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ABSTRACT Particle swarm optimization (PSO), genetic algorithm (GA), and nonlinear simplex optimiza-
tion method (SOM) are some of the most prominent gradient-free optimization algorithms in engineering.
When it comes to a common group of electromagnetic optimization problems wherein less than 10 opti-
mization parameters are present in the problem domain, SOM features faster convergence rate vs PSO
and GA. Nevertheless, PSO and GA still outperform SOM by having more accuracy in finding the global
minimum. To improve the accuracy of SOM in problems with few optimization parameters, a quasi-gradient
(Q-G) search direction is added to the conventional algorithm. An extra decision is made by the proposed
algorithm to move alongside the reflection or quasi-gradient direction during the error-reduction operations.
This modification will improve the accuracy of SOM, which otherwise fails in the examples presented in this
article, to levels similar to PSO and GA, while retaining approximately 33% faster convergence speed with
relatively small number of parameters, and 20% faster convergence speed with larger number of optimization
parameters. Following a standard benchmark test verification, the proposed algorithm successfully solves
a suite of electromagnetic optimization problems. Representative examples include the optimization of
absorber dimensions in an anechoic chamber, and estimation of the properties of an unknown embedded
object by scattered microwave signals.

INDEX TERMS Device optimization, gradient-free optimization, heuristic methods, parameter estimation,
quasi-gradient optimization.

I. INTRODUCTION
Gradient-free optimization is key to modern engineering [1].
In a diverse range of electromagnetic applications ranging
from enhancing the urban wireless coverage [2], to improv-
ing the radiation characteristics of antennas as single ele-
ments [3], or designing the antenna arrays [4], performing
adaptive beamforming by antenna arrays [5], and improving
the directivity of antenna arrays [6], there are some param-
eters that must be optimized to retain the desired perfor-
mance. Moreover, parameter estimation in electromagnetic
inverse problems is another venue where the gradient-free
optimization can demonstrate unique features [7], [8]. Such
a solid demand has led to significant progress in heuristic
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andmetaheuristic gradient-free optimizationmethods in elec-
tromagnetics like particle swarm optimization (PSO) [9],
genetic algorithm (GA) [10], and nonlinear simplex optimiza-
tion method (SOM) [11].

A. GRADIENT-FREE OPTIMIZATION: SPEED AND
ACCURACY
The computational time of most of the gradient-free opti-
mization methods increases exponentially by the number
of optimization parameters [12]. Regarding the simplic-
ity of programming the algorithm of SOM as a local-
search method, and the smaller number of candidate points
during optimization, the method shows faster convergence
speed vs PSO and GA as long as the number of optimiza-
tion parameters is relatively low (say below 10) and the
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optimization problem is rather simple in terms of noise and
number of local minima [1]. For instance, in [1, Table 1] and
[1, Table 4 ], the success rate of SOM is only 3%when dealing
with objective functions like Quadruple with 20 optimization
parameters, but its convergence speed is 27 times faster than
GA. However, the population-based nature of PSO [13] and
GA [14] as global-search methods can handle up to hundreds
of parameters. From this perspective, PSO and GA may be
privileged with respect to SOM [1].

Considering the accuracy of solution, the gradient-free
methods have a heuristic nature and directly evaluate the
objective function in each iterative run [15]. If the distri-
bution of the population (candidate points) in each itera-
tive run inherits some randomness, which is the case in
the metaheuristic methods like PSO and GA [9], [10], the
solution of the gradient-free method is subject to unrepeata-
bility [16]. In other words, for the same problem with the
same conditions, two different runs of the same metaheuris-
tic gradient-free algorithm will return two slightly different
solutions. Though these solutions are usually accurate, there
are some optimization problems with complicated or noisy
objective functions where a typical run of the gradient-free
method may fail to return an accurate solution. This issue
is usually referred to as the success rate of the gradient-free
methods [1]. SOM, on the other hand, has a deterministic
distribution of candidate points and returns the same solution
in different runs. Nonetheless, the local-search nature of SOM
that involves few candidate points in each run may result in
an occasionally lower accuracy with respect to PSO and GA
as global-search methods [1].

B. SOM: MOTIVATION AND POTENTIAL
Yet, many practical electromagnetic optimization problems
like those in Fig. 1 have less than 10 optimization parame-
ters. Since the convergence speed of SOM in problems with
small number of optimization parameters is faster than PSO
and GA, and the algorithm possesses a deterministic nature,
improving the accuracy of the algorithm can make SOM as
a very competitive and attractive gradient-free algorithm in
electromagnetics. Moreover, the simplicity of programming
the algorithm of SOM is another attractive feature to imple-
ment the method in electromagnetics. As such, the motivation
of proposing the quasi-gradient SOM (Q-GSOM) in this
article is to improve the accuracy of SOM for those elec-
tromagnetic optimization problems containing relatively low
number of optimization parameters. In passing, we note that
SOM is sometimes referred to as downhill or Nelder-Mead
optimization method in the literature [17].

