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ABSTRACT As with the continuous improvement of the workshop automation rate and the importance in
energy consumption, more and more enterprises not only need to make scheduling decision on production
equipment, but also need to consider whether the scheduling of transportation equipment supports scheduling
decisions on workshop production. At the same time, because both workshop production scheduling decision
and transportation scheduling decision are NP-hard problems, it is necessary to design an efficient algorithm
to improve productivity of the workshop. In order to solve this problem, firstly, based on the analysis of the
problem structure, production environment and optimization objectives, a ‘‘manufacturing-transportation’’
multi-objective joint scheduling optimization mathematical model is established. By converting the energy
consumption into the total transportation time objective of the transportation equipment, both total trans-
portation time and makespan are taken as the optimization objectives. Secondly, based on the design idea of
memetic algorithm (MA), non-dominated sorting genetic algorithm-II(NSGA-II) is employed as the basis
framework of our new developed algorithm. An effective discrete encoding scheme of MO-MA, a new
initialization method for initial population and a neighborhood search mechanism based on critical path
are incorporated into our new proposed algorithm. Then the parameter design of the algorithm is completed
through variance analysis. Finally, the proposed algorithm is compared and analyzed with other algorithms
in the dimension of hypervolume and Set Coverage (SC), and advantages of the algorithm in solving this
problem are verified.

INDEX TERMS Job shop, multi-objective optimization, manufacturing-transportation, joint scheduling,
memetic algorithm.

I. INTRODUCTION
With the increase in manufacturing labor cost and refine-
ment manufacturing requirements for production, new
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challenges have been brought to the cost control of
multi-variety and small-batch manufacturing enterprises with
strong labor dependence, like larger household appliances,
customized furniture and 3C digital products [1]. The
development of enterprises and technological innovations
have greatly promoted the automation level of processing,
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transportation and other equipment used in workshop
production and manufacturing systems. In recent years, the
developments of basic technologies such as IoT sensing
technology and information communication technology have
provided a reliable basic technical guarantee for the intelli-
gent transformation of workshop. Consequently, the research
on the establishment of a ‘‘manufacturing-transportation’’
joint scheduling mechanism for the highly automated intel-
ligent workshop with limited production and transporta-
tion capacity has received much attention for its practical
significance.

The ‘‘manufacturing-transportation’’ joint scheduling
problem has been carried out by researchers at an early stage,
but the research is mostly limited to the small-scale problems
due to the weakness of workshop hardware facility [2], [3],
[4], [5], [6], [7], [8], [9], [10]: the mathematical models of
prior studies would either directly inherit or make simple
extension of the nonlinear mixed integer programming model
built by Ulusoy [2], [3], the research on the solution algorithm
also focused on the traditional meta-heuristic algorithm [2],
[3], heuristic algorithm [4], [5], [6], [7], [8] and relaxation
optimization algorithm based on upper/lower bound con-
straints [9], [10]. And Kunst [10] analyzed the complexity
of the flow-shop and the job-shop through the mathematical
analysis.

For the past few years, with the continuous upgrading
of the manufacturing industry, the continuous deepening
of research, and the continuous development of computing
resources, some new progress has been made in research on
the ‘‘manufacturing-transportation’’ joint scheduling prob-
lem under the flow shop, job shop and flexible job shop
environments. And we have organized some of the research
results and summarized them into Table 1.

Through the analysis of the references in Table 1, it can
be found that: Due to the fixed product process flow and
relatively low transportation flexibility in the manufacturing
environment of the flow-shop, the research on joint schedul-
ing problems in the flow-shop mainly focuses on the anal-
ysis of complexity of the problem [11], [12], and less on
the control in the scheduling process [13]. As the important
carriers of the flexible manufacturing workshop, the product
process complexity in the manufacturing environment of the
job-shop [14], [15], [16], [17], [18], [19], [20], [21], [22],
[28], [29] and the flexible job-shop [23], [24], [25], [26], [27],
[30], [31], [32], [33], [34] with higher process complexity,
which also puts forward higher requirements for the control
in the joint scheduling process and get many research results.

As the basic component of the flexible manufacturing
environment, a considerable amount of research has been
conducted in the job-shop environment. The research results
are summarized as follows: Hurink [14] proposed local search
algorithms for the job-shop problemwith a single AGVwhere
appropriate neighborhood structures are defined by using
problem-specific properties. Andy [15] took Cmax as the
optimization objective, and a constraint programming (CP)
model is constructed to achieve the optimization solution in

a short time; In the doctoral dissertation of Hunang [16], the
influence of processing time changes in the scheduling envi-
ronment was analyzed based on the scheduling results and the
number of AGVs, and a variety of meta-heuristic algorithms
are proposed to optimally solve the scheduling problem;
James et al. [17] built a multi-fidelity model for the joint
scheduling problem, and the MO2TOS based on K-mean
was proposed to solve the problem. Lacomme et al. [18] built
a disjunctive graph model for the problem and proposed
an upper bound estimation method and a memetic algo-
rithm based on the model, the approximation of the opti-
mal solution of the problem is achieved, in which Cmax
was taken as the objective. Deroussi et al. [19] improved the
algorithm by combining the designed neighborhood search
system (iterative mechanism and simulated annealing selec-
tion mechanism). Chaudhry et al. [20] proposed a spread-
sheet based genetic algorithm (GA) and verified that the
proposed approach can be also applied to other problems
or objective functions without changing the GA routine or
the spreadsheet model. Tamer et al. [21] improved the GA
by proposing a heuristic coding scheme to realize the opti-
mal solution of the problem. Tabatabaei et al. [22] took the
dynamic scheduling environment as the research background
and proposes a dynamic decision-making framework through
the predefined method of generating the schedule by a heuris-
tic mechanism. As a more complex production scenario than
job-shop, flexible job-shop has higher manufacturing flexi-
bility, and have attracted a wide attention from researchers:
Karimi et al. [23] proposed two mixed integer programming
models, which combined the imperial competition algorithm
and the simulated annealing algorithm. The Taguchi method
was adopted to complete the parameter design of the algo-
rithm, and the solution performance of the algorithm was
verified through comparative experiments. Andy [24] took
Cmax as the optimization goal and built the CP model of
the problem based on the Gurobi solver (a commercial solu-
tion tool) to realize the optimal solution of the problem.
Dalila et al. [25] proposed a novel mixed integer program-
ming model and solved it with the help of Gurobi by using
two sets of chained decisions, which verified the solving
ability of the model. Chen et al. [26] proposed an improved
hybrid particle swarm optimization (PSO) algorithm by com-
bining the competitive learning mechanism and the random
restart mechanism to overcome the weakness of the discrete
PSO algorithm.Wu et al. [27] discretizedmulti-objective dif-
ferential evolution algorithm and embedded hybrid variable
neighborhood search into the algorithm, and the perfor-
mance of algorithm was improved by enhancing the global
search ability of the algorithm. Wang et al. [28] proposed an
improved ant colony optimization-simulated annealing algo-
rithm based on a multiattribute dispatching rule to solve the
multiload AGVs workshop scheduling problem with limited
buffer capacity. However, both job-shop and flexible job-shop
scheduling problems are typically addressed by researchers
with the small-scale environment [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], and optimization
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TABLE 1. A literature review of ‘‘manufacturing-transportation’’ joint scheduling in recent years.

algorithms are not designed to consider the limited and short
time constraints in actual environments where production
planners need to quickly develop production schedules.

