
Received 4 June 2023, accepted 9 June 2023, date of publication 13 June 2023, date of current version 20 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3285537

Real-Time Oil Palm Fruit Grading System Using
Smartphone and Modified YOLOv4
SUHARJITO 1, (Member, IEEE), MUHAMMAD ASROL 1, DITDIT NUGERAHA UTAMA2,
FRANZ ADETA JUNIOR3, AND MARIMIN4, (Member, IEEE)
1Industrial Engineering Department, BINUS Graduate Program-Master of Industrial Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
2Computer Science Department, BINUS Graduate Program-Master of Computer Science, Bina Nusantara University, Jakarta 10480, Indonesia
3Cyber Security Program, School of Computer Science, Bina Nusantara University, Jakarta 11480, Indonesia
4Agro-Industrial Technology Department, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor, West Java 16680, Indonesia

Corresponding author: Suharjito (suharjito@binus.edu)

This work was supported in part by the Ministry of Education, Culture, Research, and Technology in Indonesia; and in part by the
Directorate General of Higher Education under Contract 155/E5/PG.02.00.PT/2022.

ABSTRACT The classification of the ripeness degree of oil palm fruit has attracted the attention of numerous
researchers. However, there are still many challenges due to constraints in the dataset, methodologies used,
and variations in the use of data categories. Detecting oil palm fruit bunches accurately is crucial, given their
complex shape and characteristics, particularly when different ripeness categories are present in a pile of
oil palm. Most studies utilize oil palm images or the color spectrum of oil palm fruit to classify the level of
ripeness. However, thesemethods are not real-time and lack efficiency. This study proposes a real-timemodel
for determining the ripeness degree of oil palm using a smartphone and video data as input, incorporating
modifications to the object detection approach. The research process involves collecting videos of palm oil
piles using smartphones in the grading area of the palm oil industry. The videos are then pre-processed
and labelled for the object detection and classification process. A detection and classification model is
developed using the YOLOv4 approach with several performance improvements, enabling implementation
on smartphones. The best-performing model is tested for detecting and classifying the ripeness of fresh fruit
bunches using an android-based smartphone. The testing results, based on the mAP value, demonstrate that
the YOLOv4 model with 16 quantization performs 12% better than YOLOv4 Tiny. Based on the test results
at the grading location, this model can efficiently detect fruit bunches that do not meet the quality standards.

INDEX TERMS Hyperparameter tunning, oil palm ripeness, real-time detection, modified YOLOv4.

I. INTRODUCTION
The demand for palm oil continues to increase due to its usage
in various oleochemical industries and its cost-effectiveness
compared to other vegetable oils [1]. In Indonesia, oil palm
is extensively cultivated as one of the major vegetable oil-
producing plants. This plant thrives in the country’s natural
environment and has significant potential to enhance social
welfare and economic development. Consequently, oil palm
plantations in Indonesia have been rapidly expanding, mak-
ing the country the world’s leading palm oil producer, with
an annual production of 45.6 million tons [2]. However, with
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this increased production, it becomes imperative to focus on
improving quality to generate higher added value.

The quality of crude palm oil is greatly influenced by
the content of free fatty acids (FFA) present in oil palm.
Achieving the appropriate level of ripeness during the har-
vesting process plays a crucial role in determining the FFA
content [3]. Therefore, it is essential to classify the ripeness
level during harvest and evaluate the degree of ripeness in
oil palm fresh fruit bunches (FFB) at the palm oil mill to
maintain oil quality. However, the current practice of manual
grading by human graders has yielded inconsistent results.
To address this issue, this study proposes an automation
process using a smartphone approach and object detection
method.
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Differences in perception often occur in classification,
especially in fruit and plant ripeness classifications. There-
fore, there is significant research focusing on the develop-
ment of the Deep Learning approach using the Convolutional
Neural Network (CNN) method. CNN is an artificial neural
network model that can learn and be trained iteratively to
achieve a high level of accuracy in detection and classifi-
cation [4]. Currently, research utilizing CNN benefits from
easy access to large datasets, enabling the achievement of
exceptional accuracy and reliable classification outcomes.
CNN has been widely employed to detect various fruit and
plant ripeness levels [5], identify species [6], and classify fruit
types [7]. However, most of these studies have primarily used
images rather than video data, relying on object detection for
real-time classification and detection.

A study on the ripeness classification of oil palm fruit
using a computer vision approach has been conducted. For
example, [8] captured images of fresh oil palm fruit bunches
and extracted color information to compare with machine
vision results. Another approach utilized an Artificial Neural
Network by [9], where two types of models were employed:
one using all the features and the other using selected features
obtained through Principal Component Analysis. In addi-
tion, [10] employed image histogram processing to convert
RGB (Red, Green, Blue) colors in an image into a single gray
element, and compared it to a database using mean, skew-
ness, kurtosis, and entropy approaches for feature extraction.
Although these studies were able to predict the ripeness level
of oil palm, real-time sorting based on ripeness levels is not
feasible as the models can only recognize still images as
input.