In the rest of this article, the main difference between
the gradient-free and gradient-based optimization methods
is discussed briefly in Section II. The difference in the dif-
ferentiability of the objective function of the gradient-free
and gradient-based methods is the main inspiring point to
add an extra decision-making step to SOM in Section III.
Per an approximate linear search direction of the gradient

of the objective function of SOM, the algorithm decides to
whether or not move alongside the approximate direction
of the gradient. This search decision reduces the chance
of local minima failures. By running a benchmark test on
Q-GSOM, PSO, and GA, it is observed in Section IV that
the Q-GSOM can attain an accuracy similar to PSO and GA,
while retaining a faster convergence speed. In Section V,
Q-GSOM successfully solves the optimization problems in
Fig. 1. Finally, conclusions are made in Section VI.

II. GRADIENT-FREE VS GRADIENT-BASED OPTIMIZATION
Gradient-free methods directly evaluate the objective
function to find its global extremum point, while the
gradient-based methods search for the global extremum point
alongside a direction in which the gradient (derivative) of the
objective functionwith respect to the optimization parameters
vanishes [18].

Fig. 1 shows the above difference between the gradient-free
and gradient-based methods in practice. Gradient-free meth-
ods require an initial topology to define the parameters on
which the optimization is performed. For instance, Fig. 1(a)
shows a common shape optimization problem in electro-
magnetic interference and compatibility tests wherein the
initial dimensions (a, b, c) of the absorbers in an anechoic
chamber are regarded as optimization parameters. As another
example, Fig. 1(b) depicts a microwave monitoring prob-
lem. The initial topology of this inverse problem is seen
in Fig. 1(c) where the changes of relative permittivity εr ,
conductivity σ , and diameter d of the circular object embed-
ded inside the cylindrical structure are monitored (details of
the monitoring system are given in [19]). The final values
of these parameters will be given, and graphically shown
in Section V.
Gradient-based methods, however, reconstructs the entire

topology. As such, they do not need any initial topology to
start from. For instance, the microwave monitoring problem
in Fig. 1(b) can be treated by gradient-based optimization
as well (say Born iterative method [20], [21]) where the
reconstructed topology of εr and σ , (functions of space coor-
dinates (x,y,z)), are seen in Figs. 1(d) and 1(e), respectively.
Accordingly, the gradient-free and gradient-based optimiza-
tion methods are sometimes referred to as the shape and
topology optimizations, respectively [22].

A. DEFINITION OF THE OBJECTIVE FUNCTION
To clarify the definition of the objective function (F) in the
above examples, let us consider the corresponding pointwise
objective functions in Fig. 1 as,

Fig.1(a) : F =
∫
W

∣∣∣E⃗sct (a, b, c, x, y, z)∣∣∣2
dW → 0, on walls (W )

Fig.1(b) : F =
∣∣∣E⃗sct (εr , σ, d, x, y, z)− α⃗S

∣∣∣2
→ 0, on apertures (1a)
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FIGURE 1. Examples of gradient-free optimization in real-world
electromagnetics are seen in (a) and (b). Difference between the
gradient-free and gradient-based optimization, when treating (b), is
seen in (c) to (e), respectively. (a) Anechoic chamber optimized by
gradient-free optimization, (b) Microwave monitoring, (c) Initial topology
of (b), (d) Gradient-based optimization of εr , (e) Gradient-based
optimization of σ .

where E⃗sct , α⃗, and S are the scattered field, calibration vector,
and measured S-parameters, respectively [23]. In either case,
E⃗sct is defined by the vector wave equation as,

E⃗sct =

(
1

ω2
0µ0ε0εr

∇⃗×
(
∇⃗× E⃗

)
− χE⃗− E⃗inc

)
+

j
ω0ε0εr

σ E⃗ (1b)

and is summed over the walls of the anechoic chamber in
Fig. 1(a) and over the apertures in Fig. 1(b). Quantitiesω0,µ0,
ε0, and χ = ε/εb − 1are respectively the free-space angular
frequency, permeability, permittivity, and electric susceptibil-
ity defined by complex permittivity ε = εr+σ/jω [24], [25].
Moreover, the total electric field is the summation of the
incident and scattered fields as E⃗ = E⃗ inc + E⃗sct . In addition,

∇⃗ is the gradient operator, and j =
√
−1 is the unit of

imaginary numbers.

B. PROPOSAL: Q-GSOM
SOM possesses five successive error-reduction operations
called reflection, expansion, forward contraction, backward
contraction, and shrink, graphically shown in Fig. 2 [1]. The
reflection operation is key to the next four operations as it
determines the search direction onwhich the other four opera-
tions are established. Inspired by the gradient-based methods,
we add an extra evaluation step to the reflection operation.
The algorithm then decides on two possible search direc-
tions: The conventional direction that evaluates the objective
function, and a new direction that evaluates the gradient
of the linearly-approximated objective function in the space
of parameters (say quasi-gradient direction) [26]. Such a
quasi-gradient search direction will improve the accuracy
of SOM by reducing the chance of being trapped in local
minima, while retaining the efficiency of SOM [1].

