
each of the pre-processing schemes detailed above.
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TABLE 8. Comparative test results for ROSE-Youtu dataset.

Method HTER/EER (%)
LPQ (HSV) [16] (2016) 30.4/-
LPQ (YCbCr) [16] (2016) 27.6/-
Wavelet [58] (2017) 26.6/-
Ensemble of Classifiers [59] (2019) 9.3/-
SE-ResNet-18 [52] (2020) -/8.0
WA (PSO+PS) [55] (2021) 5.61/-
FASNet [60] (2021) 8.57/-
ResNet50+GMM [54] (2021) 14.69/-
WA (GA+MMS+PS) [56] (2022) 5.12/-
Fatemifar et al. [61] (2022) 6.34/-
Proposed Method 4.92/4.95

TABLE 9. Comparative test results for CASIA-FASD dataset.

Method HTER/EER (%)
Deep Metric Learning [62] (2019) 16.74/-
Motion Pattern [63] (2020) 17.81/-
Noise Pattern [63] (2020) 13.33/-
Decision Fusion [63] (2020) 10.54/-
GFA-CNN [64] (2020) -/ 8.3
S-CNN [65] (2021) -/ 0.69
Proposed Method 0.09/0.09

The results presented in Table 4 clearly show that the
proposed pre-processing scheme achieves 42.5%, 71.1%,
and 44.7% improvement in HTER score compared to no
diffusion, Perona-Malik diffusion, and Gaussian filtering-
based diffusion respectively.

B. COMPARISON OF DIFFERENT LEARNING SCHEMES

In this section, an experiment to evaluate the performance
of different learning schemes is conducted. Similar to the
previous experiment, ROSE-Youtu database is used in this
experiment to compare the performance of the two transfer
learning schemes discussed in Section II as well as a learning
scheme where the MobileNet architetcure is trained from
scratch. The network architecture and the training setup is
kept the same for all the learning schemes. For simplicity,
the learning schemes have been denoted as: Scheme-1:
where the MobileNet architecture is loaded without any
weights and trained from scratch, Scheme-2: where pre-
trained ImageNet weights are loaded and the layers of the
MobileNet model are frozen (i.e. the MobileNet model is
used in feature extraction setting), Scheme-3: pre-trained
ImageNet weights are loaded and the model is trained in a
fine-tuning setting. It is noteworthy that in Scheme-2, only
the fully-connected layers are trained while in Scheme-3, the
layers of MobileNet as well as the fully-connected layers are
fine-tuned. The performance has been evaluated using the
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TABLE 10. Cross-database performance (in-terms of HTER(%) of the proposed approach and the baseline approaches). Train dataset — Test dataset

(Replay-Attack: RA, ROSE-Youtu: RY, CASIA-FASD: CF).

Method RA—-RY RA—-CF RY—-RA RY—-CF CF—RA CF—RY MeanHTER (%)
Tzeng et al. [66] (2017) 50.0 49.8 34.6 28.7 41.8 314 39.38
Liet al. [47] (2018) 40.1 12.3 38.8 30.1 39.3 31.6 32.03
Wang et al. [67] (2019) 41.7 41.5 30.3 34.1 17.5 29.4 32.42
Proposed Method 33.27 23.09 8.43 29.78 28.89 32.03 2591

performance evaluation metrics presented in Section III and
the results are presented in Table 5.

The comparative results presented in Table 5 clearly
indicate that the learning Scheme-3 (Fine-tuning) shows
superior results compared to the learning Scheme-1 and
Scheme-2 in-terms of almost every performance evaluation
metric. In particular, the HTER results show 52.96% and
40.36% improvement in Scheme-3 as compared to Scheme-1
and Scheme-2 respectively. Therefore, transfer learning in a
fine-tuning setting is selected for the proposed scheme.

C. COMPARISON WITH STATE-OF-THE-ART FACE PAD
METHODS

The performance of our proposed face PAD approaches
using our interpolation-based image diffusion method was
compared with the state-of-the-art methods on Replay-Attack
and Replay-Mobile dataset.

We compared our method with different CNN and
diffusion-based face PAD methods and the comparative
results are presented in Table 6 and Table 7 for Replay-
Attack and Replay-Mobile dataset, respectively. It is evi-
dent from the results that the proposed approach shows
superior performance compared to most of the competing
approaches. For the Replay-Attack database, for instance, the
proposed approach outperforms most of the contemporary
methods by a high margin and achieves comparable HTER
performance with the methods presented in [55] and [56].
Similarly, as presented in Table 7, the proposed method
outperforms the contemporary approaches on Replay-Mobile
database.