In addition, a study conducted by [11] successfully
employed various methods to classify the ripeness of oil palm
fresh fruit bunches (FFB) using deep learning approaches.
The study demonstrated that transfer learning from a
pre-trained model (AlexNet) yielded better results compared
to other classification methods. Another study [12] utilized
deep learning and visual attention techniques for oil palm
fruit ripeness classification. The research focused on develop-
ing models with pre-trained CNN architectures, specifically
AlexNet, Squeeze and Excitation-Densely Connected Con-
volutional Network (SE-DenseNet), RestAtt DenseNet, and
Sigmoid DenseNet, to categorize the degree of ripeness in oil
palm fresh fruit bunches. Similarly, a study by [13] proposed a
model for identifying the ripeness of oil palm fruit using the
Convolutional Neural Network (CNN) method, specifically
AlexNet. This research aimed to implement a system using
a Low-Cost Processor by developing software in Mathlab,
which would later be converted into Python Programming
compatible with the Tinker Board.

With the recent advancements in deep learning technol-
ogy, several lightweight deep learning models have been
developed that do not require high computational resources
but still provide accurate object classification. Examples of
such models include MobileNet [14], MobileNetV2 [15],

EfficientNet [16], and MNasNet [17], which are designed
for resource-efficient mobile devices using automated neu-
ral architecture search. In the context of classifying the
ripeness level of oil palm FFB, research has been pro-
posed to utilize mobile devices and lightweight deep-learning
models [18]. By quantifying the classification model and
deploying it to a mobile device, this research successfully
applied ripeness-level classification using low-cost comput-
ing resources. However, the focus of the research is mainly
on augmentation techniques rather than the model’s real-
world applicability. The data used in the research consists of
still images, which are suitable for classification purposes.
Since the research does not employ object detection methods,
the model is unable to detect the ripeness level of multiple
objects in each video frame or perform real-time analysis.
This limits the efficiency in determining the ripeness of oil
palm. In contrast, our research aims to develop a method
for detecting and classifying the ripeness of oil palm using
a smartphone and an object detection approach, providing
reliable speed, high accuracy, and low costs for users in the
palm oil industry.

To enable quick and real-time object detection, video cam-
eras are commonly used as input devices. Deep learning tech-
niques, such as the faster R-CNN (Region-based Convolu-
tional Neural Network)method [19] and the SSD (Single Shot
Detector) method [20] have been applied to real-time detec-
tion of protective helmet usage in surveillance cameras using
video input. Object detectionmethods in the field of computer
vision can generally be categorized into one-stage and two-
stage methods. One-stage methods include YOLO (You Only
Look Once) [21] and SSD [22], while two-stage methods
include Fast/Faster R-CNN [23] and R-FCN (Region-based
Fully Convolutional Network) [24]. Single-stage methods
are known for their processing speed and accuracy, making
them suitable for applications requiring fast and lightweight
computation. The SSD-Mobilenet-v1 [25], a single-stage
object detector, performswell in object detection tasks. Based
on this, our research aims to develop a model for object
detection of oil palm FFB and subsequently classify their
ripeness in a fast and real-time manner using a one-stage
detection approach and deep learning techniques. This model
can be implemented in mobile applications for practical
use.

Previous research has explored the detection of tomato
ripeness using YOLOv4 [26] with the DarkNet53 backbone.
This approach proved to be effective in detecting ripeness
based on color changes in the fruit skin, outperforming
YOLOv3 and R-CNN. Other studies focused on automatic
calculations of pear ripeness using RGB data in mobile appli-
cations, utilizing various YOLOv4 [27] and YOLOv4-Tiny
[28] models. Additionally, the automatic detection of cherry
ripeness using circular bounding boxes was conducted using
various YOLOv3 and YOLOv4 models [29]. In the context
of apple ripeness detection implemented in a picking robot,
YOLOv4with different backbones was employed [30]. These
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studies demonstrate the successful use of YOLOv4 in fruit
ripeness detection.

Furthermore, research has proposed the use of YOLO for
detecting the ripeness of oil palm fruit. One study collected
fruit data through photographs captured by an unmanned
aerial vehicle (UAV) that fell from an oil palm tree [31].
Another study focused on smartphone-based plant pest detec-
tion using YOLO, comparing it with other deep learning
methods such as Faster R-CNNs and SSDs [32]. YOLOv4
demonstrated superior computational speed and compact
size, making it well-suited for real-time detection, albeit with
a slight decrease in accuracy. To address accuracy concerns,
high-quality datasets were used in these studies. However,
most of these studies employed single-object images for train-
ing and testing. In contrast, this study utilizes image data
with multiple objects obtained from videos recorded directly
at the palm oil mill’s grading section. Real-time detection
faces challenges posed by dynamic environmental factors
such as lighting, shadows, and obstructed objects, hence the
use of video data. Videos consist of connected image frames,
resembling real-time interactions. The video dataset of oil
palm FFB stacks from the grading area of a palm oil mill
served as the dataset for this study [33].