III. Q-GSOM ALGORITHM
In this section, Q-GSOM is proposed. The approach aims at
achieving similar accuracy as GA and PSO in problems with
relatively small number of optimization parameters, while
retaining higher computational speed.

A. INITIALIZATION
Let us assume that there are N parameters needed to be
optimized as (x1, x2, . . . , xN ). The initial values of these
parameters can be expressed by a vector like X0 =

(x10, x20, . . . , xN0). Clearly, X0 is taken from an initial topol-
ogy as Fig. 1(a) or 1(c). In addition to X0, the variation range
of these parameters are defined to form the solution space
(xmin, xmaxof each parameter). This space is demonstrated in
Fig. 2(a) for N = 3 (selected for ease of graphical demon-
stration of different steps).

To optimize (x1, x2, . . . , xN ), we first construct an equi-
lateral ‘‘simplex’’ (generalized triangle) with N + 1 vertices
within the space of parameters shown in Fig. 2(a). One of the
vertices is the initial guess X0. All other vertices with equal
distance c0 are derived by adding the following vectors to this
initial guess as,

X1 = X0 + (p, q, q, . . . , q)

X2 = X0 + (q, p, q, . . . , q)
...

XN = X0 + (q, q, q, . . . , p) (2)

where q = c0
N
√
2
(
√
N + 1− 1) and p = q+ c0√

2
.

Typically, c0 = 1 to allow the algorithm to search in a suf-
ficiently large volume at early iterations. Moreover, as mea-
surement noise (appeared in the S-parameter in Fig. 1(b))
may result in the same frequency response for two very
close vertices, locating the vertices far enough (distancedwith
c ≥ 1) makes the algorithm robust with respect to noise.
The immediate contrast between SOM and GA or PSO is
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FIGURE 2. Different error-reduction operations of SOM are graphically
demonstrated for N =3. In all the operations, Xw is replaced by a new
vertex. In shrinking, all the vertices except Xb are replaced by new
vertices. (a) Simplex, (b) Reflection, (c) Expansion, (d) Forward
contraction, (e) Backward contraction, (f) Shrinking.

recognized by (2). First, the population of SOM is fixed at
N + 1 vertices (candidate points), while PSO and GA have
much larger populations that can be adjusted almost freely.
Second, constructing a simplex forms a local search domain,
while PSO and GA distribute their populations across the

entire space of parameters to form a global search method.
Third, the initial distribution of candidate points in PSO and
GA is generally random, while SOM distributes its candidate
points in a deterministic manner [9], [10] (unless c0 is chosen
randomly).

By constructing the simplex, the next step is to evalu-
ate the objective function F(x1, x2, . . . , xN ) at every vertex
X0,X1, . . . ,XN . After evaluating the objective function in
all the vertices, three vertices possess special importance for
SOM. The vertex which gives the least value of F is called
the ‘‘best’’ vertex and is denoted as Xb. On the contrary,
the vertex with the highest mismatch is called the ‘‘worst’’
vertexXw. To guide the algorithm into a direction that always
reduces the highest mismatch, we also need an auxiliary point
wherein F has the second highest value (mismatch). This
vertex is called the ‘‘second worst’’ vertex or Xsw. After this
arrangement, the average value of all the vertices exceptXw is
calculated and called Xa. The reason for excluding Xw from
averaging is to maintain the line segment betweenXa andXw
(LXwXa ) always downward. This is because LXwXa contains
some useful points in which F may have lower mismatch than
Xw during the optimization process. In Fig. 2(a), we take X
as a representative for all the other vertices.

B. ERROR-REDUCTION OPERATIONS
After the above initialization, the method performs at least
two, and utmost five ‘‘error-reduction’’ operations to mini-
mize F. In each of these steps, the old value ofXw is removed
from the computer memory (not restored for the next itera-
tion), and all the other vertices are rearranged to have new
Xb, Xw, and Xsw. Hereafter, these operations are discussed.

1) REFLECTION
The first optimization step in Q-GSOM is to reflect the worst
vertexXw. There are two directions of reflection that we wish
to consider here. First, reflection across LXwXa with the same
length as,

Xr = 2Xa − Xw (3)

shown in Fig. 2(b) is considered. This operation is to check
if moving in the LXwXa direction should be continued by the
algorithm or another direction will lead the algorithm to the
optimum vertex. Second, reflection across the quasi-gradient
(Q-G) direction of the following hyperplane is considered.
This hyperplane is regarded as the linear approximation of F
within the space of parameters,

F= [a0, a1, . . . , aN ] [1, x1, . . . , xN ]T (4a)

At each vertex we have,

F(X0) = [a0, a1, . . . , aN ] [1, x10, . . . , xN0]T

F(X1) = [a0, a1, . . . , aN ] [1, x11, . . . , xN1]T

...