The results for ROSE-Youtu and CASIA-FASD datasets
are presented in Tables 8 and 9 respectively. The proposed
method achieves an HTER/EER (%) score of 4.92/4.95 for
ROSE-Youtu database which outperforms the contemporary
methods presented in the literature. Similarly for CASIA-
FASD, the proposed method achieves an HTER value of
0.09% outperforming the other methods presented in the
results.

D. CROSS-DOMAIN PERFORMANCE EVALUATION

Extensive experiments were conducted to perform cross-
domain performance evaluation of the proposed face PAD
technique. A number of experiments were performed where
the proposed face PAD model was trained on Replay-
Attack training dataset and tested on ROSE-Youtu, and
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CASIA-FASD datasets. In a similar setting, we trained the
proposed model on individual datasets and performed testing
on the others and report HTER(%) values. Table 10 presents
the cross-database testing results in-terms of HTER. The
results presented in the table exhibit the robustness and
versatility of the proposed technique in a cross-database
testing scheme. The overall HTER results show that the
proposed method achieves better mean HTER compared to
the face PAD techniques presented in [47], [66], and [67] by
34.25%, 19.11%, and 20.08% respectively.

For training on Replay-Attack and testing on CASIA-
FASD, the proposed method outperforms [66] and [67] by
an HTER margin of 53.63% and 44.36%. The cross-database
performance is found inferior to [47]. For training on Replay-
Attack and testing on ROSE-Youtu, the proposed approach
shows superior performance in terms of cross-database
HTER and achieves 33.46%, 17.03%, and 20.21% gain as
compared to [47], [66], and [67] respectively. For training
on ROSE-Youtu and testing on Replay-Attack, the proposed
method outperforms [47], [66], and [67] by an HTER margin
of 75.63%, 78.27%, and 72.18% respectively. For testing on
CASIA-FASD, the proposed technique shows improvement
in HTER margin by 1.06% and 12.67% compared to the
techniques presented in [47] and [67]. Lastly, for the case of
training on CASIA-FASD and testing on the Replay-Attack
database, the proposed method outperforms [47] and [66]
by an HTER margin of 30.88% and 26.49% respectively.
The cross-database testing of a model trained on CASIA-
FASD and tested on ROSE-Youtu also shows comparable
performance.

V. CONCLUSION

In this paper, a hybrid face PAD approach is proposed
which incorporates the notion of interpolation-based image
diffusion with the transfer learning of a MobileNET CNN.
The proposed framework has shown promising results on
Replay-Attack, Replay-Mobile, CASIA-FASD, and ROSE-
Youtu databases attaining the highest accuracy and HTER
of 99.93% and 0.09%, 99.04% and 1.14%, 99.90% and
0.09%, and 95.04% and 4.92%, respectively. The proposed
method also demonstrated superior performance in cross-
domain evaluation as well. The applications of such face PAD
approaches are vast and for our future prospects, we aim
to combine our face PAD method with a face recognition
and gesture recognition system for student attendance and
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examination monitoring in an educational setting to provide
a combined deep learning-based framework for the day-to-
day activities carried out in schools. We also aim to improve
the cross-domain performance of the proposed method in
our future works by leveraging the proposed method in an
unsupervised learning scheme to perform domain adaptation
for face PAD across various complex face PAD databases.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

P. Rasti, T. Uiboupin, S. Escalera, and G. Anbarjafari, “Convolutional
neural network super resolution for face recognition in surveillance
monitoring,” in Proc. Int. Conf. Articulated Motion Deformable Objects.
Cham, Switzerland: Springer, 2016, pp. 175-184.

S. Lukas, A. R. Mitra, R. I. Desanti, and D. Krisnadi, “Student attendance
system in classroom using face recognition technique,” in Proc. Int. Conf.
Inf. Commun. Technol. Converg. (ICTC), Oct. 2016, pp. 1032-1035.

A. Fayyoumi and A. Zarrad, ‘“Novel solution based on face recognition to
address identity theft and cheating in online examination systems,” Adv.
Internet Things, vol. 4, no. 2, pp. 5-12, 2014.