For joint scheduling problems, researchers have not lim-
ited themselves to single-objective optimization environ-
ments and have also conducted research on multi-objective
optimization environments: Nabovati et al. [29] proposed
a minimum delivery deviation scheme for solving joint
scheduling problems byArtificial Immune System algorithm.
Mahalakshmi et al. [30] established a new joint scheduling
model for the job shop joint scheduling, and a multi-objective
invasive weeds optimization algorithm is proposed to solve
the problem. Lei et al. [31] established an optimization objec-
tive by converting the waiting time and makespan into a
waiting time for a flexible flow-shop with dynamic transport
waiting times (FFSPDW), and the optimal solution of the
problem was obtained to through MA. For the real-world
manufacturing system for producing back cover of smart
phone, Li et al. [32] took the buffer waiting time and
the transportation distance of the AGV as the optimization
objectives, the solution optimization of the harmony search
algorithm was achieved by an effective discrete harmony
encoding scheme. Besides, a new initialization method for

harmony memory based on opposition-based learning strat-
egy, a dynamic harmony memory considering rate parameter
and a local search strategywere also incorporated into the har-
mony search algorithm. Feng et al. [33] proposed a GA for
optimal decision-making by targeting the total delivery time
and total transportation cost for the parallel machines batch
scheduling problem. Considering the AGVs battery charge,
Mousavi et al. [34] took makespan and the number of AGVs
as optimization objectives and proposed a GA-PSO algo-
rithm by combining GA and PSO. The performance is ver-
ified through the Flexsim simulation platform. Dai et al. [35]
established a multi-objective optimization model for the flex-
ible job shop, where energy consumption and makespan were
taken as the objectives, and an improved GA was proposed
to solve the problem. Weight-sharing methods are adopted to
obtain optimal solutions for multiple-objective optimization
problems. However, in real production process, the weights
of the solutions are not initially determined, but rely on the
judgment of schedule personnel in selecting the solutions that
better meet the current production objectives.

After the analysis of existing related works, we can
know that the ‘‘manufacturing-transportation’’ joint schedul-
ing problem in flexible manufacturing environment have
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been conducted in job-shop and flexible job-shop. The
majority of these studies are single-objective optimization
problems with the objective of minimizing Cmax , average
production cycle or total transportation cost, few studies
are associated with multi-objective optimization. Most of
multi-objective optimization problems adopt the method of
weighted processing, and few studies have been conducted to
construct multi-objective optimization algorithms to explore
the Pareto frontier solution in a way to find multi-objective
optimization solutions. However, in the real-world produc-
tion environments, the scheduling schemes formulated by
production manager are often the balanced results of mul-
tiple objectives within a limited amount of time, which
cannot be converted from multiple objectives to a single
objective simply by assigning weights. Then, the motiva-
tion of this paper is to find a reasonable way to solve
the ‘‘manufacturing-transportation’’ joint scheduling prob-
lem in job-shop, and the following two questions are explored
through our research work: 1) How to redesign the state-
of-the-art algorithms based on the problem characteristics to
enhance their exploitation ability in solving multi-objective
optimization problems such as joint scheduling? 2) How to
ensure the high quality of scheduling solutions generated by
traditional swarm intelligence search algorithms with limited
time consumption while ensuring their efficiency in solving
large-scale problems?

Based on an analysis of current research and the moti-
vations, this paper takes Cmax and total transit time as
the optimization objectives to study the ‘‘manufacturing-
transportation’’ joint scheduling problem. According to the
characteristics of the problem, an improve MA algorithm is
proposed to solve the multi-objective optimization problem.
And to improve the performance of the algorithm, a two-layer
coding strategy based on job and AGV, a mixed population
initialization method, a crossover and mutation operator, and
an efficient neighborhood search strategy based on critical
path are designed. Finally, simulation experiments are con-
ducted to verify the superiority of the algorithm.

II. THEOETICAL BACKGROUND
A. BACKGROUND OF THE PROBLEM
A production workshop with an automatic material storage
and transportation system is presented in Fig.1. Theworkshop
consists of three areas: a processing area, a transit warehouse
and a AGV parking lot. Among them, the processing area is
composed of multiple processing units with different func-
tions and rail transportation network, and processing area is
responsible for providing processing services for materials or
parts. As a material distribution center for materials, parts and
semi-finished products, the transit warehouse is responsible
for providing material distribution for the workshop. The
AGV parking lot is used as a storage point for idle AGV to
reduce the probability of workshop blockage. The production
process of the jobs in this workshop can be described as:
Based on the product process path constraints, the AGV

transports the job to the designated processing unit in the
processing area to perform the processing operation. After
the completion of corresponding processing service, the AGV
completes the transfer operation of the job (Transport to the
next processing unit required by the job process, or transport
to the transit warehouse to perform the storage operation).

B. PROBLEM DESCRIPTION
The ‘‘manufacturing-transportation’’ joint scheduling prob-
lemwith limited transport capacity can be described as: There
is a set of jobs (denoted as J , and J = {1, 2, . . . , i, j, . . . , n)
to be processed, and the production process path of job i is
Oi (Oi = {Oi1,Oi2, . . . ,Oij, . . . ,Oin,Oi(n+1)), the operation
Oij can only be processed by the machine Ml (Ml ∈ M =

{M1,M2, . . . ,Mq, . . . ,Mm). The transfer service of each job
between each loading and unloading node is provided by the
set of AGVs (denoted as R, and R = {r1, r2, . . . , rs, . . . , rk ).
The purpose of our research is to decide the sequence of pro-
cessing tasks and handling tasks, to achieve the optimization
of the scheduling in Cmax and the total transportation time.
For the convenience of research, the following assumptions

are made on the problem:
(1) At the initial moment (which can be regarded as the

decision moment), all machines and AGVs are available.
(2) The routes of AGVs between each node are based on

the shortest path, and each AGV does not interfere with each
other during the process of handling tasks.

(3) TheAGV accepts the job from the buffer of the previous
process and transports the job to the buffer next to the process.

(4) The time consumption of AGV loading and unloading
operations in the buffer area is ignored.

(5) The transportation time of AGVs between each node is
only related to the transportation distance and speed of AGVs.

(6) The handling distance between any nodes satisfies the
triangle inequality principle, that is, direct transportation will
produce less consumption than transit transportation.

(7) At any time, the handling operation can only be carried
out by one AGV without interruption, and the failure of the
AGV is not considered.

(8) At any time, the processing operation can only be
carried out by one machine without interruption, and the
failure of the machine is not considered.

(9) There are no associated constraints between different
jobs, but for each job, processing operations need to be per-
formed according to the production process path.

(10) The sequence of jobs to be processed follows the first
come first serve (FCFS) rule.

(11) All jobs to be processed are initially located in the
transit warehouse.

C. MATHEMATICAL MODELS
To facilitate the understanding of the model, the variables and
their corresponding meanings are explained as follows:

• Parameter Setting

Indexes of jobs:i, l (1)
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FIGURE 1. Schematic diagram of job shop with limited transportation capacity.