F(XN ) = [a0, a1, . . . , aN ] [1, x1N , . . . , xNN ]T (4b)

59602 VOLUME 11, 2023



A. Afsari et al.: Quasi-Gradient Nonlinear Simplex Optimization Method in Electromagnetics

FIGURE 3. Flowchart of Q-GSOM algorithm.

where ‘‘T ’’ is the transpose operator and (x10, . . . , xN0) is the
vector of parameter values constructing the initial point X0
(and so on). The coefficient matrix is thus derived as,

[a0, a1, . . . , aN ]

=


F(X0)
F(X1)

...

F(XN )


T 


1 x10 · · · xN0
1 x11 · · · xN1
...

...
. . .

...

1 x1N · · · xNN


T
−1

(4c)

As such, the second reflection direction is chosen alongside
the quasi-gradient vector as,

Xr = Xa +
1

|[a0, a1, . . . , aN ]|
[a0, a1, . . . , aN ] (5)

This quasi-gradient direction reduces the chance of search in
a direction ending at a local minimum. Q-GSOM evaluates F
at two reflected points in (3) and (5), and selects the reflection
point with lower F. If F has a lower mismatch at the selected
Xr with respect toXb, that is F(Xr ) < F(Xb), before replacing
the following,

Xw← Xr (6)

(we use the programming convention A ← B to show
that the old value of A is substituted by the new value
of B), the algorithm evaluates the possibility of finding
even a better vertex. To this end, the expansion operation
is performed by further moving in the same direction of the
selected Xr .
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Algorithm 1 Q-GSOM Execution Steps

Steps Commands
Input: parameters (x1, x2, . . . , xN )
Input : variation range xmin and xmax

1: Input: X0
Input: F

Do: vertex construction: eq. (2)
2: Do: vertex rearrangement: Fig. 2(a)

Do: calculation of Xa

if (12) is satisfied
Output: Xb

else
Do : Reflection
if F(Xr ) < F(Xb)

Do : Expansion
if F(Xe) < F(Xb)

Do: (8)
Return: Step 2

else
Do: (6)
Return: Step 2

end
else if F(Xw) < F(Xr )

Do: Backward Contraction
if F(Xbc) < F(Xw)
Do: Xw← Xbc
Return: Step 2

3: else
Do: Shrink
Return: Step 2

end
else if F(Xsw) < F(Xr ) < F(Xw)

Do: Forward Contraction
if F(Xfc) < F(Xr )
Do:Xw← Xfc
Return:Step 2

else
Do:Shrink
Return:Step 2

end
else

Do: Xw← Xr
Return:Step 2

end
end
end

end

2) EXPANSION
As per Fig. 2(c), the algorithm further moves alongside LXwXa
or the quasi-gradient vector with the same step-length i.e.,

Xe = 2Xr − Xa (7)

Then, F is also evaluated at this expansion vertex. If its value
is lower than F(Xb) i.e., F(Xe) < F(Xb) (even if F(Xe) >

F(Xr )), the algorithm replaces the following,

Xw← Xe (8)

and (iteratively) returns to the reflection step after rearranging
the new vertices from the worst to the best. The reason that the
algorithm does not immediately accept Xw← Xr , while it is
the best-found vertex among the other vertices, comes from
the fact that this vertex is reserved by the algorithm as it lies
inside the new simplex formed by Xe. Hence, by perform-
ing the expansion, we merely safeguard the neighborhood
domain ofXr wherein some other good or even better vertices
may exist to minimize F. If F(Xe) is not lower than F(Xb),
we perform (6) and iteratively return to the first operation i.e.,
reflection, after rearranging the new vertices from the worst
to the best. Hence, the minimum number of error-reduction
operations is two.

3) FORWARD CONTRACTION
Either (6) or (8) assumes F(Xr ) < F(Xb). If this is not the
case, but F(Xsw) < F(Xr ) < F(Xw), we conclude that the
algorithm has excessively moved along LXwXa or the quasi-
gradient direction, and better vertices may lie at distances
closer than Xr . We thus perform the forward contraction
by returning half a step-length (typically the balanced step-
length) from Xr toward Xa as seen in Fig. 2(d), i.e.,

Xfc = 1.5Xa − 0.5Xw

or

Xfc = Xa + 0.5
1

|[a0, a1, . . . , aN ]|
[a0, a1, . . . , aN ] (9)

depending on the chosen direction of search. If F(Xfc) <

F(Xr ), we form a new simplex on vertices X,Xb,Xsw,Xfcby
returning to the initialization step and rearranging these new
vertices from the ‘‘worst’’ to the ‘‘best’’ one.