According to previous research, the focus on applying
real-time detection in a cost-effective and reliable manner has
been lacking in most studies on the detection and classifica-
tion of oil palm fruit ripeness. This study aims to address this
gap by leveraging mobile phones to enhance flexibility and
efficiency in ripeness detection. The technology developed in
this study can be utilized not only in palm oil mills but also in
oil palm fields at an affordable cost. The contributions of this
study are as follows: (1) Utilizing a complex dataset consist-
ing of videos capturing oil palm FFB piles in outdoor settings,
collected from smartphones. The dataset encompasses six
categories of oil palm fruit ripeness: empty bunches, unripe,
underripe, ripe, overripe, and abnormal. (2) Developing a
ripeness level detection application implemented on a smart-
phone, capable of classifying fresh palm fruit bunches into
six quality classes. (3) Employing the YOLOv4 approach
for ripeness level detection, incorporating various model
improvements such as data augmentation, hyperparameter
tuning, and model quantization. These enhancements enable
the model to be deployed on efficient smartphones. (4) Train-
ing the oil palm fruit ripeness detection model using a combi-
nation of various ripeness levels, ensuring its applicability in
real-world conditions during the FFB grading process prior
to entering the palm oil mill.

II. MATERIALS AND METHOD
A. DATASET
In this study, video data was collected using a smartphone
during the grading process at a palm oil mill in Central
Kalimantan Province, Indonesia [33]. The data collected is
in the form of videos measuring 1280 × 720 pixels in .mp4
format. The video of the piles of oil palm FFB is classified

into six categories of ripeness of oil palmFFB, namely unripe,
underripe, overripe, abnormal, and empty bunches. The oil
palm FFB ripeness category is also adjusted to the conditions
in the field and confirmation from practitioners and experts in
the palm oil mill grading section. The videos collected com-
prised 56 multi-category FFB videos and 45 single-category
FFB videos. Examples of collected data sets can be explained
in Figures 1 and Figure 2. It can be seen in Figure 1 that
each image has a single category of ripeness. This image
was generated from videos in a single category using frame
extraction. The duration of each video is 10–15 seconds.
Based on frame extraction, each video can generate 30 images
(Figure 1). On the other hand, Figure 2 shows that each image
has an FFB pile for more than one category. This dataset was
generated based on videos of multi-category oil palm FFB
with a duration of 10–15 seconds. Using frame extraction,
a dataset of image frames can be generated, as shown in
Figure 2.

B. RESEARCH STAGES
This research stage can be explained in Figure 3. The
research is divided into 6 stages: the data collection stage,
the pre-processing data stage, the ripeness detection stage,
the classification model development stage, the model con-
version stage to mobile applications, the application devel-
opment stage on smartphones, and the application evaluation
stage by users. In the early stages, a dataset was collected
using a smartphone for each stack of FFB by circling it
for 10–15 seconds to get images of each blunt FFB from
various angles. The video data that has been collected is
pre-processed. The pre-processing stage consists of image
framing, labeling, augmentation, and resolution resizing. The
dataset has been pre-processed and divided into three parts:
training data, validation data, and testing data, with a ratio
of 7:2:1. For the creation of deep learning models, this
data separation is required. In building the deep learning
model, hyperparameter tuning is carried out to get the best
model for detecting and classifying FFB piles. The deep
learning model for FFB ripeness grading was developed
through the YOLOv4 Family. In developing the model, sev-
eral aspects will be considered, including training models,
validating models, tuning models, and performance models.
The best-performing model is then implemented in a mobile
application. To be able to implement the best model, quantifi-
cation of themodel must first be carried out using TensorFlow
Lite. After the model can be implemented on a smartphone,
the last step is to test the model at the palm oil mill grading
location by the user to get the model performance according
to the conditions in the field.

C. DATA PRE-PROCESSING
At the pre-processing data stage, data in the form of video
is converted into image frames using VLC Player with a
recording ratio of 10. For videos with 30 frames per second
(fps), a recording ratio of 10 means that it will take pic-
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FIGURE 1. Dataset of the piles of oil palm FFB in single class category per image.

FIGURE 2. Dataset of multi categories per image of oil palm FFB piles.

FIGURE 3. The research stages diagram.

tures every 10/30 or 0.33 seconds. If the video duration is
15 seconds, approximately 45 images will be produced. The
images are then uploaded to supervise.ly to be annotated and
downloaded in image + txt file format. After that, the data in
the form of a file is then uploaded to the Roboflow application
to be used as a training dataset.

The data in the form of annotated image files are then
divided into training, testing, and validation datasets for
developing a grading model for the ripeness level of oil palm
FFB. Figure 4 shows an illustration of the processing of the
oil palm video dataset that will be used as the input model.
The process begins with preparing video data, extracting the
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FIGURE 4. The illustration of data video data pre-processing stages.