Indexes of machines:Mu (2)

Indexes of the transit warehouse:M0 (3)

Indexes of AGVs:rs, rk (4)

Indexes of operation tasks:Oij,Olq (5)

The release task for job i : Oi0 (6)

The recycling task for job i : Oi(n+1) (7)

The processing time of operation Oij : pij (8)

The time for load transportation from machineMq

to machineMu : Cqu (9)

The time for no-load transportation from machineMq

to machineMu : Vqu
A very large number:H (10)

• Variable Setting

J : a set of jobs to be processed, and

J = {1, 2, . . . , i, j, . . . , n (11)

M : a set of processing machine,

M = {M1,M2, . . . ,Mq, . . . ,Mm (12)

R : a set of transportation machine, and

R = {r1, r2, . . . , rs, . . . , rk (13)

Oi : the production process path of jobi, and

Oi = {Oi1,Oi2, . . . ,Oij, . . . ,Oin,Oi(n+1) (14)

Tij : the transportation task that transports job i from the

processing machine of operation Oij
to the processing machine of operationOi(j+1) (15)

dij : the start processing time of operationOij (16)

fij : the completed time of operationOij (17)

d ′
ij : the start processing time of transportation taskTij (18)

f ′
ij : the completed time of transportation taskTij (19)

• Decision Variable Setting

α
Mu
ij,lq : 1, if transportation Oij is processed on machine

Mu before operation Olq; 0, otherwise. (20)

βij,rs : 1, if transportation task Tij is handled by AGVrs;

0, otherwise. (21)

δij,lq : 1, if transportation task Tij is handled before

transportation task Tlq; 0, otherwise. (22)

λij,lq : 1, if transportation task Tij and transportation task

Tlq are both handled by the same AGV; 0, otherwise.
(23)

θ
rs
ij,lq : 1, if transportation task Tij and transportation task

Tlq are both handled by the same AGV rs; 0, otherwise.
(24)

• Objective Optimization Function

f1 = minCmax (25)

f2 = min(
∑n

i=1

∑m

j=1

∑k

s=1
βij,rs

× (Crs
Mij,Mi(j+1)

+ V rs
Mij,Mi(j+1)

)) (26)

The Eq. (25) and (26) are the definitions of two opti-
mization objectives in this problem. Among them, Eq. (25)
represents minimizing the Cmax , and Eq. (26) represents min-
imizing the total transit time.

• Subject To

Cmax ≥ fi(n+1) (27)
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fij ≥ dij + pij (28)

pi0 = 0, pi(m+1) = 0 (29)

di(j+1) ≥ f ′
ij (30)

di(j+1) ≤ d ′
ij +

∑k

s=1
βij,rsC

rs
Mij,Mi(j+1)

(31)

d ′
ij ≥ fij (32)

dij ≥ flq − H ∗ α
Mu
ij,lq (33)

dlq ≥ fij − H ∗ (1 − α
Mu
ij,lq) (34)

α
Mu
ij,lq + α

Mu
lq,ij ≤ 1 (35)∑k

s=1
βij,rs = 1 (36)

θ
rs
ij,lq ≥ 1 −

(
1 − βij,rs

)
∗ H −

(
1 − βlq,rs

)
∗ H (37)

θ
rs
ij,lq ≤ βij,rs , θ

rs
ij,lq ≤ βlq,rs (38)

λij,lq =

∑k

s=1
θ
rs
ij,lq (39)

d ′
ij ≥ d ′

lq +

∑k

s=1
βlq,rs

(
CMlq,Ml(q+1) + VMl(q+1),Mij

)
+

(
λij,lq − 1

)
∗ H − δij,lq ∗ H (40)

d ′
lq ≥ d ′

ij +
∑k

s=1
βij,rs

(
CMij,Mi(j+1) + VMi(j+1),Mlq

)
+

(
λij,lq − 1

)
∗ H − δij,lq ∗ H (41)

δij,lq + δlq,ij = 1 (42)

Cpl = Vpl (43)

Eq. (27) indicates that Cmax is the maximum time for
all jobs returned to the transit warehouse after processing.
Eq. (28) and (29) indicate that once the job is in processing
state, it cannot be interrupted. Eq. (30) indicates the update
method of the completion time of the job, and Eq. (31)
means that there is no processing operation for the job in the
transit warehouse. Eq. (32)-(34) represent the transformation
relationship between the job processing state and the trans-
portation state in the time dimension: the handling operation
can be performed after the processing is completed, and the
processing operation can be performed after the handling is
completed. Eq. (35)-(37) mean that the processing machine is
unique in processing jobs: the machine can only process one
job in any time, and the job also can only be processed by one
machine in any time. Eq. (38)-(42) represent the uniqueness
of performing handling tasks: one AGV can only handle one
handling task at the same time, and one handling task can
only be served by one AGV. Eq. (43) indicates that the transit
time of an unloaded AGV is not discriminated from that of a
loaded AGV.

D. PROBLEM ANALYSIS
Based on the analysis framework of KU [36] for the tradi-
tional job shop schedule problem, the following characteris-
tics are found by analyzing the problems and mathematical
models studied in this joint scheduling problem:

(1) By analyzing the scale of the model and decision
variables, it can be seen that the maximum magnitude of

the constraint variable is mainly confined by Eq. (37)-(38),
and the order of magnitude is O(k(nm)2). The magnitude of
the decision variable is determined by the decision variable
θ
rs
ij,lq which is alsoO(k(nm)

2). Based on the previous analysis,
we can plot the change in the number of constraints and the
number of decisions as the problem size increases in Fig.2.
By the Fig. 2 we can know that when the scale of the problem
is 10∗10∗3 (10 machine, 10 jobs and 3 AGV), the decision
variables and constraint variables reach the level of 40,000
and 100,000 respectively. When the problem reaches this
scale (It is still a small-scales scenario in the actual production
environment), it is difficult to obtain a high-quality solution
for the established mixed integer programming model in an
acceptable time by traditional mathematical programming
methods.

(2) The analysis of Eq. (26) shows that the total transporta-
tion time consists of two parts: the loaded transportation time
and no-loaded transportation time. Among them, the AGVs
can be regarded as parallel machines in this paper, and the
route of the transportation task is determined, and the exe-
cution process of each task is independent and undisturbed,
so the loaded transportation time is not affected by the choice
of AGVs. The optimization of the total transportation time
can be regarded as optimizing the un-load transportation,
it can be obtained by the Theorem 1 that when the total
transportation time is optimized to a certain range(when he
AGV completes a task of transporting and stays in place to
wait for further instructions, it will obtain a transportation
time plan that is better than other delivery tasks), further opti-
mization will lead to the deterioration of another optimization
objective Cmax .
Theorem 1: If the AGV performs another job handling

operation immediately after completing the load transporta-
tion task in the schedule P, the objective f2 of the schedule P
will be inferior to the schedule P′ in which the AGVwaits for
the job to be completed by the machine and continues the job
handling operation.