4) BACKWARD CONTRACTION
If F(Xw) < F(Xr ), to still hope that LXwXa or the
quasi-gradient direction contains some vertices that can
improve the mismatch in F, in the same way as forward
contraction we perform the backward contraction by moving
backward half a step-size from Xa toward Xw, as shown in
Fig. 2(e),

Xbc = 0.5Xa + 0.5Xw

Xfc = Xa − 0.5
1

|[a0, a1, . . . , aN ]|
[a0, a1, . . . , aN ] (10)

If F(Xbc) < F(Xw), a new simplex seen in Fig. 2(e) is con-
structed on X,Xb,Xsw,Xbc by returning to the initialization
step and rearranging the vertices from the worst to the best.

5) SHRINKING
If, however, none of the above situations takes place, the last
step to find the better direction toward the optimum vertex
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TABLE 1. Benchmark test.

is to shrink the simplex. To this end, we only keep the best
vertexXb, and for the other vertices, say ith one, the shrinking
operation is performed as

Xi(new) = 0.5Xb + 0.5Xi(old) (11)

Then, the proposed algorithm returns to initialization step
to rearrange the new vertices formed in the shrinking step
shown in Fig. 2(f). The whole iterative process is continued,
until F(Xb) meets the truncation condition of the objective
function, say reaching a small number δ,

F(Xb) ≤ δ (12)

The value of Xb that satisfies the truncation condition is
stored as the final solution. To demonstrate all these steps
at once, Fig. 3 shows the corresponding flowchart of the
Q-GSOM to better show the order of operations. In addition,
Algorithm 1 shows the programming steps of Q-GSOM in
MATLAB. In the next section, three common benchmark
tests are performed on Q-GSOM, GA, and PSO to evaluate
their relative accuracy and speed. We implement MATLAB
functions GA and PSO for this comparison with the default
setting.

IV. BENCHMARK TEST
Different mathematical functions have been introduced as
merits to evaluate the performance of gradient-free optimiza-
tion methods. Amongst, Griewank, Rastrigin, and Rosen-
brock functions are the most common benchmarks to assess
the capability of gradient-free optimization methods in
electromagnetics [9]; mainly, because these functions can
resemble some of the most common objective functions in
electromagnetics. In addition, they have their global mini-
mum at zero.

In this section, the performance of Q-GSOM in dealing
with these three functions is evaluated with respect to SOM,
PSO and GA in MATLAB. In all the comparisons, we run
the algorithms 10 times to consider the success rate of PSO
and GA. Moreover, the number of optimization parameters
N is once set to 3 and once to 9 in Table 1. This is to com-
pare the relative convergence speed of the above algorithms,
first for a very small N to demonstrate the superiority of
Q-GSOM, and then for a larger value of N above which the
Q-GSOM is incapable of showing any superiority. As dis-
cussed, Q-GSOM is of particular interest in problems with
low number of optimization parameters. It is observed that
in all the benchmark test, SOM error level can be considered
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as failure when compared to the other three methods. Similar
test failures were observed in [1].

A. GRIEWANK FUNCTION
Griewank function can evaluate the performance of a
gradient-free optimization method in dealing with strong but
low-frequency noise present in the problem domain. On a
large scale seen in Fig. 4a, the function looks like a smooth
function that has been contaminated by strong unwanted
noise. When zoomed into the global minimum in Fig. 4(b),
the sinusoidal noise is better observed across the solution
space. The function is defined as,

FGr =
1

4000

N∑
i=1

x2i −
N∏
i=1

cos(
xi
√
i
)+ 1 (13)

Table 1 demonstrates the performance of Q-GSOM with
respect to PSO and GA in minimizing the Griewank function.
While both PSO andGA can attain the lowest minimum value
(in dB) during the benchmark test, Q-GSOM reaches almost
the same accuracy as PSO and GA with roughly 33% lower
computational time whenN = 3. Even for largeN , Q-GSOM
can compete with GA in accuracy, while retaining a faster
convergence speed.

B. RASTRIGIN FUNCTION
Rastrigin function is a complementary assessment tool to
the previous step, when weak but high-frequency noise is
present in the problem domain. On a large scale, the function
looks very smooth in Fig. 4(c). When zoomed in, however,
many local minima and maxima are observed across the
solution space in Fig. 4(d). This test is of particular impor-
tance when estimating the properties of some inaccessible
parameters by some weak and noisy scattered microwave
signals recorded at some observation points like Fig. 1(b).
The wave-like variation of this smooth function provides a
proper benchmark assessment for objective functions defined
per the high-frequency electromagnetic fields. The function
is defined as,

FRa =
N∑
i=1

(
x2i − 10 cos(2πxi)+ 10

)
(14)

In Table 1, Q-GSOM demonstrates approximately 34% lower
computational time to minimize the above function for small
N when compared to PSO and GA. Though PSO can achieve
the best accuracy for small and large N , Q-GSOM shows a
marginally better accuracy with respect to GA for large N .

