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ABSTRACT The objective of reducing the size and cost of the grid-connected photovoltaic system has
led to advancements in the field of transformerless grid-connected inverters and gained high popularity in
recent years. However, in such systems, the major limitation lies in realizing maximum power from indi-
vidual modules. In this regard, this paper proposes a modular transformerless grid-connected photovoltaic
multilevel inverter that realizes the individual maximum power point (MPP) of each module under different
operating scenarios. The presented configuration is simple and modular, providing flexibility to increase
the number of inputs with less component count. A single-phase synchronous reference frame PI (SRF-PI)
controller has been designed and realized for the proposed system. The systematic procedure for designing
the controller has been detailed. The converter and controller allow the system to realize individual MPP
of the modules and simultaneously achieve the load demand maintaining the desired grid voltage. This
has been verified under different operating scenarios in the MATLAB/Simulink environment. The same
has been validated on a 300W laboratory prototype under source and load intermittencies. The proposed
configuration has been compared with the similar works reported in the literature and it has been observed
that it employs only 18 components. Also, the efficiency of the converter has been observed in the range
of 89-95%. Further, the common-mode voltage and the leakage current have been measured to verify their
suitability for grid-connected systems as per German VDE 0126-1-1 standards.

INDEX TERMS MPP, transformerless inverter, multilevel inverter, photovoltaic.

I. INTRODUCTION classical topological structure relates to a single-phase cen-

The grid-connected solar photovoltaic (PV) systems through-
out the globe tremendously support the generation system to
meet the energy demand [1], [2]. In most developing coun-
tries, rooftop/ residential single-phase photovoltaic systems
connected to the grid are gaining high popularity [3], [4], [5].
Different power converters have been gaining importance for
integrating rooftop/residential systems into the grid [6]. The
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tralized transformerless inverter with a string of PV modules
connected to the centralized inverter without a transformer.
Two-stage conversion topologies with the initial DC/DC
conversion followed by DC/AC conversion have been pro-
posed in the literature with the transformerless operation.
For instance, the inverting stage may comprise buck-type as
H-5, HERIC, H6, or buck-boost type [7]. The H6 topolo-
gies and their modified works have also been reported in
[6]. Due to higher efficiency and low cost, the family of
string inverters has been commercialized on a larger scale.
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However, these topologies do not possess maximum power
point tracking (MPPT) of individual modules resulting in
a substantial power loss during partial shading conditions
[1]. Due to higher efficiency and low cost, the family of
string inverters has been commercialized on a larger scale.
However, these topologies do not possess maximum power
point tracking (MPPT) of individual modules resulting in a
substantial power loss during partial shading conditions.
Numerous module-based topologies with individual MPPT
capability have been proposed for PV application [8] with
series and parallel structures as illustrated in Fig.1. For
instance, structures proposed in [9], [10], and [11] eliminate
the DC/DC conversion stage and all the DC/AC converters in
the string are connected in series. The series connections have
been effective in achieving the individual MPPT, however,
possess the high voltage DC arc fault [12], [13].

To avoid this, parallel structures have been proposed. Despite
the series and parallel operation of converter structures,
a topology having an isolated DC/AC inverter connected to
the module is proposed in [14] and [15] which is termed
as microinverter. Besides the mentioned structures, inter-
leaved structures have also proved to be efficient for har-
vesting maximum power from individual modules [14] but
possess increased size and coSt. The transformerless inverter
topologies have been reported in [16] and [17]. However,
they demand high filter requirements to meet the grid
requirements.
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FIGURE 1. Classical Single phase transformerless PV inverters (a) single
stage (b) two-stage (c) series connected two stages (d) series connected
single stage (e) parallel-connected two stages (f) parallel-connected
single stage.

Recent times have witnessed improvement in the transformer-
less multilevel inverter (MLI) topologies in which cascaded
H-bridge (CHB) MLIs have been widely established. A CHB
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with two modules, each achieving MPPT has been proposed
in [9], [10], and [11] with limitations on a maximum number
of modules which limits the flexibility for residential applica-
tions. To overcome this, a structure with improved flexibility
has been proposed using quasi Z-source configuration and
connecting it in CHB [18], [19]. However, the additional
diodes and the inductors result in decreased efficiency.

The state of art discussed several single-stage and two-stage
inverter configurations. The single-stage transformerless
MLI structures possess’ a low component count and simple
structure, however, employ a complex control circuitry for
MPPT tracking and voltage regulation. On the other hand,
most of the two-stage transformerless MLI structures proved
to realize individual MPPT effectively.