FIGURE 5. An Illustration of labelling process and object bounding box
using RoboFlow.

image frame to produce a sequential image. The next process
is to provide a bounding box to mark the boundaries of the
objects, namely oil palm FFB, and annotate them according
to their ripeness level class. After that, an annotation file is
obtained, which contains the coordinates of the FFB bound-
ing box and its ripeness level class. Each imagewill have a file
with the .txt extension to store the bounding box annotation
results and the oil palm ripeness level in the image.

The dataset is labeled by creating a bounding box for
each image of the pile of oil palm fruit bunches using the
RoboFlow application to conform to the annotation format
of the YOLO model. This labeling process is carried out by
making a bounding box for each image of oil palm bunches
and labeling it according to a predetermined level of ripeness
as shown in Figure 5. The bounding box used is in the form
of a square with 4 coordinate points and has an annotation
in the form of the class name of the FFB ripeness level
of each object contained in the bounding box. Images that
have been labeled and bound have an annotation containing a
class id and bounding box point coordinates. Then the data
augmentation process is done by adding variations to the
dataset. The types of augmentation used are photometric and

geometric. This type of data augmentation using photometric
and geometric transformations is a method commonly used in
the agricultural sector [34]. The geometric augmentation uses
a rotation of 45◦ and 90◦ and a translation with a ratio of 0.5.
Then, the photometric augmentation uses random brightness
with a range of −40% to 60% and Gaussian blur with a
variance value of 7% to 9%.

D. ARCHITECTURE OF THE PROPOSED MODEL
At the development stage, the detection and classification
model with YOLOv4 was carried out based on 2 differ-
ent architectures, namely YOLOv4-CSPDarknet53 [35] and
YOLOv4-Tiny [36], with some modifications in the hyper-
parameters used. As shown in Figure 6, there are 3 main
parts in the YOLOv4 model, namely the Backbone layer,
Neck layer, and Head layer. The Backbone layer between
the YOLOv4-CSPDarknet53 and YOLOv4-Tiny series can
be distinguished by the number of CSP blocks used [35].
YOLOv4-CSPDarknet53 has 5 CSP blocks, which can be
called CSPDarknet53, and in YOLOv4-Tiny series, there
are 3 CSP blocks, which can be referred to as CSPDarknet53-
Tiny. By concatenating input features from the base layer
with input features that have undergone convolutional pro-
cessing, the CSPNet architecture [36] and Darknet53 [37]
combined to create CSPDarknet53, which can solve the van-
ishing gradient problem. On the YOLO architecture (Head
layer), CBL is made up of Convolution-Batch Normalization-
LeakyReLu, which has the dual purposes of normalizing the
output and preventing the neuron’s output from turning 0 due
to dying ReLU, which would cause the neuron to cease learn-
ing. Convolutional-Batch Normalization-Max Pooling is the
block symbol for CBM. This block is responsible for captur-
ing global features in the input data. CSP allows the architec-
ture to get awider variety of features to improvemodel perfor-
mance. Moreover, unlike the YOLOv4-Tiny series does not
have an SPP layer, the YOLOv4-CSPDarknet features one
for pooling using spatial bins with three distinct dimensional
scales. SPP can shorten repeated convolution calculations and
increase the detector’s accuracy [38]. At the neck, all types
of architectures use PANet to perform feature aggregation.
PANet can capture different feature perspectives and can
perform aggregation from each level of the feature piece [39].
The head section uses YOLOv3 as a detector to detect images
from 3 different scales. YOLOv4-CSPDarknet53 uses a scale
of 52× 52× 3, 26× 26× 33, and 13× 13× 33. Meanwhile,
YOLOv4-Tiny uses a scale of 13 × 13 × 33 and 26 ×

26 × 33. Both YOLOv4-CSPDarknet53 and YOLOv4-Tiny
employ the same number of layers.

E. TRAINING MODEL
Themodel training process uses the framework fromDarkNet
and is carried out in the Google Colaboratory. Nvidia Tesla
P100 using 54.8 GB of RAM and CUDA 11.2 are the hard-
ware specifications utilized.
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FIGURE 6. The architecture of the proposed model.

TABLE 1. Hyperparameter tuning of YOLOv4 model.

The design employed has a maximum bath size of 12,000,
which was determined by using equation (1).

Max Batches = total class.2000 (1)

The learning rate scheduler is optimized using steps with a
scale of .1, which results in the original learning rate being
multiplied by 0.1 at the 9600th and 10800th stages. The
momentum used is 0.949 on YOLOv4-CSPDarknet53 and
YOLOv4 series. The decay used is 0.0005 on all architec-
tures. The batch size used is 64. The main distinction is
the value of the input resolution employed. A model with
the best detectability can be obtained by experimenting with
different resolutions. The used learning rate is 0.001. All
of the hyperparameters used are the result of optimization,
particularly in scenarios with varying input resolution values.
Because transfer learning has been proven to boost accuracy
in comparison to training without it [40], the model was
trained using this technique using an initial weight that had

been developed using a dataset from MS-COCO (Microsoft
Common Objects in Context).