C. ROSENBROCK FUNCTION
Rosenbrock function is a complementary assessment tool to
the previous two steps, when the objective function has a
stationary nature across the space of parameters as seen in
Fig. 4(e). In electromagnetics, this is the case when objective
functions are defined per the static fields, or per the stationary
quantities of electromagnetic fields like energy. It is a chal-
lenging function to minimize, as the descent direction from

any point to the global minimum has a very low steepness,
with numerous ‘‘good’’ solutions as shown in Fig. 4(f). Later
on, it will be seen that this assessment is directly relevant to
Fig. 1(a) where the initial values of a,b,c are ‘‘good’’ enough.
The function is defined as,

FRo =
N−1∑
i=1

(
100(xi+1 − x2i )

2
+ (xi − 1)2

)
(15)

The quasi-gradient essence of Q-GSOM described by (5)
is best implemented in this test where PSO and GA might
not be able to compete. Table 1 shows that for small N ,
Q-GSOM can perform better than PSO in both the accu-
racy and computational time. In comparison with GA,
Q-GSOM possesses significant 38% faster speed. For large
N , GA performs slightly better in accuracy when compared
to Q-GSOM, but the computational time of GA is still 17%
higher than Q-GSOM.

By concluding this section, it is worth mentioning that per
many experiments, larger N (>10) would gradually result
in an inefficient computational time and improper accuracy
for Q-GSOM with respect to PSO and GA. The reason
mainly comes from the global-search nature of PSO and
GA that randomly scatter their populations across the entire
problem domain. This makes them more robust in optimiza-
tion problems with very large N [9], [10]. Hence, we limit
Q-GSOM to those electromagnetic optimization problems
that possess a relatively small N . Overall, Q-GSOM can
attain approximately 33% faster speed when N is small,
and approximately 20% faster convergence speed when N is
around 9.

V. Q-GSOM IN ELECTROMAGNETICS
The performance of the Q-GSOM is attractive in many elec-
tromagnetic problems having a few optimization parameters,
as those discussed in Fig. 1. In this section, Q-GSOM, PSO,
GA, and SOM are implemented in optimizing two general
types of problems in electromagnetics. First, the methods are
implemented to optimize the dimensions of the absorbers in
Fig. 1(a) to reduce the scattered fields from the walls of an
anechoic chamber. Second, an inverse problem in electro-
magnetics is studied in Fig. 1(b) to monitor the change of
properties of an embedded object. The demonstrated figures
in this section are in dB scale, as the corresponding elec-
tromagnetic quantities are either small in value (like scat-
tered field) or traditionally better understood in dB scale
(like resistive loss).We implemented COMSOLMultiphysics
Livelink with MATLAB to run the optimization algorithms.
The objective functions of these examples were already given
in (1a). It will be seen that SOM cannot compete with the
other 3 methods. Moreover, it will be seen that Q-GSOM
possesses faster speed with respect to GA and PSO, while
their error degrees are comparable. As such, graphical results
of Q-GSOM are only shown, as the method outstands in both
accuracy and speed.
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FIGURE 4. Griewank, Rastrigin, and Rosenbrock test functions in (a), (c),
and (e), with their zoomed figures around their global minimum in (b),
(d), and (f), respectively.

A. OPTIMIZING THE ABSORBERS OF ANECHOIC
CHAMBER
The proper performance of absorbers within an anechoic
chamber is critical to accurately evaluate the characteristics
of antennas in infinite domain, or assess the interference and
compatibility of electromagnetic devices [27]. The pyrami-
dal arrays of absorbers in Fig. 1(a) are designated to guide
the electromagnetic field towards their adjacent absorbers
and then dissipate the field via their conductive material.
By absorbing these fields and shielding the chamber versus
unwanted signals coming from outside, the chamber acts
theoretically as an infinite domain.

The cubic chamber with 8 m3 volume in Fig. 1(a) is
supported by arrays of absorbers with initial dimensions as
a = 15, b = 15, c = 40 in cm. We assume that the dielectric
properties of the absorber are fixed at σ = 0.5, εr = 1. A bi-
conical antenna common in assessing the interference and
compatibility is placed at the center of chamber, operating
at 240 MHz. The goal is to check if the initial dimensions set
in COMSOL is optimum, or better dimensions exist for the
absorber to improve the performance of the chamber. Intro-
ducing these three parameters within the Q-GSOM, the opti-
mized problem is seen in Fig. 5. In Figs. 5(a) and 5(b), a com-
parison between the initial and final norms of the electric field
show slight improvement in the performance of the cham-
ber in eliminating the scattered fields. Weaker field strength
reaches the chamber walls in Fig. 5(b). Figs. 5(c) and 5(d)
show the same fields inside the chamber before and after