A module-based single-phase transformerless MLI for
low/medium power PV systems is presented in this paper. The
major key features of the converter include:

o The modular structure provides flexibility to increase the

number of modules connected

o Less component count

o The controller achieves the dual objective of MPP and

grid voltage regulation

o safe limits of leakage currents as per German VDE

0126-1-1 standard

The remaining paper is organized as follows. Section II
briefs the system configuration followed by the control strat-
egy in Section III. The systematic design of the controller is
discussed in Section IV followed by the simulation results
and their discussion in Section V. The experimental results
are discussed in Section VI. The qualitative and quantitative
comparison of the proposed converter has been discussed in
Section VII and finally, Section VIII concludes the paper.

Il. SYSTEM CONFIGURATION

The proposed system for the realization of individual MPPT
with the controller is depicted in Fig.2. Each module is
connected to a switch in series for the MPPT of each PV
module and a diode, which bypasses the module when not
in operation. The conventional boost converter connected to
this enhances the voltage level. The arrangement is further
connected to a T-type MLI for five-level voltage generation
and then connected to the grid through the filter. It is a
well-known fact that MLIs reduce the harmonics and thus
the size and cost of the filter. The complete system for bet-
ter understanding can be divided into three stages. In the
first stage, a couple of PV modules are connected in series
with self-commutated switches (Spy1 and Spy2) along with
a module bypass diode for each module (Dy,1 and Dpy).
The second stage is a conventional boost converter stage with
an energy buffer consisting of the filter inductor Ly, self-
commutated switch Sy, with its anti-parallel diode, a clamp-
ing diode D, and filter capacitance Cy.. The output stage is
the multilevel inverter with the self-commutated switches 77,
T, T3, T4, and Ts. The output stage is interfaced to load
through a low-pass LC filter represented by Ly and Cy. The
detailed operation of the first and second stages combinedly
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FIGURE 2. Schematic of the proposed configuration with control structure.

is reported in [20]. The third stage is initially proposed in [21]
and is well established. The design parameters of the system
are listed in Table 1. The sources can be operated either
simultaneously or individually. The simultaneous operation
results in a series of connections of the modules that make
them operate at a common MPP. To avoid such scenarios,
a time multiplexing switching scheme has been implemented.
The inductor Lg., switch S;. and diode Dg- form the con-
ventional boost converter for voltage step-up. The DC/AC
conversion using T-type MLI, as mentioned reduces the filter
requirements to minimize the switching stress thus enhancing
the reliability of the converter. The level-shifted pulse width
modulation (LS-PWM) is employed for inherent capacitor
voltage balancing.

IIl. CONTROL STRATEGY

The control technique of the presented system is categorized
as MPPT control and Inverter Control. The MPPT control
aims in realizing the MPPT of individual modules and the
inverter control aims at grid voltage regulation.

A. MPPT CONTROL
To operate each module at individual MPP during partial
shading and further to avoid the series operation of the PV
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modules, the structure is operated with the time multiplex-
ing switching scheme. Owing to the advantages like simple,
easier implementation with less computational effort, the
classical perturb and observe (P&O) method is employed for
MPPT operation [22].

B. INVERTER CONTROL

A pre-defined voltage is desired on the AC side for effective
load operations. Numerous inverter control techniques have
been discussed in the state of the art for load voltage regu-
lation. Few of them relate to dead beat control [23], virtual
impedance-based method [24], and single order decoupled
method [25] which have gained high popularity due to their
better dynamic performance. In addition, they also give a
faster response and can prevent overshoot and ringing if
properly designed. However, these are highly sensitive, &
complex and moreover do not give zero steady-state error.
Synchronous reference frame (SRF) controller exhibits zero
steady-state error while achieving improved dynamic perfor-
mance [26], [27].

The SRF-based PI controller is well established in three-
phase systems; however, very limited literature is available
for the application of the SRF-PI method for single-phase
systems. Owing to the advantage of zero steady-state error,
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an attempt has been made to use this method for the proposed
grid-connected T-type inverter voltage control. A PLL is
employed and regulated for grid frequency control.