K. Patel, H. Han, and A. K. Jain, “Secure face unlock: Spoof detection
on smartphones,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 10,
pp. 2268-2283, Oct. 2016.

H. Lee, S.-H. Park, J.-H. Yoo, S.-H. Jung, and J.-H. Huh, “‘Face recognition
at a distance for a stand-alone access control system,” Sensors, vol. 20,
no. 3, p. 785, Jan. 2020.

P. J. Grother, M. L. Ngan, and K. K. Hanaoka, “Ongoing face recognition
vendor test (FRVT) part 2: Identification,” Nat. Inst. Standards Technol.
(NIST), USA, Tech. Rep. 8238, 2018.

K. Kollreider, H. Fronthaler, M. I. Faraj, and J. Bigun, “Real-time face
detection and motion analysis with application in ‘liveness’ assessment,”
IEEE Trans. Inf. Forensics Security, vol. 2, no. 3, pp. 548-558, Aug. 2007.
W. Bao, H. Li, N. Li, and W. Jiang, “A liveness detection method for face
recognition based on optical flow field,” in Proc. Int. Conf. Image Anal.
Signal Process., 2009, pp. 233-236.

A. Anjos, M. M. Chakka, and S. Marcel, “Motion-based counter-measures
to photo attacks in face recognition,” IET Biometrics, vol. 3, no. 3,
pp. 147-158, Sep. 2014.

G. Pan, Z. Wu, and L. Sun, “Liveness detection for face recognition,”
in Recent Advances in Face Recognition. Rijeka, Croatia: InTech, 2008,
pp. 109-124.

K. Patel, H. Han, and A. K. Jain, “Cross-database face antispoofing with
robust feature representation,” in Proc. Chin. Conf. Biometric Recognit.
Cham, Switzerland: Springer, 2016, pp. 611-619.

R. Shao, X. Lan, and P. C. Yuen, “Deep convolutional dynamic texture
learning with adaptive channel-discriminability for 3D mask face anti-
spoofing,” in Proc. IEEE Int. Joint Conf. Biometrics (IJCB), Oct. 2017,
pp. 748-755.

K. Kollreider, H. Fronthaler, and J. Bigun, “Evaluating liveness by face
images and the structure tensor,” in Proc. 4th IEEE Workshop Autom.
Identificat. Adv. Technol. (AutoID), 2005, pp. 75-80.

T. D. F. Pereira, A. Anjos, J. M. D. Martino, and S. Marcel, “LBP—TOP
based countermeasure against face spoofing attacks,” in Proc. Asian Conf.
Comput. Vis. Cham, Switzerland: Springer, 2012, pp. 121-132.

T. D. F. Pereira, A. Anjos, J. M. D. Martino, and S. Marcel, “Can face
anti-spoofing countermeasures work in a real world scenario?” in Proc.
Int. Conf. Biometrics (ICB), 2013, pp. 1-8.

Z. Boulkenafet, J. Komulainen, and A. Hadid, “Face spoofing detection
using colour texture analysis,” IEEE Trans. Inf. Forensics Security, vol. 11,
no. 8, pp. 1818-1830, Aug. 2016.

J. Yang, Z. Lei, S. Liao, and S. Z. Li, “Face liveness detection with
component dependent descriptor,” in Proc. Int. Conf. Biometrics (ICB),
Jun. 2013, pp. 1-6.

D. Gragnaniello, G. Poggi, C. Sansone, and L. Verdoliva, “An investigation
of local descriptors for biometric spoofing detection,” IEEE Trans. Inf.
Forensics Security, vol. 10, no. 4, pp. 849-863, Apr. 2015.

Z. Boulkenafet, J. Komulainen, and A. Hadid, “‘Face antispoofing using
speeded-up robust features and Fisher vector encoding,” IEEE Signal
Process. Lett., vol. 24, no. 2, pp. 141-145, Feb. 2017.

L. Li, Z. Xia, J. Wu, L. Yang, and H. Han, “Face presentation attack
detection based on optical flow and texture analysis,” J. King Saud Univ.
Comput. Inf. Sci., vol. 34, no. 4, pp. 1455-1467, Apr. 2022.

59214

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]
(34]

(35]

(36]

(37]

(38]

(391

(40]

(41]

(42]

(43]

L. Li, Z. Xia, X. Jiang, Y. Ma, F. Roli, and X. Feng, “3D face mask
presentation attack detection based on intrinsic image analysis,” IET
Biometrics, vol. 9, no. 3, pp. 100-108, May 2020.