Prove: The total transportation time is the cumu-
lative sum of the AGVs’ loaded transportation time∑n

i=1
∑m

j=1
∑k

s=1 βij,rsC
rs
Mij,Mi(j+1)

and no-load transportation

time
∑n

i=1
∑m

j=1
∑k

s=1 βij,rsV
rs
Mij,Mi(j+1)

, and by Eq. (43) we
can know that the transportation time between nodes has
nothing to do with loading state of the trolley. The route
of a job is known and unique, so the load transportation
time between schedule P and P′ does not make any changes.
To optimize the total transportation time, it is necessary
to reduce the empty transportation time. The empty trans-
portation time in the schedule P′ is 0 (the waiting time
is not included in the empty transportation time), but the
empty transportation time in the schedule P is a value
C greater than 0. Therefore, it is easy to know that
P(f2) ≥ P′(f2).

Based on the above analysis, the pareto optimization can
be performed for the two objectives of total transportation
time and Cmax , but it is difficult to solve the problem by
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FIGURE 2. The number of constraints and decisions change as the problem size.

the by the exact algorithm. Therefore, we need to propose
a meta-heuristic algorithm to solve the multi-objective opti-
mization problem.

III. DESIGN OF MO-MA FOR SOLVING MO-JSPMH
A. THE FRAMEWORK OF MO-MA
The MA is a neighborhood search algorithm that combines
the Evolutionary Algorithm (EA) framework with the prob-
lem to achieve a balance between exploration and exploitation
capabilities in the search process of algorithm [37]. As shown
in TABLE 2, we proposed a Multi-objective Memetic Algo-
rithm (MO-MA) based on the design idea of the Memetic
Algorithm (MA) for the optimal solution of the MO-JSPMH.

B. ENCODING AND DECODING DESIGN
As shown in Tab. 3 and 4, they are the handling time matrix
table and job processing process path information table in the
benchmark test cases proposed by Bilge [2]. Among them,
Tab. 3 represents the transportation time between any two
nodes in the form of a matrix, and Tab. 4 shows the process
constraints of the jobs and the processing time for the jobs.
The cases shown in Tab. 3 and 4 are taken as examples to
describe the encoding and decoding of the MO-MA.

1) GENETIC CODING
Considering that the essence of MO-JSPMH is to make deci-
sions on machine and AGV, the implicit expression of the
processing sequence of jobs on the machine can be realized
by ‘‘prioritizing handling and processing first’’: the job which
is assigned to AGV first has higher priority to be processed in

FIGURE 3. The coding patterns of two chain chromosomes.

a machine. Therefore, this study is conducted on the basis of
the job coding [38] and designs the coding from the perspec-
tive of transportation. As shown in Figure. 3, the encoding
consists of two parts: The first part represents the sequence
of processing tasks (denoted by JS), the gene value indicates
the corresponding job, and the current operation information
of the job is indicated by the cumulative frequency of the job
from left to right. The second part represents the sequence of
transport task (denoted by TS), its code corresponds to the
JS, and the gene value represents the AGV which performs
the transport task.

2) GENETIC DECODING
After the coding is complete, a corresponding strategy needs
to be designed for decoding: in the decoding process, it is
necessary to consider the process path constraints of the job
as well as the uninterruptibility and exclusivity of the process-
ing and transportation task. Therefore, this paper proposes
a decoding method based on the left-shift criterion, and the
decoding steps are as follows:
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TABLE 2. Transport time of each node.

TABLE 3. Transport time of each node.

Step 1: Genes are extracted from the JS in order from left
to right and converted into corresponding operation, like Oip;
Step 2: The processing machine Mip of the operation Oip,

the processing machine Mi(p−1) of the previous operation
Oi(p−1) and the processing time of operation are obtained
from the production process path information table through
the association relationship, and the AGV (denote as rs)
responsible for handling task is obtained through TS gene
mapping.

Step 3: The release time RT rsOi(p−1)
of rs, the released posi-

tion POrs of rs, and the position POMi(p−1) of the processing

TABLE 4. Production process path.

machineMi(p−1) are obtained through forward retrieval, then
the un-load transportation time t ′Oip is calculated, and the time
ST rsOi(p−1)

that rs arrives at the processing machine Mi(p−1) is
obtained by Eq.(44).

ST rsOi(p−1)
= RT rsOi(p−1)

+ t ′Oip (44)

Step 4: The completion time RT rsOi(p−1)
of the operation

Oi(p−1) in job i is obtained from the job processing infor-
mation based on the arrival time ST rsOi(p−1)

that obtained in
step 3, then the earliest transportation time RM rs

Oi(p−1)
is got by

Eq. (45). The information of position POMi(p−1) to operation
Mi(p−1) and position POMip to operation Mip is obtained to
calculate the load transportation time tOip . Then the time
RT rsOip that rs arrive at the processing machine Mip is cal-
culated through Eq. (46), and the AGV’s (rs) released time
RT rsOip is updated.

RM rs
Oi(p−1)

= max{ST rsOi(p−1)
,RTOi(p−1)} (45)

RT rsOip = RM rs
Oi(p−1)

+ tOip (46)

Step 5: Through the forward search of the machine Mip

processing the operation Oip, the release time RT
Mip
Oip of the

machineMip is obtained after the completion of the predeces-
sor operations. Then the earliest start time ST

Mip
Oip is obtained

by Eq. (47), and the release time RTOip of job i and the release
time of machineMip are updated.

ST
Mip
Oip = max{RT

Mip
Oip ,RT

rs
Oip} (47)

Step 6: If all genes in the chromosome have been decoded,
the decoding procedure is terminated; otherwise, add 1 to the
gene sequence and return to step 1.

As shown in Fig. 4, the decoding results of the cases in
Tab. 2 and 3 are obtained under the coding schedule of Fig. 3.

C. INITIAL SOLUTION PRODUCTION STRATEGY
By constructing a high-quality initial solution, the search effi-
ciency of the MO-MA can be effectively improved, and the
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FIGURE 4. A sample of decoding results for MO-JSPMH.

optimization time can be reduced. Especially in the scenario
that the search time is limited, a gool initial solution gen-
eration mechanism is the basic guarantee of the algorithm’s
solution quality [37]. Therefore, this paper aims to improve
the generation quality of the initial solution by embedding the
dispatching rule (DR), and the two design criteria of the DR
are as follows:

(1) As shown in Tab. 5, the DR design framework is
constructed based on the dynamic transformation relationship
between the job state and the resource (like machine and
AGV) state. It can be found that the decision result can be
described as an AGV performing the handling operation for a
job processing by deconstructing the job production process,
Hence, the decision can be deconstructed into AGV selection
decision and job selection decision, and two strategies are
formulated respectively. Then, four initial solution generation
methods are generated as follows:

1) Rule1: Combining the earliest handling completion
strategy and the earliest operation start strategy.

2) Rule2: Combining the minimum unload transportation
time strategy and the earliest operation start strategy.

3) Rule3: Combining the minimum unload transportation
time strategy and the earliest operation finish strategy.

4) Rule4: Combining the earliest handling completion
strategy and the earliest operation finish strategy.

(2) As shown in Tab. 6, a heuristic rule (denoted asMNEH)
considering material transportation is designed based on the
NEH [39].

D. CROSSOVER OPERATOR DESIGN
In this paper, a variety of different crossover operators are
designed and improved according to the characteristics of
the problem, such as AP (Alternating Position Crossover
Operator), CX (Cycle Crossover) and SBOX (Similar Block
Order Crossover), etc. Based on the results of factor effect
analysis, the SBOXwith the best comprehensive performance
is selected as the crossover operator of the MO-MA. The
specific analysis process is referred to the key parameters
design part of the MO-MA in the following section.