C. GENERATION OF ORTHOGONAL PHASE

In three-phase systems, three signals are available for
conversion into d-q coordinates using Park’s transformation.
However, an orthogonal phase is necessary for single-phase
systems to provide the d-q frame. Several methods like pro-
viding a delay to the original signal [28], differentiating the
original signal [29], Hilbert transform [30], and Kalman filter
method [31] have been proposed for orthogonal signal gener-
ation. For easier implementation, a delay to the original signal
is implemented and validated for the proposed converter con-
trol. Thus, the original signal along with generated orthogonal
signal is used for conversion from o8 frame to dq frame.

D. CONTROL STRUCTURE

The implemented control structure for the regulation of out-
put voltage is depicted in Fig.2. The scheme consists of
an SRFPI-based controller for instantaneous output voltage
regulation. For damping and improved transient response,
an inner current control loop is provided. In addition to the
two loops, a voltage feed-forward path provides the robust-
ness of the system against the possible parameter variation.
Implementing an inner current loop includes sensing inductor
current which can enable the inverter over current protection.

IV. CONTROLLER DESIGN

Initializing with the orthogonal signal generation, the details
of the controller design are followed below:

Step 1: An orthogonal signal (Vg) is generated from the
available voltage signal (Vo).

Vo = V, sin wt (D
Vg = V, sin (wt — 90) 2)

Step 2: The synchronous reference frame («8) is converted to
a stationary reference frame (dq) using Park’s transformation.
The SRF possesses the ability to eliminate the steady-state
error by shifting fundamental frequency information back
to DC and using a conventional DC regulator such as PI
controller. The Park’s transformation into a single phase is

given by
Va| | coswt sin wt Va 3)
Vg | | —sinwr  coswr || Vg

Step 3: The controller design for the «-frame is discussed and
the same is applied to the controller design in the B-frame.
The open loop transfer function of the inner loop is given by

1
Ly K;
Gi(s) = iy (Kp1+T) )

L
i
Ky L
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The transfer function magnitude at the gain cross-over
frequency is

Gi(jw)l =1 ©)
'/
L K;
| Kt + =2 =1 ©6)
s+ - § '
4 S=JwBWI

where wpwo is the inner loop bandwidth, generally chosen to
be one-tenth of the switching frequency (fs) and is given by

1
wWBWO = T * 2 fsrad/ sec. @)

On substituting the converter parameters in (6), an optimiza-
tion problem is formulated for which the objective function
is given as

min(f; (Kp1, Ki1)) = Kp1 + (3.18 x 107HK;; —3.92 (8)

The widely used evolutionary optimization technique, genetic
algorithm (GA) is implemented to minimize f1. The solution
obtained [Kj1, Kj1] post-convergence of GA is utilized as
current controller parameters.

Step 4: The higher bandwidth setting of the inner loop pro-
vides a faster response for possible current variations and
allows considering the transfer function of the complete inner
loop as unity while designing the outer voltage loop param-
eters. On the same lines as described in step 3, the transfer
function is attained from (9) and the objective function is
formulated as (10).

=1 ©)

s=jwpwo

K
Koot 55

1
Cs
where wpwo is the bandwidth of the outer voltage loop and is

far less than wpwy, generally wpwo is less than one-third of
WBWI.

min(f(Ky2, Kin)) = Ko + (2.5 x 107K — 0.8(10)
(10)

Step 5: The quantities in the dq-frame are converted to

off-frame as
Vo | | coswt —sinwt Vi (an
Vg | | sinwt  coswt Vy

The control output as a reference wave is fed along with the

carrier waves to generate switching pulses for the T-type MLI
using the LS-PWM switching method.

V. SIMULATION RESULTS

The efficacy of the proposed system and the controller are
validated in MATLAB/ Simulink environment under different
conditions. In this section, two major conditions, intermit-
tency each on source and load have been considered. The
parameters of the 150 W photovoltaic module at standard
test conditions (STC) are listed in Table 1 and the design
parameters are listed in Table 2.
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TABLE 1. Parameters of the 150W module at STC.

Parameter Value Parameter Value
Voc 425V Vmpp 345V
Isc 54A Impp 35A

TABLE 2. Design parameters.