F. OPTIMIZATION MODEL
In this study, YOLOv4 optimizes the model using the Bag of
Freebies (Bof) and the Bag of Specials techniques (BoS). BoS
is a method to considerably increase the accuracy of object
identification by just minimally raising the inference cost,
whereas BoF is a technique to alter the training strategy to
increase overall model performance without incurring addi-
tional costs [41]. In this work, BoF is employed in place of
the conventional bounding box regression as in Equations (2)
and (3).

Loss = 1 − IoU + R(B,Bgt ) (2)

IoU =
B ∩ Bgt

B ∪ Bgt
(3)
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where R(B, Bgt) represents the form of the penalty between
the predicted bounding box (B) and the actual bounding box
(Bgt). The Complete IoU (CIoU) bounding box regression
equation, which has superior aspect of consistency ratio [42]
and takes less iterations to achieve a convergent point, is the
bounding box regression equation employed in this study.
The following equation ensures that the utilized aspect ratio
is consistent.

RCIoU =
ρ2(B,Bgt)

C2 + αv (4)

v =
4
π2 (arctan

wgt

hgt
− arctan

w
h
)2 (5)

α =
v

(1 − IoU ) + v
(6)

The Euclidean distance from the bounding box is ρ, the
positive trade-off parameter is α, the diagonal length of the
two bounding boxes is C, and the consistency of the aspect
ratio is v. The loss equation from the bounding box can be
created using the equation, which is defined by equation (7).

LCIoU = 1 − IoU +
ρ2(B,Bgt )

C2 + αv (7)

To improve the accuracy of object detection, CIoU is used
across all YOLOv4 designs used in this study. Next, BoS
is applied to the neck and backbone of YOLOv4. The CSP
technique is applied to the backbone, and SPP and PANet are
applied to the neck. Mish and Leaky ReLu are the activation
functions used in the YOLOv4-CSPDarknet53 andYOLOv4-
Tiny series, respectively. The mish activation function is a
function that can address exploding and disappearing gradient
issues. Moreover, Mish can create models to improve accu-
racy and generalization [43]. By designating a negative value
as a very small number close to ‘‘0,’’ Leaky ReLu can prevent
malfunctions in neurons with a value of ‘‘0.’’ Leaky ReLu is
not as effective at dealing with exploding and disappearing
gradients as theMish activation function. TheMish activation
function equation is as follows:

f (x) = x.tanh(softplus(x)) (8)

Softplus(x) = log(1 + exp(x)) (9)

G. EVALUATION MODEL
Based on the training results and model validation, a model
evaluation is performed to determine the best model config-
uration. The mean average precision (mAP), F1-score, and
IoU were used for the evaluation. Since the F1-score can be
used to assess how well accuracy and recall are interacting
as a whole because it is a harmonic mixture of both metrics.
The ratio of correctly identified data to all previously gathered
positive data is a measure used to quantify precision. Every
positive prediction is compared to every positive result in the
data to determine recall. TP is a true positive, indicating that
the forecast was accurate. False positives (FPs) occur when
a prediction is made that does not match the actual situation,
while false negatives (FNs) occur when a value that ought

to be positive is revealed to be negative by the prediction
findings. For evaluation, the following formula is used:

mAP =
1

total class
6total class
i=1

TPi
TPi + FPi

(10)

F1 Score = 2 ·
precision · recall
precision+ recall

(11)

Precision =
TP

TP+ FP
(12)

Recall =
TP

TP+ FN
(13)

H. MOBILE APPLICATION DEVELOPMENT
Mobile application development is carried out using an
object-oriented approach and is carried out in the Java lan-
guage in Android Studio. As seen in Figure 7, the system
contains several main classes, namely: ModelChooseActivity
to select a model; DetectorActivity for handling connection
with models, performing model inference on camera input,
and implementing various tools from other packages. The
system also contains various help classes from imported
packages, such as YoloV4Classifier in tflite class, which is
an implementation of the TensorFlow Lite Object Detection
API in Java. AutoFitTextureView, OverlayView, Recogni-
tionScoreView, and ResultsView are all part of the custom
view. AutoFitTextureView’s purpose is to adjust the aspect
ratio of whatever device is being used. OverlayView renders
views on other classes in order to detect them. Recognition-
ScoreView is used to display existing detection results by
specifying a color and text size; MultiBoxTracker in track-
ing class is to handle the display of bounding boxes; The
env class contains BorderedText, which encapsulates code
that performs the rendering function of writing on a canvas
(especially in bounding boxes). ImagesUtils is used to convert
YUV420SP to ARGB8888 format. Logger is a function for
monitoring by adding a prefix. Size is useful as a measure of
the size of the camera object independently such as bitmap
size, rotation manipulation and so on. Meanwhile, utils is a
multi-purpose class such as mapping memory from the tflite
model into applications, transforming matrices for cropping
and rotation and for storing detection results.