W. Sun, Y. Song, C. Chen, J. Huang, and A. C. Kot, “Face spoofing
detection based on local ternary label supervision in fully convolutional
networks,” IEEE Trans. Inf. Forensics Security, vol. 15, pp. 3181-3196,
2020.

A. Pinto, S. Goldenstein, A. Ferreira, T. Carvalho, H. Pedrini, and
A. Rocha, “Leveraging shape, reflectance and albedo from shading for
face presentation attack detection,” IEEE Trans. Inf. Forensics Security,
vol. 15, pp. 3347-3358, 2020.

Y. A. U. Rehman, L.-M. Po, M. Liu, Z. Zou, W. Ou, and Y. Zhao,
“Face liveness detection using convolutional-features fusion of real and
deep network generated face images,” J. Vis. Commun. Image Represent.,
vol. 59, pp. 574-582, Feb. 2019.

Y. A. U. Rehman, L.-M. Po, and M. Liu, “SLNet: Stereo face liveness
detection via dynamic disparity-maps and convolutional neural network,”
Exp. Syst. Appl., vol. 142, Mar. 2020, Art. no. 113002.

A. George, Z. Mostaani, D. Geissenbuhler, O. Nikisins, A. Anjos, and
S. Marcel, “Biometric face presentation attack detection with multi-
channel convolutional neural network,” [EEE Trans. Inf. Forensics
Security, vol. 15, pp. 42-55, 2020.

H. Chen, Y. Chen, X. Tian, and R. Jiang, ““A Cascade face spoofing detector
based on face anti-spoofing R-CNN and improved Retinex LBP,” IEEE
Access, vol. 7, pp. 170116-170133, 2019.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
“ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis.,
vol. 115, no. 3, pp. 211-252, Dec. 2015.

H. Chen, G. Hu, Z. Lei, Y. Chen, N. M. Robertson, and S. Z. Li, “Attention-
based two-stream convolutional networks for face spoofing detection,”
IEEE Trans. Inf. Forensics Security, vol. 15, pp. 578-593, 2020.

G. Heusch, A. George, D. Geissbiihler, Z. Mostaani, and S. Marcel, “Deep
models and shortwave infrared information to detect face presentation
attacks,” IEEE Trans. Biometrics, Behav., Identity Sci., vol. 2, no. 4,
pp. 399-409, Oct. 2020.

R. Koshy and A. Mahmood, “Enhanced deep learning architectures for
face liveness detection for static and video sequences,” Entropy, vol. 22,
no. 10, p. 1186, Oct. 2020.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘“MobileNets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv:1704.04861.

E. Erdem, Linear Diffusion. Ankara, Turkey: Hacettepe Univ., Feb. 2012.
P. Perona, T. Shiota, and J. Malik, “Anisotropic diffusion,” in Geometry-
Driven Diffusion in Computer Vision. Cham, Switzerland: Springer, 1994,
pp. 73-92.

G. Gerig, O. Kubler, R. Kikinis, and F. A. Jolesz, ‘“Nonlinear anisotropic
filtering of MRI data,” IEEE Trans. Med. Imag., vol. 11, no. 2,
pp. 221-232, Jun. 1992.

J. Weickert, Anisotropic Diffusion in Image Processing, vol. 1. Stuttgart,
Germany: Teubner Stuttgart, 1998.

D. Ziou and A. Horé, “Reducing aliasing in images: A PDE-based
diffusion revisited,” Pattern Recognit., vol. 45, no. 3, pp. 1180-1194,
Mar. 2012.

Y. Q. Wang, J. Guo, W. Chen, and W. Zhang, “Image denoising using
modified Perona—Malik model based on directional Laplacian,” Signal
Process., vol. 93, no. 9, pp. 2548-2558, Sep. 2013.

N. Wang, Y. Shang, Y. Chen, M. Yang, Q. Zhang, Y. Liu, and Z. Gui,
“A hybrid model for image denoising combining modified isotropic
diffusion model and modified Perona—Malik model,” IEEE Access, vol. 6,
pp. 33568-33582, 2018.

Z.Zhang, J. Yan, S. Liu, Z. Lei, D. Yi, and S. Z. Li, “A face antispoofing
database with diverse attacks,” in Proc. 5th IAPR Int. Conf. Biometrics
(ICB), Mar. 2012, pp. 26-31.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?”” 2014, arXiv:1411.1792.