Because the process difference between the crossover oper-
ators is small, the crossover operator of SBOX is used as the
representative to illustrate the process of crossover operation,
as shown in Fig. 5:

Step 1: Two individuals P1 and P2 are randomly selected
from the parent population as the starting point for perform-
ing the crossover operation.

Step 2: Based on the mapping relationship between the
JS and TS, position matching is performed, and the index
positions of the parent chromosomes P1 and P2 at the same
position and the same gene fragment are retrieved. These
index positions are inherited to the offspring chromosomes
C1 and C2, respectively, as shown in Fig. 5(a).
Step 3: Taking the chromosome length N as the base,

a number between 1 and N is randomly generated as the
cross-gene locus Ng, and the genes before the Ng position in
the parent chromosomes P1 and P2 are directly inherited to
the offspring chromosomes C1 and C2 respectively. And the
positions keep unchanged, as shown in Fig.5(b).

Step 4: Extract the uninherited genes (genes that exist
in the corresponding parent but not in the offspring) in the
JS of the parent chromosomes P1 and C2, P2 and C1 to
obtain the missing gene sequence. Following the left-to-right
orientation, the non-repetitive insertion of genes in the deleted
gene sequence is completed as shown in Fig. 5(c).
Step 5: Extract chromosomes C1 and C2 as the result of

this crossover operation.

E. MUTATION OPERATOR DESIGN
Based on the previous analysis of the scheduling process
of the problem studied in this paper, the complete decision
is composed of the processing sequence of the job on the
machine and the AGV handling sequence (represented by JS
and TS respectively). Therefore, to expand the search space,
it is necessary to ensure that the current solution can reach any
position in the solution space when designing the mutation
operation. Based on this principle, the design of the mutation
operator is completed as follows:

(1) The process of mutation operation: First, inherit the
population after the crossover operation. Then, each indi-
vidual in the population is determined whether to perform
the mutation operation based on the mutation probability:
when it is determined that the mutation operation needs to
be performed, JS mutation operation and the TS mutation
operation are randomly selected to be performed. Finally,
the new individuals after the mutation operation and the
unmutated individuals are merged into a new population.

(2) The mutation operator design of JS is shown in
Fig. 6(a). First, two gene fragments with different job num-
bers are randomly selected from individuals. Subsequently,
a position-swap operation is performed on the gene frag-
ments which are selected. Finally, the offspring individuals
are obtained after mutation operation.

(3) The mutation operator design of TS is shown in
Fig. 6(b). First, a gene fragment is randomly selected from
the individuals to be mutated. Then, select an AGV that is
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FIGURE 5. The crossover operator of SBOX.

FIGURE 6. The mutation process of SWAP.

different from AGV in the current gene fragment for the
replacement operation. Finally, the offspring individuals are
got after mutation operation.

F. THE DESIGN OF NEIGHBORHOOD SEARCH OPERATOR
Considering the complexity of the problem, the crossover
and mutation operations can only ensure a good exploration
ability for algorithm, but the algorithm is still weak in the
exploitation ability. As a sub-problem of the MO-JSPMH,
job-shop scheduling problem (JSP) is also a classic shop
scheduling problem. There are many studies on JSP, and
many literatures show that JSP has the following character-
istics: For the JSP with Cmax as optimization objective, the
optimization of Cmax can be achieved quickly by changing
the sequence of operations on the critical path. The critical
path means that the schedule P is the process path with the
longest time from the start node to the completion node,
and the critical path is marked as µ(P) in this paper. The
application of critical path theory can still enhance the quality
of the schedule of MO-JSPMH by improving the quality of
the production scheme:
Theorem 2: For the schedule P, if the operation Oij /∈

µ(P) is moved to obtain a new schedule P′, compared with

the original schedule P, CP
max ≤ CP′

max holds for the new
schedule P′.

Prove:Assuming thatµ(P) is the critical path in the sched-
ule P, the process sequence can be expressed as Start →

O1 → O2 → · · · → Ol → End . Because the moved process
Oij does not exist in the original critical path, so it can be
divided into two scenarios according to the position to which
it is moved.
Scenarios (1):The processed move changes the critical

path to Start → O1 → · · · → Ok → Oij → Ok+1 →

· · · → Ol → End . In this scenario, the number of processes
in the critical path increases, then CP

max ≤ CP′

max stands.
Scenarios (2): The processed move does not change the

critical path, it means that for the moved process Oij,Ox and
Oy are the process before and after the moved position of Oij,
respectively. There is no k ∈ {1, 2, . . . , l − 1} for Ox and
Oy to make both Ok = Ox and Ok+1 = Oy hold. And the
process information on the critical path has not changed, and
CP
max ≤ CP′

max still stands.
Therefore, the next problem to be solved is how to deter-

mine the critical path of a schedule in MO-JSPMH. Take Oij
as an example to illustrate whether the operator is included in
the critical path: determine the earliest start time SEarlyOij and

latest start time SLastOij ofOij by Eq. (48)-(50). If S
Early
Oij = SLastOij
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holds for Oij, operation Oij belongs to the critical path.

SEarlyOij = max(CEarly
POij ,CEarly

POkij
) (48)

CLast
Oij = max(SLastSOij ,C

Last
SOkij

) (49)

SLastOij = CLast
Oij − POij (50)

Among them, CEarly
POij is the operation that precedes Oij in

job i; CEarly
POkij

is the operation that precedes Oij in machine k;

SLastSOij is the operation that is later processed that Oij in job i,
and CLast

SOkij
is the imminently processed operation of Oij in

machine k .
After determining the critical path retrieval method of the

schedule, the neighborhood search operation can be designed
based on the critical path information:

Step 1: An operation (like Oij) is randomly selected from
the set of critical path operations.

Step 2: The AGV assignment is adjusted for the selected
operation, the new AGV cannot be the original AGV in order
to avoid invalid selection.

IV. SIMULATION DESIGN AND ANALYSIS
All simulations in this paper are conducted on the MATLAB
R2019b, and the running machine is configured as (Intel(R)
Core™i7-8700k CPU@3.70GHZ, 32GB memory). Experi-
ments in any parameter settings are replicated for 30 times
independently.

A. CONSTRUCTION THE SIMULATION
Although some researchers have carried out research on the
JSPMH, but there are few studies on the MO-JSPMH, and
there is a lack of benchmarks to be used. Therefore, to eval-
uate the effectiveness of the algorithm and the convenience
of subsequent research, this paper designs the benchmarks
of MO-JSPMH on the basis of the JSPMH [2], [14], [31].
Meanwhile, the scale of the problem is expanded to testify
the adaptiveness of the algorithm (The scale of traditional
benchmarks is concentrated on five transport nodes, but we
expand the test environment of 11 and 16 transport nodes as
medium and large-scale benchmark).

The simulations in this paper are carried out based
on 2 AGVs with a constant speed of 2m/s, and 50 test cases
are designed (40 test cases for small-scale and 10 test cases
for medium scale). The details of the test cases are shown in
appendix.

B. DESIGN OF EVALUATION INDEX
For multi-objective optimization problems in different
optimization environments, existing research includes Set
Coverage (SC), Hypervolume, and Inverted Generational
Distance (IGD) and other indicators to evaluate the solv-
ing performance of the multi-objective optimization algo-
rithm [40]. Considering the particularity of MO-JSPMH,
the Hypervolume and the SC are selected to evaluate the

performance of the algorithm and testify the effectiveness of
the MO-MA in solving the problem.