optimization. While the fields possess almost the same pat-
tern, contours of the fields after optimization show certain
uniformity across the absorbers in comparison with the initial
fields. This uniformity is a demonstration of higher agree-
ment between the optimized absorbers and their theoretical
counterpart i.e., the scattering boundary condition used to
truncate the domain computationally [26]. The absorption
and conversion of fields to heat is shown in Figs. 5(e) and 5(f),
before and after optimization. As seen, the generated heat
follows a better horizontal pattern in Fig. 5(f) when compared
to Fig. 5(e). This is due to a slight change in the dimen-
sions of the optimized absorber with respect to its initial
dimensions. The change applied by Q-GSOM is based on the
radiation pattern of the bi-conical antenna, which shows its
maximum intensity across the azimuth (xy) plane. Q-GSOM
takes advantage of this radiation pattern by slightly increasing
the parameter a = 15.23 and decreasing the parameter
b = 14.76 during optimization shown in Fig. 5(g). To more
effectively absorb the fields, the sharpness of the pyramid
slightly increases to c = 40.41. Error degree of Q-QSOM
is comparable with GA in Fig. 5(h), while the Q-GSOM is
faster by almost 30% as discussed hereafter.

In running the algorithm, we let the iterations continue
by 10 units once the objective function no longer changes
remarkably. This is to ensure that Q-GSOM no longer
replaces the converged point. The space of parameters is con-
structed by extending the variation range of each parameter
by 40% above and below its initial value. The initial dimen-
sions of parameters in this example were intentionally chosen
to give a very good initial solution. The purpose was to assess
if Q-GSOM fed by a very good initial value will fall into the
initial local minima or can escape it and converge to a better
solution. Moreover, we tried to avoid initial dimensions that
are not realistic. In Subsection V-B, however, the assessment
situation will be relatively opposite.

The total computational time for optimizing the prob-
lem is 41.34 minutes. Per the Rosenbrock benchmark test,
marginally better dimensions of absorber might still be
achievable by multiple runs of GA. Table 2 summarizes the
computational times of different methods.

B. PARAMETER ESTIMATION IN MICROWAVE
MONITORING
In microwave monitoring, the change of properties of inac-
cessible objects are studied over time [28]. The remarkable
penetration of electromagnetic fields provide possibility to
monitor the objects not directly accessible for measurements.
Examples include through-wall imaging to find cracks and
leakage in concrete or pipes [29], or medical monitoring to
evaluate the treatment progress [30], [31].

Fig. 1(b) shows a microwave monitoring setup wherein
the monitoring antennas successively illuminate the domain
in a clockwise pattern. An object with initial properties as
d = 15, σ = 0.4, εr = 30 is embedded inside an elliptic
plastic container having the approximate semi-minor and
semi-major axes 7 cm and 10 cm, respectively, and 0.5 cm
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FIGURE 5. Optimized absorber in an anechoic chamber. (a) Initial electric
field norm on the walls (Volt/m). (b) Final electric field norm on the walls
(Volt/m). (c) Contour of the initial electric field norm inside the chamber
(Volt/m). (d) Contour of the final electric field norm inside the cham-
ber (Volt/m). (e) Initial resistive loss over the absorbers (W/m3). (f) Final
resistive loss over the absorbers (W/m3). (g) Values of optimization
parameters versus iteration number. (h) Convergence error.

thickness. The container is filled with a liquid with fixed
properties σ = 0.5, εr = 60 at 780 MHz. To provide a better

FIGURE 6. Parameter estimation of the circular object initiated in
Fig. 1(b). (a) Replaced object with different diameter and dielectric
properties. (b) Scattered electric field by the estimated object when
antenna number 1 is in transmit mode. (c) Contour of the scattered
electric field by the estimated object when antenna number 1 is in
transmit mode. (d) Resistive loss caused by the estimated object when
antenna number 1 is in transmit mode. (e) Estimated parameters per
iteration. (f) Convergence error.

matching between the antennas and the domain, a coupling
liquid with the fixed properties σ = 0.2, εr = 52 entirely
fills the gap between the antenna apertures and the plastic
container. The 16 horn-like waveguide antennas have an aper-
ture size of 1.5 × 3.5 cm2, and are loaded by ceramic with
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approximate fixed properties σ = 0.01, εr = 45. The cross
section of the entire system is shown in Fig. 1(c).
The goal is to estimate accurately the change in the prop-

erties of the embedded cylindrical object. To this end, the
object is replaced by another object with different properties
as d = 20, σ = 1.5, εr = 47 shown in Fig. 6(a). The
objects are replaced by hand to consider the effect of imper-
fect positioning when estimating the properties of the new
object.

Taking Fig. 1(c) as the initial setup, the scattered fields
at the beginning of the optimization process are apparently
zero. The final estimated object by Q-GSOM contributes
in scattering the electric fields (dB) as shown in Fig. 6(b)
when antenna number 1 is in transmit mode. This antenna
is chosen generically as the estimated object repeats similar
scattering behavior with respect to all the other antennas
in transmit mode. The contours of the scattered fields in
Fig. 6(c) show how all the other antennas sense the estimated
object when antenna number 1 is in transmit mode. As the
object is highly conductive, the resistive loss generated by
the estimated object across the domain is considerably high
in Fig. 6(d) when antenna number 1 is in transmit mode. The
final estimated.