The TensorFlow Lite Object Detection API is a tool com-
ponent of the TensorFlow Lite Support Library that provides
numerous functions like streamlining image pre-processing
and processing model output, making the interpreter simpler
to use. The API resides in the YoloV4 Classifier class, which
accepts various main parameters such as the model’s name,
input size, is Quantized, is Tiny, to handle the various types of
models implemented in the application. Pre-processing will
entail scaling the video frame that the camera captured to
match the input model’s dimensions. In addition, the out-
comes will be transformed into RGB format, which the inter-
preter will input to make inferences. When the interpreter is
loaded, the application will issue a list of six class confidence
scores, which indicate how likely it is that an image belongs
to a class. Six categories—empty, unripe, underripe, overripe,
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FIGURE 7. Class diagram design of mobile application.

and abnormal fruit bunches—will be used to classify the
ripeness of oil palm fruit.

The Camera Activity class is the Activity class inherited by
DetectorActivity, where the function of CameraActivity is to
manage camera usage, so prepare camera access permissions,
then camera layouts/views, then also the screenshot button.
There is a CameraConnectionFragment and a LegacyCam-
eraConnectionFragment in this activity; LegacyCameraCon-
nectionFragment is LegacyCode or old camera code that is
used as a fallback/backup if the CameraConnectionFragment
cannot be used for various reasons, as seen in the setFragment
function in CameraActivity.

I. FIELD TESTING AND EVALUATION OF MOBILE APPS
Evaluating images begins with selectively selecting input
images from the camera’s input stream for inference. Selec-
tion was made using the variable flag. The images that go
through the selection stage will be converted to RGB values.
After applying de-noising and resizing to match the inter-

preter’s input size, the image will be a byte buffer that can be
classified by the interpreter. The resulting image classifica-
tion will be shown to the user by displaying bounding boxes,
class name text, and the confidence value for each object
in the image. Mobile application testing and evaluation are
carried out directly at the palm oil mill in the grading section
to determine the performance of the model or application
prototype with video input using a smartphone. To evaluate
the application’s effectiveness in detecting and categorizing
the oil palm FFB’s state of ripeness, several piles of fruit
bunches were used. Data were collected 50 times for each
model tested, and the level of accuracy was then calculated.

The model’s ability to perform object detection will be
measured through the Intersection over Union (IoU) metric,
which quantifies the closeness between two types of bound-
ing boxes: truth boxes and prediction boxes. The truth box
is the location of the actual object box, while the prediction
box is the location of the box predicted by the model. IoU is
the ratio between the junction area and the union area for the
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TABLE 2. Characteristic of dataset.

two boxes [44]. The model’s ability to perform classification
will bemeasured through themeanAverage Precision (mAP),
F1-score, and confidence score metrics. In calculating these
metrics, we use several other metrics that are defined as
True positive (TP) means that the model predicts there is a
bounding box at a location, and that is true; False positive
(FP) means that the model predicts there is a bounding box
at a location, but it is wrong; False negative (FN) means that
the model does not predict that there is a bounding box at a
location, but actually there is; True negative (TN) means that
the model does not predict a bounding box at a location, and
that is true.

Precision is the ratio between the number of true positives
and the sum of all the data that the model considers positive.
This is a measure of model precision, meaning that of all the
positive predictions issued by the model, what proportion of
them are correct.

IoU =
Area of prediction box ∩ Area of truth box
Area of prediciton box ∪ Area of truth box

(14)

III. RESULTS AND DISCUSSION
A. DATASET CHARACTERISTICS
The dataset utilized in this study has 4,214 files altogether and
is made up of image files of a stack of oil palm FFB that were
converted from videos that were recorded using a smartphone
at the grading area of the palm oil mill. Each file may contain
several images of oil palm FFB, classed as unripe, underripe,
ripe, overripe, abnormal, and empty bunches. There may be
multiple photos of oil palm fruit in each image file, and
Table 2 provides information on the number of images and
objects for each ripeness category from the oil palm FFB
dataset utilized in this study.

According to Table 2, there were 7,256 total images uti-
lized in this study and 14,757 total objects. This means that
there was an average of 2 objects per image because each
image included a pile of oil palm FFB as seen in Figures 1
and 2. The number of images for each category is not equal
to the number of image objects, with the largest number of
images being the ripe fruit bunches, followed by the underripe
fruit bunches, and finally, the empty bunches. The proportion
in each category and the ripeness level have relatively the
same value, so it can be used to develop a detection and
classificationmodel for the ripeness level of the oil palm fruit.
The dataset we use presently evolved from the dataset used in

TABLE 3. The comparison of evaluation results of YOLOv4-320 model
with and without data augmentation.

previous research [45], which only used a single category of
oil palm maturity level in each image.