Among them, the SC index represents the proportion of
a solution set B dominated by individuals participating in
the comparison solution set A, which can be calculated by
Eq. (51) [36], [37], [38], [39], [40], [41]:

C (A,B) =
|{XϵB|∃y ∈ A : y dominates x}|

|B|
(51)

In Eq. (51),A andB represents the proportion of individuals
in solution set B dominated by individuals in solution set A.
The value of SC is a real value from 0 to 1, and the values
of C (A,B) and 1 − C (B,A) are not necessarily equal. And
if C (A,B) > C (B,A) stands, it can be concluded that the
solution A is better than the solution B.
Then, the Hypervolume represents the volume of the

hypercube constructed by all individuals in the solution set
and the reference point in the target space. It is applicable
to problem scenarios where the Pareto frontier is unknown:
the Hypervolume can be used to measure the convergence,
uniformity and generality of the solution set obtained by the
algorithm. As an index to evaluate the comprehensiveness
of the solution set, the Hypervolume can be calculated by
Eq. (52) [37], [38], [39], [40], [41], [42]:

H =

∑NP

i=1
|F2 (i) − F ′

2| · |F1 (i) − F1(i− 1)| (52)

In the Eq. (28-52),H represents the value of Hypervolume,
and NP means the number of individuals in the solution set
that are non-dominated solutions. F1(i) and F2(i) are respec-
tively the objective value of f1 and f2 in the ith solution; F ′

1
and F ′

2 are divided into the reference values of the reference
points in the two target dimensions, and F1 (0) = F ′

1. When
calculating the Hypervolume by Eq. (28), the objective f1 will
be used as the benchmark, and the solution set will be sorted
by the value of objective f1 according to the descending order.

At the same time, the two objectives ofCmax and total tran-
sit time in the MO-JSPMH may have a larger target interval
and a smaller target interval in their respective environments
with the change of test cases. To avoid the effect of weight
bias on the Hypervolume from the original value of any
optimization objectives (one of the target values has a large
cardinality and occupies the main component of the Hyper-
volume calculation process), it is necessary to normalize each
target value obtained by the operation of each test case by
Eq. (53):

RDI fi(test i) =
fi

(
test j

)
− fi(min)

fi (max) − fi(min)
(53)

In Eq. (53), RDI fi(test i) represents the relative deviation
percentage of the schedule test i in the optimization objec-
tive fi; fi(test i) represents the value of the schedule test i in the
optimization objective fi; and fi(min) represents the minimum
value achieved by all algorithms under the current test case
in the objective fi; fi (max) represents the maximum value
achieved by all algorithms under the current test case in the
objective fi, and the value of RDI ranges between 0 and 1.
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TABLE 5. The pseudocode of dynamic dispatching rules.

TABLE 6. The pseudocode of MNEH.

C. SET THE KEY PARAMETERS OF THE ALGORITHM
In this paper, the full factorial experimental design method
[38], [39], [40], [41], [42], [43], which has been widely rec-
ognized in the research direction of parameter design, is used
to complete the key parameter setting of the algorithm. In the
full factorial experimental design, it is necessary to ensure

TABLE 7. The result of ANOVA about MO-MA.

that all relevant factors are subjected to at least one exper-
iment under the corresponding key parameter combination,
thus the evaluation of the main experimental parameters can
be conducted [38], [39], [40], [41], [42], [43]. As the multi-
factor analysis of variance (ANOVA) method is suitable for
the significance test of the difference between two or more
samples [39], [40], [41], [42], [43], [44], this paper uses the
ANOVA method to analyze the experimental results.

According to the flow chart of the MO-MA, it is deter-
mined that the combination design is carried out from four
parameters: crossover operator (CO), population size (P),
crossover probability (CR) and mutation probability (MR),
and the design of the impact factors of MO-MA is as follows:

crossover operator (CO): AP, CX, OXI, OXII, POS,
SB2OX, SBOX, SJ2OX, SJOX.

population size (P): 20, 40, 50.
crossover probability (CR): 0.45, 0.7, 0.95.
mutation probability (MR): 0.1, 0.2, 0.3.
Considering that this paper is a multi-objective optimiza-

tion problem, the Cmax represents the delivery time of the
job set, it is a main indicator that receive more attention
from the real-world production decision-makers. Therefore,
the design of algorithm parameters is carried out withCmax as
objective: 10 repeated experiments are carried out under each
parameter combination environment, and the average value of
Cmax in Pareto solution set of the single experimental result
is used as the evaluation standard of current running quality
of the algorithm. As shown in Tab. 7, the Sig. corresponding
to parameters P, CR, MR and CO are all less than 0.05,
indicating that P, CR, MR and CO have significant effects
on the algorithm performance under the Cmax optimization
index. Then, it can be seen that the influence of four key
parameters on Cmax are ranked as CO > P > CR > MR
by comparing the F-value.

As shown in Fig. 7, according to the influence degree of the
factors from strong to weak, the balanced performance of the
algorithm under the current level of each factor in the random
test case environment is constructed factor by factor.

By analyzing the subgraphs in Fig.7, the key parameters of
the MO-MA can be set as follows: the crossover operator is
SBOX, the population size is 40, the crossover probability is
0.95, and the mutation probability is 0.1. The reasons are as
follows:

(1) As shown in Fig. 7(a), when the crossover operation is
SBOX, the performance of theMO-MA is minimally affected
by case changes, and its fluctuation interval has a better bias
in optimality than other crossover operators.
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FIGURE 7. Statistical box diagram of correlation level values of each factor.

TABLE 8. Hypervolume of MO-MA in different initial solution generation policies(small-scale).

(2) As shown in Fig. 7(b) where the SBOX crossover
operator is employed to determine the population size, it can
be found that when the population size is 20 or 50, the
MO-MA has better performance in terms of volatility, but
when the population size is 40, the mean solution has better
performance in term of optimality, so the population size is
set as 40.

(3) As shown in Fig. 7(c), when the crossover probability is
0.95, theMO-MA outperforms the parameters with crossover
probability equal to 0.45 or 0.7 in terms of optimality and
stability.

(4) As shown in Fig. 7(d), when the mutation probability
is 0.1, the MO-MA has better robustness and quality perfor-
mance than other parameters.

D. ALGORITHM ANALYSIS
1) ANALYSIS OF THE INFLUENCE OF INITIAL SOLUTION
GENERATION STRATEGY ON MO-MA
In order to investigate the impact of different initial solution
generation strategies on the MO-MA, this paper incorporates
different initial solution generation strategies while keeping
the benchmark parameters unchanged, and the Hypervolume
is used as the performance evaluation index. By compar-
ing the performance of different initial solution generation
strategies in test cases, the influence of the initial solution
generation strategies on the MO-MA is analyzed:

(1.2, 1.2) is set as the reference point for Hypervolume
calculation [42], on this basis, the value of Hypervolume in
10 experiments of theMO-MA under different initial solution
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TABLE 9. Hypervolume of MO-MA in different initial solution generation policies(big-scale).

TABLE 10. Multiple comparisons test of the different initial solution generation policies.