Parameter Value Parameter Value
Ldc 2.5mH Lf 1 mH
Cl 660 uF Cf 1200 pF
C2 660 uF fs 10 kHz

Case I: Intermittency on the source end

Among the numerous possible ways to create intermittency
on the source end, imposing partial shading conditions by dis-
similar irradiances on the modules has been chosen. To com-
ply with the real-time data, the irradiance at Raipur City of
India has been considered. To begin with, both modules were
imposed an irradiance level of 821 W/m?2. In this condition,
the modules were observed to extract a maximum of 120 W
each as depicted in Fig.3, which is approximately the MPP,
calculated for the respective irradiance level. To impose par-
tial shading conditions, a 25% variation in irradiance level
(621 W/m?) on module 1 has been considered. As observed
from Fig.3, module 1 extracts 88 W, which is the approximate
respective MPP for the irradiance level. On the other hand,
module 2 continues to operate near its MPP (118 W). This
verifies that the individual module of the proposed config-
uration effectively realizes its respective MPP under partial
shading. The output of the multilevel inverter and grid voltage
is depicted in Fig.4. As observed, the output voltage and the
grid voltage remain the same both before and after the partial
shading condition. This is due to the controller action which
regulates the load voltage during the intermittency on the
source end. This validates the effectiveness of the designed
controller for the proposed configuration.

Case 2: Intermittency on the load end

The intermittency on the load end has been considered
for validating the efficacy of the controller under dynamic
loading conditions. A load of 8O0W is perturbed on the exist-
ing 200W load at 0.6s and 0.8s respectively. The voltage
and current for dynamic loading are depicted in Fig.5. The
increase in load demand increases the current while main-
taining a regulated five-level output voltage as depicted in
Fig.5(a). During this condition, the controller regulates the
load voltage to the reference voltage as illustrated in Fig.5(b).
The current fed to the grid is shown in Fig.5(c). This validates
the effectiveness of the implemented controller in voltage
regulation for intermittencies on the load end.
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The leakage current is one of the major issues in
grid-connected transformerless inverters. As per German
standard VDE 0126-1-1, the leakage current in the inverter
should have a magnitude less than 300mA. In this regard,
the currents from each PV module to the ground are mea-
sured. The measured leakage current and the common mode
voltage are depicted in Fig.6 and Fig.7 respectively. It can be
observed that the leakage current is far less than the limits thus
reflecting the proposed topology satisfies the requirements
for grid integration in terms of leakage current. The voltage
and current stress of the MLI are depicted in Fig. 8. The
control signal from the controller is depicted in Fig. 9.
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FIGURE 3. Voltage, current and power of (a) module 1 (b) module 2.

VI. EXPERIMENTAL RESULTS

A 300 W laboratory prototype has been developed for exper-
imental validation of the proposed system under source and
load intermittencies. The characteristics of the PV modules
are replicated by the eco-sense make 1.6kW PV emulator.
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FIGURE 4. (a) Output voltage of the multilevel inverter (b) Grid voltage.

The emulator consists of four independent 400W channels.
The emulator provides flexibility for each channel to operate
under different irradiances and different locations as well.
In this study, Raipur city in India with 21.5140N latitude
and 81.62960E longitude has been considered. The irradiance
and temperature of two different periods are fed to a pair of
channels in the emulator. The Hall Effect-based LEM LV 25P
and LA 55P voltage and current sensors have been used for
sensing the voltage and current respectively for MPPT and
implementation of the SRF-PI controller. The experimental
setup is shown in Fig. 10. The controller is implemented in
dSPACE 1103 digital controller. Similar cases as that in the
simulation are considered. For source intermittency, a partial
shading condition has been imposed on module 1 with a drop
inirradiance by 25% i.e., from 821 W/m2 to 611 W/m2. It was
observed that the modules operate near the respective MPP
as depicted in Fig.11 (a) and (b). The corresponding MLI
output voltage, grid voltage, and grid current are depicted
in Fig.11 (c).
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FIGURE 5. (a) T-type inverter output voltage (b) Grid voltage (c) Current
fed to the grid.

Further, the performance of the designed controller has been
validated with load intermittency. The controller design was
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FIGURE 7. (a) VAN (b) VBN (c) Common mode voltage.

robust enough to regulate the inverter voltage and grid voltage
at the desired value as depicted in Fig.11.

In addition, to load intermittency, the effectiveness of the con-
troller was also tested for change in reference voltage (grid
voltage). With the increase in the grid voltage, the controller
regulated the load voltage to near the grid voltage within a
very short time as illustrated in Fig.12. With the increase in
the reference voltage it is obvious that the grid current also
increases as observed from the Fig. 12.

The proposed approach has been validated and proved to
be effective in meeting the twin objectives of individual
MPP realization and load voltage regulation for source and
load intermittencies. However, to verify its viability as a
transformerless grid-tied inverter, the leakage current has
been measured and observed to be 100mA as depicted in
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FIGURE 9. Internal Control Signal from the controller.