B. DATA AUGMENTATION
In order to ensure that the developed model already uses a
sufficient number of datasets, the model is tested by compar-
ing the YOLOv4 model with augmentation data and without
augmentation data. The comparison of the results of testing
the YOLOv4-320 model with and without augmentation data
to detect and classify oil palm fruit can be seen in Table 3.

For each test parameter, namely mAP@0.50, precision,
recall, F1 score, and average IoU, Table 3 demonstrates that
the performance of the YOLOv4-320 model using augmen-
tation data is better than using data without augmentation.
Therefore, for the development of the other YOLOv4models,
data augmentation will be used to carry out training and
validation to get the best YOLOv4 model.

C. COMPARISON PERFORMANCE EVALUATION RESULTS
OF THE MODEL
To compare the performance of the YOLOv4 model with dif-
ferent experimental parameters, the next model development
process used augmentation data. This was done because the
results of earlier data experiments showed that using augmen-
tation data was superior to using data without augmentation.
Tables 4 and 5 display the findings of experiments conducted
on various YOLOv4 models.

In terms ofAvg-IoU performance, theYOLOv4-608model
performs the best for determining the ripeness level of oil
palm FFB, followed by the YOLOv4-512 and YOLOv4-
426 models, while the YOLOv4-CSP-640 model has the
lowest Avg-IoU value. Then, from the performance of the
F1-score, the YOLOv4 model has a relatively equal value,
with the largest F1-score value of 0.99 for the YOLOv4-
320, YOLOv4-512, and YOLOv4-608 models, while the
YOLOv4-CSP-640 model has the smallest F1-score value.
Additionally, model performance measured by recall and
precision values reveals that YOLOv4 outperformsYOLOv4-
CSP in determining the degree of ripeness of oil palm FFB.

Table 5 shows that the best mAP@50 value in the val-
idation process was obtained in the YOLOv4-320 model,
followed by the YOLOv4-416 and YOLOv4-512 models.
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Then, from the results of model testing, the highest mAP@50
value was 99.98% obtained in YOLOv4-320, followed by
the YOLOv4-512 and YOLOv4-416 models with values of
99.97% and 99.93%, indicating that the YOLOv4 model has
a better average precision level in determining the ripeness
level of oil palm FFB than YOLOv4-CSP. Then, based on the
FPS value, it was found that the YOLOv4-320 model had the
largest FPS value (59.7 seconds), and YOLOv4-608 had the
smallest FPS value (33.1 seconds), meaning that the inference
process in detecting the ripeness level of oil palm FFB can be
carried out the fastest by the YOLOv4-320 model because
the input file size is smaller than the others. Furthermore,
from the measurement of BFlops values, the YLOv4-320
model has the smallest value, followed by the YOLOv4-
416 model. Therefore, from the results of this performance
comparison, the YOLOv4-320 model and the YOLOv4-416
model will be selected, which are used to be implemented on
Android-based smartphone applications. The YOLOv4-416
model will be used in the application development process
for mobile devices because its average IoU value is higher
than that of the YOLOv4-320 model. Thus, TensorflowLite
will be used to transform this model for implementation
on mobile platforms. However, due to the computational
constraints of this mobile device model, quantization must
be performed using both the 8-bits and 16-bits techniques.
Figure 8 provides numerous illustrations of how the results
of model testing in detecting and classifying the oil palm
FFB’s degree of ripeness were visualized. This was done in
order to evaluate the YOLOv4 model using the data stated in
Tables 4 and 5. Figure 8a demonstrates the model’s ability to
identify unripe and abnormal FFB, while Figures 8b and 8c
demonstrate the model’s accuracy in identifying ripe and
unripe FFB as well as stacks of unripe, abnormal, ripe, and
overripe oil palm FFB. The ability of the model to recognize
and distinguish between ripe and underripe of oil palm FFB
is seen in Figure 8d.
A similar research study focused on detecting the maturity

level of oil palm using YOLOv4 [45], albeit with a slightly
different dataset. This research used a video dataset, but each
frame contained only one maturity-level class with multiple
palm oil FFB objects. For single-class detection, the highest
mAP achieved was 97.64% using YOLOv4-CSPDarknet53.
On the other hand, for multi-class detection within a single
video frame, the highest mAP obtained was 70.21% using
YOLOv4-Tiny. Table 5 demonstrates that training the model
with multi-class data on maturity levels within a single frame
enhances its ability to detect different levels of oil palm
maturity compared to previous research. Detecting multiple
maturity levels in a video frame represents a more realistic
and dynamic scenario compared to detecting only one type
of maturity level in a video frame.

D. ANDROID-BASED PALM OIL FFB RIPENESS DETECTION
APPLICATION USER INTERFACE
The user interface of the Android-based oil palm FFB
ripeness detection application can be explained in Figure 9.