The space of parameters are chosen relatively large with
respect to initial value i.e. 0 < d < 50 and 1 <

εr , ε
′′
r < 71. To provide consistency in the variation ranges

of Fig. 6(e), ε′′r = σ/ωε0 represents σ . The computational
time taken to estimate the properties of the new object across
the cross-section in Fig. 1(c) is 4.68 minutes with reasonable
estimation accuracywith respect to the other prominent meth-
ods i.e., PSO and GA in Table 2. Per the Rastrigin benchmark
test, negligibly better estimationsmight be achievable by PSO
at the expense of multiple runs. Regarding the positioning
errors, unavoidable noise in S, and slight nonlinear scattering
effects that does not exactly hold the calibration relation
E⃗sct = α⃗S [32], longer iterations are needed by Q-GSOM to
stabilize the variations of the objective function and parame-
ters. Error plots in Fig. 6(f) depict the similarity of PSO and
Q-GSOM in accuracy, while Q-GSOM is 18% faster.

Before concluding the discussions, we recall that the
benchmark assessment was performed against GA and PSO,
because these methods are well-established and widely used.
Nonetheless, there are plenty of other gradient-free methods
in electromagnetics possessing their own features when com-
pared to GA and PSO. Some of the examples include other
swarm intelligence methods discussed in [33], or different
optimization approaches in neural network [34] and machine
learning [17].

TABLE 2. Convergence speed in electromagnetic problems.

In addition, it is worth noticing that the applications dis-
cussed in this article aremerely some representative examples
of electromagnetic optimization problems with a few number
of optimization parameters. The proposed method can be
applied to many relevant problems like semiconductor device
optimization [35], phased-array 5G mm-wave smartphone
optimization [36], MIMO antenna optimization [37], and
full-duplex antenna inter-port optimization [38].

C. COMPARISON WITH OTHER SOM-BASED METHODS
Finally, there are other prominent works on SOM that
improved the accuracy of the original version of SOM.
In addition to [1] that was tailored for electromagnetic prob-
lems in this paper, an interesting weighting method has been
proposed in [39] to reposition the average point Xa to the
center of the simplex side formed by X,Xb,Xsw in Fig. 2.
There are, however, two fundamental differences between
Q-GSOMand the weightingmethod in [39]. First, themethod
in [39] totally replaces the average point Xa by the weighted
point, and takes the reflection step as,

Xr =
1

|[a0, a1, . . . , aN ]|
[a0, a1, . . . , aN ] (16)

This type of reflection becomes extremely biased to one or
some of the vertices with large values. Though the chance
of approaching the global minimum increases, the chance of
being trapped by local minima increases at the same time,
if the biasing vertices lead the search direction towards the
local minima. Including the average point during reflection
operation will include the effect of all the vertices and reduces
the chance of being trapped by local minima. In other words,
vertices with extreme values are moderated during the search
steps.

The second difference between the method presented in
this paper and the method in [39] is the way that the weight-
ing (coefficient) matrix is calculated. In [39], the weighting
matrix is calculated for each vertex with respect to Xw as,
(17) shown at the bottom of the page.

As such, no hyperplane is formed on all the vertices to
evaluate the approximate direction of gradient. The gradients
in [39] are isolated from each other, evaluated individually

[a0, a1, . . . , aN−1] =


|F(X0)− F(Xw)|
|F(X1)− F(Xw)|

...

|F(XN−1)− F(Xw)|


T 


1 |x10 − x1w| · · · |xN0 − xNw|
1 |x11 − x1w| · · · |xN1 − xNw|
...

...
. . .

...

1
∣∣x1(N−1) − x1w∣∣ · · ·

∣∣x(N−1)(N−1) − x(N−1)w∣∣


T
−1

(17)
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versus Xw. As such, if one vertex shows significant gradient,
the algorithm will move into the direction of the gradient of
that vertex, regardless of ensuring if that direction leads to the
global minimum or not.

VI. CONCLUSION
The added quasi-gradient feature to SOM can assist the
algorithm to more effectively search for the global min-
imum in an electromagnetic optimization problem. The
quasi-gradient feature provides wider search directions for
the algorithm when finding the global minimum. The extra
decision-making step on choosing the search direction in each
iteration levels up the algorithm to compete with some of
the prominent gradient-free optimization methods like PSO
andGA during standard benchmark tests.When implemented
in electromagnetics, the proposed method named Q-GSOM
demonstrates reliable performance in both parameter opti-
mization and parameter estimation, as long as the number
of optimization parameters is relatively low. Representative
examples included an anechoic chamber optimization and a
microwave monitoring measurement.
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