A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN features
oft-the-shelf: An astounding baseline for recognition,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. Workshops, Jun. 2014, pp. 512-519.

E. Cetinic, T. Lipic, and S. Grgic, “Fine-tuning convolutional neural net-
works for fine art classification,” Exp. Syst. Appl., vol. 114, pp. 107-118,
Dec. 2018.

VOLUME 11, 2023



M. O. Alassafi et al.: Novel Deep Learning Architecture With Image Diffusion for Robust Face PAD

IEEE Access

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

L. Sifre, “Rigid-motion scattering for image classification,” Ph.D. thesis,
Ecole Polytechnique, CMAP, Lausanne, Switzerland, 2014.

I. Chingovska, A. Anjos, and S. Marcel, “On the effectiveness of local
binary patterns in face anti-spoofing,” in Proc. Int. Conf. Biometrics
Special Interest Group (BIOSIG), Sep. 2012, pp. 1-7.

A. Costa-Pazo, S. Bhattacharjee, E. Vazquez-Fernandez, and S. Marcel,
“The replay-mobile face presentation-attack database,” in Proc. Int. Conf.
Biometrics Special Interest Group (BIOSIG), Sep. 2016, pp. 1-7.

H. Li, W. Li, H. Cao, S. Wang, F. Huang, and A. C. Kot, “Unsupervised
domain adaptation for face anti-spoofing,” IEEE Trans. Inf. Forensics
Security, vol. 13, no. 7, pp. 1794-1809, Jul. 2018.

Z. Li, R. Cai, H. Li, K. Lam, Y. Hu, and A. C. Kot, “One-class
knowledge distillation for face presentation attack detection,” IEEE Trans.
Inf. Forensics Security, vol. 17, pp. 2137-2150, 2022.

W. Kim, S. Suh, and J. Han, ‘““Face liveness detection from a single image
via diffusion speed model,” IEEE Trans. Image Process., vol. 24, no. 8,
pp. 24562465, Aug. 2015.

O. Lucena, A. Junior, V. Moia, R. Souza, E. Valle, and R. Lotufo, “Transfer
learning using convolutional neural networks for face anti-spoofing,” in
Proc. Int. Conf. Image Anal. Recognit. Cham, Switzerland: Springer, 2017,
pp. 27-34.

A. Alotaibi and A. Mahmood, “Deep face liveness detection based on
nonlinear diffusion using convolution neural network,” Signal, Image
Video Process., vol. 11, no. 4, pp. 713-720, May 2017.

G. Wang, H. Han, S. Shan, and X. Chen, “Unsupervised adversarial
domain adaptation for cross-domain face presentation attack detection,”
IEEE Trans. Inf. Forensics Security, vol. 16, pp. 5669, 2021.

L. Li, Z. Xia, X. Jiang, F. Roli, and X. Feng, “CompactNet: Learning a
compact space for face presentation attack detection,” Neurocomputing,
vol. 409, pp. 191-207, Oct. 2020.

S. Fatemifar, S. R. Arashloo, M. Awais, and J. Kittler, “Client-
specific anomaly detection for face presentation attack detection,” Pattern
Recognit., vol. 112, Apr. 2021, Art. no. 107696.

S. Fatemifar, M. Awais, A. Akbari, and J. Kittler, “Particle swarm and
pattern search optimisation of an ensemble of face anomaly detectors,” in
Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2021, pp. 3622-3626.
S. Fatemifar, S. Asadi, M. Awais, A. Akbari, and J. Kittler, “‘Face spoofing
detection ensemble via multistage optimisation and pruning,” Pattern
Recognit. Lett., vol. 158, pp. 1-8, Jun. 2022.

S. R. Arashloo, “Matrix-regularized one-class multiple kernel learning
for unseen face presentation attack detection,” IEEE Trans. Inf. Forensics
Security, vol. 16, pp. 4635-4647, 2021.

W. Li, L. Chen, D. Xu, and L. Van Gool, “Visual recognition
in RGB images and videos by learning from RGB-D data,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 8, pp.2030-2036,
Aug. 2018.

S. Fatemifar, M. Awais, S. R. Arashloo, and J. Kittler, “Combining
multiple one-class classifiers for anomaly based face spoofing attack
detection,” in Proc. Int. Conf. Biometrics (ICB), Jun. 2019, pp. 1-7.