TABLE 11. Homogeneous subsets of the different initial solution
generation policies.

generation strategies in each test environment is calculated.
The average value of Hypervolume in 10 experiments is

used as the performance of the corresponding initial solution
generation strategy in the corresponding case environment.
The larger the value, the better the convergence performance
of the algorithm.

As shown in Table. 8 and 9, when different initial solu-
tion generation strategies are adopted in the small-scale case
environment and the large-scale case environment, the aver-
age values of Hypervolume in different cases are obtained
by MO-MA, respectively. Among them, Table. 8 is the
small-scale case test result, and the values in the table rep-
resent the average value of Hypervolume under the job set
in four different layouts. Table. 9 shows the test result of
medium and large-scale cases, and the values in the table
represent the average value of Hypervolume under the test
cases. Among them, the case identifier ‘‘L’’ represents the
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TABLE 12. The compare of MO-MA with other algorithms in Hypervolume (small-scale).

layout type, and the subsequent values indicate the logis-
tics and transportation matrices used respectively (See the
Appendix A and B), while the identifier ‘‘J’’ indicates the job
test case, Subsequent values respectively indicate the set of
test jobs to be used.

By observing and analyzing the results in Table. 8 and 9,
we can see that:

(1) The solution quality of different initial solution gen-
eration strategies shows a certain correlation in problems
scale:1) In the small-scale test environment, the performance
of theMO-MA usingMNEH as the initial solution generation

strategy is better than other initial solution generation strate-
gies (in all 10 test cases, the optimal solution is obtained
in 8 test cases); 2) In the large-scale test environment, the
MO-MA solution quality with the Rule2 strategy as the initial
solution generation strategy is better than other initial solution
generation strategies (in all 10 test cases, the optimal solution
is obtained in 8 test cases); 3) With the increase of the
problem scale, the MO-MA with Rule3 and Rule4 strate-
gies as the initial solution generation strategy shows obvi-
ous deterioration in the solution quality: The solution with
poor performance of the obtained Hypervolume are clustered
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TABLE 13. The compare of MO-MA with other algorithms in Hypervolume (big-scale).

TABLE 14. Multiple comparisons test of the three traditional algorithms.

to the algorithms using Rule3 and Rule4, and the inferior
solutions obtained in the large-scale test cases are MO-MAs
using the initial solution generation strategy with Rule3 and
Rule4.

(2) Compared with medium and large-scale environments,
the MNEH strategy has an obvious advantage in the propor-
tion of optimal solutions in small-scale environments:MNEH
achieves the optimal solution in 8 test sets in the small-scale
environment regardless of the layout factor, but optimal solu-
tion in the large-scale environment is only obtained in 2 test
sets. In this regard, based on the NEH, it has a better solution
effect when solving the Flow Shop Scheduling. We speculate
that the process path similarity between each two jobs in the
test job set in the small-scale environment is greater, so the
MNEH strategy shows better solution performance in the
small-scale environment.

(3) Compared with small-scale environment, in medium
and large-scale environments, the performance of MO-MA
solution based on MNEH strategy is degraded due to the
increase in the average transportation time between trans-
portation nodes and the increase in the diversity of job process

TABLE 15. Homogeneous subsets of the different initial solution
generation policies.

path. The initial solution generation strategy (Rule2) that
starts the machine as early as possible still shows better
solution performance.

• Multiple comparisons of the different initial solution
generation policies

To explore the differences between initial solution generation
policies with statistical significance, we referred the method
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TABLE 16. The compare of MO-MA with other algorithms in SC (small-scale).

in [45] and [46] and conducted multiple comparisons of
experimental results, which resulted in the following results
as shown in Tab. 10 and 11.

According to Tab. 10, there is a significant difference
between MNEH and all the other initial solution generation
policies, since their p-value (sig.) is less than the signifi-
cance level α = 0.05. Also, Rule3 has no significant differ-
ence between all the other initial solution generation policies
exceptMNEH. Significance has been identified by an asterisk
(∗) in the ‘‘Mean Difference’’ column.

The ‘‘Homogeneous subsets’’ are provided into Table 11.
This table provides an alternative method of computing and

displaying the post hoc tests which is regarded as more
suitable when group sizes are quite different. In this table,
groups listed in the same subset are not significantly different.
Consequently, Rule1 and Rule2 are not significantly differ-
ent. Similarly, Rule2, Rule3 and Rule4 are not significantly
different.

By comparing the solution performances between the
initial solution generation strategies, each initial solution gen-
eration strategy may generate some high-quality gene frag-
ments in each test case, thereby improving the exploration
ability of MO-MA. At the same time, based on the flow
analysis of the initial solution generation strategy, the time
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TABLE 17. The compare of MO-MA with other algorithms in SC (big-scale).

TABLE 18. Example problem travel distance for four layouts in meters (small-scale).

complexity of generating an initial solution is O(k · (k + n) ·

a), where k represents the number of jobs, n represents the
number of process nodes, and A represents the number of
AGVs. Through the actual test case operation, the generation
of the initial solution can be completed within 0.1s even in
a medium and large-scale environment. Therefore, based on
the principle of high-quality gene inheritance, multiple initial
solution generation strategies are selected in parallel as the
initial solution generation mechanism of the final MO-MA.

2) COMPARISON OF MO-MA AND TRADITIONAL
ALGORITHMS
Through the analysis of the key parameters of the algorithm
and the initial solution generation strategy, the key parameters
settings of MO-MA and the initial solution generation mech-
anism can be determined. In order to verify the effectiveness
of the MO-MA in solving the MO-JSPMH, the Hypervol-
ume and SC are used as the algorithm evaluation index to

compare MO-MA with NSGA-II [47], Multi-Objective Par-
ticle Swarm Optimization (MO-PSO) [48], Multi-Objective
Ant Colony Optimization (MO-ACO) [49] and other tradi-
tional multi-objective optimization algorithms. And, consid-
ering that the algorithms used for comparison are unable to
directly be applied to problem-solving, in addition to making
adaptability adjustments for the algorithm’s problem-solving,
we also used the same parameter adjustment method as
MO-MA (as shown in ‘SET THE KEY PARAMETERS OF
THE ALGORITHM’) to adjust the parameter adjustments of
all algorithms used for comparison.

• Comparison and analysis of convergence of MO-MA
The Hypervolume of the solution sets obtained by the
MO-MA, NSGA-II, MO-PSO and MO-ACO is presented in
Tab. 12 and 13 in small-scale problems as well as in the
test cases of medium and large-scale problems, respectively.
By observing and analyzing the results in Tab. 12 and 13,
we can see that:
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TABLE 19. Job set data with process time used in example problems(small-scale).

(1) Although the NSGA-II is similar to the MO-MA in
terms of convergence performance, the MO-MA outperforms
the traditional NSGA-II in all test algorithms. Compared with
the NSGA-II, the MO-MA optimizes the depth search strat-
egy, MO-MA shows better exploration ability than NSGA-II
in the solution process.

(2) In the small-scale test environment, although MO-MA
shows better convergence than other algorithms (in all

40 small-scale test cases, 38 of them achieved optimal
solutions), there is little difference in the convergence per-
formance between the algorithms (all the test cases are
concentrated, the Hypervolume obtained by the optimal and
worst algorithms is within 30% of the maximum GAP), since
the scale of the problem is relatively small.