FIGURE 10. Experimental setup 1. PV Emulator 2. Scope corder 3. IGBT
module 4. dSPACE 1103 5. Host PC 6. Proposed topology 7. Load 8.Voltage
and Current Sensors.

Fig.13 which is less than the 300mA as per the standards.
Also, the common voltage has been measured and depicted
in Fig.13. Further, as discussed the capacitor has inherent
balancing capability under all operating scenarios. The other
major issue in multilevel inverters is capacitor balancing.
To balance the state of the capacitor voltages, the capacitor
voltages at the input of each sub-module of the inverter
are measured and depicted in Fig.14. It can be observed
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FIGURE 11. Experimental results under partial shading condition
(a) Module 1 (b) module 2 (c) output parameters.

that the topology possesses inherent capacitor voltage bal-
ancing. The capacitor voltages have measured equal values
before and after the irradiance change verifying the inher-
ent balancing property as depicted in Fig.14. The simula-
tion and experimental validation verify that the proposed
approach of MIC-based transformerless grid-connected MLI.
The MPPT for irradiance has been calculated and validated
experimentally. The MPPT tracking efficiency is depicted
in Fig. 15.
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Vil. COMPARATIVE ANALYSIS

The proposed converter structure has been qualitatively and
quantitatively compared with the recent structures reported
in the literature. The qualitative comparison reveals the
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superiority in simplicity and operating modes. The qualitative
comparison is illustrated in Table 3. Results from two recently
reported papers have also been included for comparisons

[32], [33].

TABLE 3. Qualitative comparison of the proposed topology.

A B C D E
[14] 1 Yes High -
[18] 2 Yes High Buck and Boost
[19] 2 Yes Low Buck and Boost
[32] 1 2 Yes Medium Boost
[32] 2 2 Yes Medium Boost
[33] 2 Yes Medium Boost
Buck, Boost, and
Proposed 2 Yes Low
Buck-Boost
A- Topology, B- Number of stages involved, C- Realization of
Individual MPPT, D- Computational Efforts involved in Controller
Design, E- Operating Modes

Further, the quantitative comparison of the proposed topology
with the above topologies for two inputs has been illus-
trated in Table 4. The topology discussed in [33] employs
less number of diodes and capacitors compared to the pro-
posed topology, however, uses more switches comparatively.
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TABLE 4. Quantitative comparison of the proposed topology.

Reported

Parameter / No. of No. of No. of No. of No. of range of

Topology |Transformers| Diodes | Capacitors [Inductors| Switches | efficiency
(in %)
[14] 4 4 6 8 8 88-96
[18] 0 2 4 9 9 95-98
[19] 0 2 4 5 8 80-90
[32] 1 0 0 1 2 12 94-98
[32] 2 0 0 1 3 16 94-98
[33] 2 8 8 6 20 95-99
Proposed 0 3 4 2 9 89-95

The topology in [14] has the advantages of single-stage con-
version and low switch count when compared to the pro-
posed topology, however, employs more capacitors, diodes,
and inductors. The topology in [19] has the advantage of
less number of switches and diodes at the cost of inductors
resulting in increased size and weight of the system. The
total number of components of the proposed topology is far
less than that of other topologies discussed. Few topologies
use transformers while few others including the proposed
do not use the transformer. It can be observed from Table 3
that the control strategy for the proposed topology does not
involve more complex computational efforts due to its simple
structural design. Also, out of all the discussed topologies,
only the proposed converter can be operation modes (buck,
boost, and buck-boost).

VIil. CONCLUSION

A transformerless grid-connected photovoltaic multilevel
inverter has been proposed in this paper. The proposed sys-
tem configuration along with the step-by-step design of the
control scheme has been discussed. The effectiveness of the
controller has been verified under both load and source inter-
mittencies. It was observed that the proposed system achieved
the twin objectives of individual MPP realization and voltage
regulation for load and source intermittencies. The measured
leakage current is only 1mA which is far less than the limit
of the German VDE 0126-1-1 standards. Also, the common
mode voltage has been validated the proposed converter for
its application to the grid-connected systems. Further, the
PWM technique and the controller architecture employed
inherently balances the capacitor voltages. The method has
been validated on the laboratory prototype developed. The
overall component count is 18 which is observed to be far
less than similar configurations reported in the literature.
Also, the converter has proven to have efficiency in the range
of 89-95%.
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