N. Bousnina, L. Zheng, M. Mikram, S. Ghouzali, and K. Minaoui,
“Unraveling robustness of deep face anti-spoofing models against pixel
attacks,” Multimedia Tools Appl., vol. 80, no. 5, pp. 7229-7246, Feb. 2021.
S. Fatemifar, M. Awais, A. Akbari, and J. Kittler, “Developing a generic
framework for anomaly detection,” Pattern Recognit., vol. 124, Apr. 2022,
Art. no. 108500.

D. Pérez-Cabo, D. Jiménez-Cabello, A. Costa-Pazo, and
R. J. Lopez-Sastre, “Deep anomaly detection for generalized face
anti-spoofing,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops (CVPRW), Jun. 2019, pp. 1591-1600.

Y. Ma, Y. Xu, and F. Liu, “Multi-perspective dynamic features for
cross-database face presentation attack detection,” IEEE Access, vol. 8,
pp. 26505-26516, 2020.

X.Tu,Z.Ma, J. Zhao, G. Du, M. Xie, and J. Feng, “‘Learning generalizable
and identity-discriminative representations for face anti-spoofing,” ACM
Trans. Intell. Syst. Technol., vol. 11, no. 5, pp. 1-19, Oct. 2020.

R. Quan, Y. Wu, X. Yu, and Y. Yang, “Progressive transfer learning for
face anti-spoofing,” IEEE Trans. Image Process., vol. 30, pp. 3946-3955,
2021.

E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discrim-
inative domain adaptation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 2962-2971.

G. Wang, H. Han, S. Shan, and X. Chen, “Improving cross-database face
presentation attack detection via adversarial domain adaptation,” in Proc.
Int. Conf. Biometrics (ICB), Jun. 2019, pp. 1-8.

VOLUME 11, 2023

MADINI O. ALASSAFI received the B.S. degree
in computer science from King Abdulaziz Uni-
versity, Jeddah, Saudi Arabia, in 2006, the
M.S. degree in computer science from California
Lutheran University, USA, in 2013, and the Ph.D.
degree in security cloud computing from the
University of Southampton, U.K., in February
2018. He is currently an Associate Professor with
the Information Technology Department, Faculty
of Computing and Information Technology, King
Abdulaziz University, where he is also the Vice-Dean of the Faculty of
Computing and Information Technology. His research interests include
cloud computing and security, distributed systems, the Internet of Things
(IoT) security issues, cloud security adoption, risks, cloud migration project
management, and the cloud of things and security threats.

MUHAMMAD SOHAIL IBRAHIM received the
B.E. degree in electronic engineering from Igra
University, Karachi, Pakistan, in 2012, and the
M.E. degree in telecommunications from the N.
E. D. University of Engineering and Technology,
Pakistan, in 2016.

From 2013 to 2019, he was a Lecturer with the
Faculty of Engineering, Science, and Technology,
Iqra University. From 2013 to 2014, he was also
a Research Assistant with the Embedded Systems
Research Group, Karachi Institute of Economics and Technology, Pakistan.
He is currently with the Smart Energy Systems Laboratory, College of
Electrical Engineering, Zhejiang University, China. His research interests
include deep learning, computer vision, and deep learning applications
in energy systems. He was a recipient of 2020 Highly Cited Review
Paper Award from Applied Energy (Elsevier) for his review paper titled
“Machine Learning Driven Smart Electric Systems: Current Trends and New
Perspectives.”

IMRAN NASEEM received the B.E. degree in
electrical engineering from the NED University of
Engineering and Technology, Pakistan, in 2002,
the M.S. degree in electrical engineering from the
King Fahd University of Petroleum and Minerals
(KFUPM), Saudi Arabia, in 2005, and the Ph.D.
degree from The University of Western Australia,
in 2010. He did his post doctorate with the Institute
for Multi-sensor Processing and Content Analy-
sis, Curtin University of Technology, Australia.
He ]omed the College of Engineering, KIET, Pakistan, in 2011 where he
is currently a Professor. He is also an Adjunct Research Fellow with the
School of Electrical, Electronic and Computer Engineering, The University
of Western Australia. His research interests include pattern classification and
machine learning with a special emphasis on biometrics and bioinformatics
applications. He has authored several publications in top journals and
conferences, including IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE
INTELLIGENCE, and IEEE International Conference on Image Processing. His
benchmark work on face recognition has received more than 180 citations in
less than four years. He is also a reviewer of IEEE TRANSACTIONS ON PATTERN
ANALYSIS AND MACHINE INTELLIGENCE, IEEE TRANSACTIONS ON IMAGE PROCESSING
and IEEE SIGNAL PROCESSING LETTERS.