(3) In medium and large-scale environments, the NSGA-II,
MO-PSO and MO-ACO have greatly deteriorated their
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TABLE 20. Example problem travel distance for four layouts in meters (10 machines).

ability to solve the MO-JSPMH. The reason for this phe-
nomenon is that the MO-MA can provide better deep search
capability support for the iterative search process of the algo-
rithm compared with other algorithms, both the design of the
neighborhood search action and the initial solution genera-
tion strategy reinforce the exploitation ability of MO-MA.
Other algorithms take longer times to explore the solution
space of the high-quality solutions, resulting in poor search
performance of the algorithm.

• Multiple comparisons of the three employed tradi-
tional algorithms

According to Table. 14, there is a significant difference
between MO-MA and all the other employed algorithms,
since their p-value (sig.) is less than the significance level α =

0.05. Also, MO-ACO has no significant difference with none
of the other algorithms except MO-MA. Significance has
been identified by an asterisk (∗) in the ‘‘Mean Difference’’
column.

The ‘‘Homogeneous subsets’’ are provided int Table 15.
This table provides an alternative method of computing and
displaying the post hoc tests which is considered to be more
suitable when group sizes are quite different. In this table,
groups listed in the same subset are not significantly different.

Consequently, NSGA-II and MO-ACO are not significantly
different. Similarly, MO-ACO and MO-PSO are not signifi-
cantly different.

• Analysis of ensemble coverage performance of
MO-MA

The SC performance of the Pareto optimal solution set
obtained by the MO-MA and other algorithms is shown in
Tab. 16 and 17 in small-scale problems and medium and
large-scale test environments, respectively. (For typesetting
purposes, M, N, P and A are respectively used to represent
four algorithms such as MO-MA, NSGA-II, MO-PSO and
MO-ACO for convenience). Subsequently, observation and
analysis of the results in Tab. 16 and 17 shown as that:

(1) In the small-scale test environment, medium and
large-scale test environments, the MO-MA has achieved
excellent performance under the SC, and the advantages con-
tinue to expand with the increase of problem scale.

(2) In the small-scale test environment, the performance
of NSGA-II and MO-MA with SC as the evaluation index is
similar in nearly half of the test environment, but MO-MA
is still better than NSGA-II. However, there are obvious
differences in the SC performance between MO-MA and
other optimization algorithms in all test cases.
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TABLE 21. Example problem travel distance for four layouts in meters (15 machines).

(3) In the large-scale test environment, the MO-MA shows
obvious advantages in all 10 test cases: the solutions obtained
by the MO-MA dominate the solutions obtained by all other
algorithms, while other optimization algorithms hardly find a
solution that dominates MO-MA.

V. CONCLUSION AND FUTURE WORK
This paper takes the ‘‘manufacturing-storage and trans-
portation’’ multi-objective joint scheduling problem in the
job shop as the research object, and this problem consid-
ers the limited transportation capacity constraints of the
transportation system. By analyzing the transportation and
manufacturing process of the workshop, we proposed a
job shop scheduling mathematical model with the limited

transportation capacity aiming to minimize transportation
time and Cmax to improve the production efficiency and
transit efficiency in workshop operations. For the consid-
ered problem, the MO-MA algorithm is proposed, which
uses the mixed population initialization method and a criti-
cal path-based neighborhood search strategy to improve the
search ability based on the algorithm framework of NSGA-II.
After that, the proposed MO-MA algorithm is compared to
the basic NAGA-II algorithm. Furthermore, two traditional
multi-objective optimization algorithms (MO-ACO and
MO-PSO) are applied to solve the aforementioned problem to
make comprehensive comparisons based on different feature
scenarios for algorithm adaptability adjustment. The exper-
imental results reveal that the proposed MO-MA algorithm
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TABLE 22. Job set data with process time used in example problems(large-scale for Job_Set11).

TABLE 23. Job set data with process time used in example problems (large-scale for Job_Set12).

outperforms the other employed algorithms in this paper. The
outcomes of the conducted experiments reveal that:

(1) For scenarios where the solution time is limited, the
search efficiency of the MO-MA for the effective solution
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TABLE 24. Job set data with process time used in example problems (large-scale for Job_Set13).

TABLE 25. Job set data with process time used in example problems (large-scale for Job_Set14).

space can be improved by embedding an initial solution
generation strategy with high solution quality, the search time

of MO-MA can be reduced, thus the solution quality of the
algorithm can be guaranteed in a limited time. Especially
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TABLE 26. Job set data with process time used in example problems (large-scale for Job_Set15).

TABLE 27. Job set data with process time used in example problems (large-scale for Job_Set16).

in large-scale environments, the optimization algorithm with
high-quality solution inheritance shows better utilization of
search time than the random search strategy.

(2) During the process of intelligent decision-making
and factory upgrading, production managers can ensure
the quality of production decisions by transforming their
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TABLE 28. Job set data with process time used in example problems (large-scale for Job_Set17).

TABLE 29. Job set data with process time used in example problems (large-scale for Job_Set18).

past experience in the formulation of production plans
into heuristic algorithms. At the same time, they can

also inherit multi-dimensional experience in formulating
proposals based on considerations of optimization objectives,
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TABLE 30. Job set data with process time used in example problems (large-scale for Job_Set19).

TABLE 31. Job set data with process time used in example problems (large-scale for Job_Set20).

providing high-quality proposals in multiple dimensions.
Finally, they can leverage the high computational power of

computers to extract advantageous genes of decisions and
improve the quality of proposals within a defined time frame.
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FIGURE 8. One of the pareto solutions in the case of Job_set1 under
Layout_1.

FIGURE 9. One of the pareto solutions in the case of Job_set10 under
Layout_3.

In this research, the consumption of energy during trans-
portation is only accounted for two states: loaded and empty,
and there is no difference between two states. However,
in actual scenarios, there are different sceneries for start-up,
standby, load and empty transport [50]. And the energy
consumption ratio during each scenery is different. Therefore,
we can construct optimization models more closely corre-
sponding to actual energy consumption states in the future,
and further study the value of research results in production
practice.

APPENDIX A
SMALL CASES DATA
(A) Layout information for four small-scale environments,
the values in the table represent the transportation distance
between the two nodes of the job-shop, and the transportation
time between the nodes to be assisted by the transportation
speed of AGV.

(B) Production information of 10 sets of jobs to be pro-
cessed: Each job set consists of 5∼8 jobs to be processed, and
from left to right the process of the job is indicated, while the
brackets after the device indicate the process time.

APPENDIX B
LARGE CASES DATA
(A)Layout information for 2 large-scale environments: that
Table. 20 representative the workshop layout data which
contained 11 nodes that one node is the warehouse and other

10 nodes are the machines, and Table. 21 means the other
workshop layout data which contained 16 nodes that 1 node
is the warehouse and other nodes 15 are the machines.

(B) From Table. 22 to Table. 31 represent the production
information of 10 sets of jobs to be processed in 2 large-
scale environments: both are 20 jobs, but the processing
information is different.

APPENDIX C
EXAMPLES OF OPTIMIZATION RESULTS
The Fig. 8 and 9 represent one of the pareto solutions in
the case of Job_set1 under Layout-1 and Job_set10 under
Layout-3.
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