59215



IEEE Access

M. O. Alassafi et al.: Novel Deep Learning Architecture With Image Diffusion for Robust Face PAD

RAYED ALGHAMDI received the bachelor’s
degree in computer science, and the master’s and
Ph.D. degrees in communication and information
technology. He is currently involved in designing a
full interactive e-learning course to target enhanc-
ing soft skills for computing students. His current
research interests include e-learning applications
and computing student’s readiness to confidently
join industry manpower.

REEM ALOTAIBI received the Ph.D. degree in computer science from the
University of Bristol, Bristol, U.K., in 2017. She is currently an Associate
Professor with the Faculty of Computing and Information Technology, King
Abdulaziz University, Jeddah, Saudi Arabia. She is also the Supervisor of the
Information Technology Department. From 2017 to 2018, she was a Visiting
Lecturer with the Intelligent Systems Laboratory, University of Bristol.
Her research interests include artificial intelligence, machine earning, data
mining, and crowd management. Her research has been funded by several
sources in Saudi Arabia, including Deputyship for Research and Innovation,
Ministry of Education, King Abdulaziz City for Science and Technology
(KACST), and the Deanship of Scientific Research (DSR), King Abdulaziz
University.

FARIS A. KATEB received the Ph.D. degree in
computer science from the University of Colorado,
USA. Currently, he is an Assistant Professor
and the Head of the IT Department, Faculty of
Computing and Information Technology, King
Abdulaziz University, Jeddah, Saudi Arabia. His
research interests include computer vision and
image processing applications, such as object
detection, face recognition, and adversarial exam-
ples. He is also working on the natural language
process for Arabic and English. He participates as a speaker or a presenter
in conferences and artificial intelligence areas and a member of the advisory
board in other departments.

HADI MOHSEN OQAIBI received the B.S.,
M.S., and Ph.D. degrees in computer science from
King Abdulaziz University, Saudi Arabia. He is
currently an Assistant Professor with the Fac-
ulty of Computing and Information Technology,
King Abdulaziz University, Saudi Arabia. He has
published several peer reviewed journal articles
and conference papers. His research interests
include machine learning, deep learning, pattern
recognition, and image processing.

L

59216

ABDULRAHMAN A. ALSHDADI received the
Ph.D. degree in cloud computing from the
University of Southampton, Southampton, U.K.,
in February 2018. He is currently an Assistant
Professor in computer science with the Faculty
of Computing and Information Technology, Uni-
versity of Jeddah, Jeddah, Saudi Arabia. He is
also the Head of the Computer Science and
Artificial Intelligent Department (CSAI) and the
Vice Dean of the College of Computer Science
and Engineering (CCSE), University of Jeddah. He has published numerous
conference papers, journal articles, and one book chapter. His research
interests include industry 4.0 prestaining issues of cloud computing and fog
computing security, the Internet of Things (IoT), smart cities, intelligent
systems, deep learning, data science analytics, and modeling.

SYED ADNAN YUSUF is currently the Director
of a U.K.-Based Research and Development
Firm specializing in advanced computer vision
algorithms with a focus on deep-learning tech-
nologies. His career originates from a computer
systems engineering background with an interest
in advanced biometrics, intelligent transport sys-
tems, long-range object detection, tracking, and
identification. As a research scientist, he has lead
various teams working in the domains of document
verification, facial identity analysis, and traffic violation. In his previous role
with Hitachi Europe, he led a team of scientists and engineers developing
autonomous perception and motion planning systems for the Nissan Leaf
Electric. The work led to a fully autonomous 200+-mile journey on a variety
of U.K., roads as part of the Human Drive Project. In the research domain,
his focus is on CNN/RNN algorithms with a focus on driverless autonomous
control and video analytics systems and deep residual networks for the
face recognition domain. Having a background in computer vision and
deep learning domains, he has contributed in projects, including firefighter
safety, maritime condition monitoring, financial technologies, and intelligent
transport systems.

VOLUME 11, 2023