Figure 9a shows the appearance of the application when it
is first opened, where a select model menu is used to select
a detection model before the user presses the start button to
start the detection process. After the user selects the model
to be used for detection by clicking on the drop-down menu
(Figure 9b), the user can click the start button so that a track-
ing overlay appears from the application for FFB detection
according to its ripeness level (Figure 9c). Besides that, the
user can also click the white circle button to save the detection
results to a file. After the detection process is carried out,
the user can find out the length of time the inference process
takes from themodel used by pulling the bottom sheet overlay
down (Figure 9d). From this view, it can be revealed that
the use of the oil palm FFB detection process application is
relatively easy for users to use with the stages of selecting a
detection model, then directing the camera to the pile of oil
palm FFB so that the application can display a bounding box
according to the level of ripeness of the FFB that appears on
the mobile application screen.

E. EXPERIMENTAL RESULTS
The YOLOv4-416 model was selected from the results of
initial model testing using TensorFlow for the development
of a prototype application for detecting the oil palm FFB
ripeness degree on smartphones. This model was then con-
verted to TensorFlow Lite so that it could be utilized in
smartphone applications. For the conversion on TensorFlow
Lite, the quantization approach is applied on YOLOv4, and
its performance will be compared with the YOLO model,
specifically for smartphones, namely YOLO-tiny. There-
fore, in this prototype test, four models were used to be
compared, namely YOLOv4-quantized-fp16, YOLOv4-416-
quantized-int8, YOLOv4-tiny, and YOLOv4-tiny-quantized-
fp16. For evaluation, the TensorFlow Lite model was applied
to 10 videos from each ripeness class category, namely empty
fruit bunches, not ripe, underripe, ripe, overripe, and abnor-
mal, along with 10 videos from the combined FFB collection.
In this test, the results of the model inference were collected
for 5 frames in each video. Thus, 350 frames of FFB images
were applied for each type of model. The model runs on
the Samsung Galaxy S20+ smartphone with an Octa-Core
3 Processor CPU, ARM Mali-G77 MP11 GPU (800 MHz),
and 8 GB LPDDR5 RAM. The camera resolution can reach
up to 4032 × 3024 pixels.
The model’s capacity to locate oil palm FFB at the precise

spotmarked by setting a bounding box at the right coordinates
is demonstrated by the model test results based on the IoU
value. In Table 6, the IoU values for each model in each
class category are compared. According to the findings of
this comparison, the underripe category has the highest IoU
value, which is 92.4%, while the abnormal FFB category
has the lowest IoU, which is 74.65%. This value states that
in the under-ripe FFB category, the model can detect the
location of FFB better than the abnormal category class.
Then, based on the model, the one with the highest IoU value
is the YOLOv4-q-fp16 model, and the lowest is YOLOv4-
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FIGURE 8. Testing results of YOLOv4.

TABLE 4. Comparison of model testing results based on F1-score and Avg-IoU.

FIGURE 9. User interface of oil palm FFB ripeness detection application.

tiny-q-fp16, which means that the YOLOv4 model with a
quantification of 16 has the best ability to detect oil palm
FFB compared to other models. In addition, the IoU value
for the combined oil palm FFB class has a value below the
average because, in this class, the objects have various FFB
categories in terms of size and ripeness level, so themodel has

poor performance compared to FFB piles with uniform class
categories.

The same thing happened to the abnormal FFB category,
which had different FFB sizes, so the IoU value was smaller
than the average value. To test the model’s ability to classify
the ripeness level of oil palm FFB according to its class
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TABLE 5. Comparison of model evaluation results based on mAP, FPS, and BFLOPS.

TABLE 6. Results comparison of IoU for each category.

TABLE 7. Results comparison of F1-score & mAP for each category.

FIGURE 10. Comparison of the average confidence score models.

category, model performance measurements based on the F1-
score and mAP metrics are used. The comparison results of
the performance testing of the YOLOv4model with these two
metrics can be explained in Table 7. The results of the com-
parison of the F1-score values found that the highest average
F1-score was obtained in the YOLOv4-q-fp16 model with a
value of 0.64, while the lowest value was obtained on the
YOLOv4tiny-q-fp16 model with a value of 0.52. This value
indicates that the model that can classify the best ripeness
level when implemented on smartphones is YOLOv4tiny-q-
fp16. The same thing happened to the average mAP value,
with the highest value being 65.53% in the YOLOv4tiny-q-
fp16 model and the lowest value in the YOLOv4tiny-q-fp16
model with a value of 53.31%.

The model’s ability to classify the ripeness level of FFB
also depends on the data from each category. It can be seen
that the empty and immature bunches category has the highest

FIGURE 11. Comparison of the average latency time of the models.

F1 score and mAP value, which is above 90%, while the
under-ripe category has the lowest F1 score. This indicates
that the model can classify objects with very different char-
acteristics well, while it still has difficulty classifying objects
with almost similar characteristics. The characteristics of
objects in the unripe FFB category class are relatively similar,
namely having a color that tends to be black, so models can
categorize these objects more easily, as well as in the empty
fruit bunch category class, which tends to have a similar
color, namely brown, so it can be easily distinguished from
other objects. However, the model has a less consistent per-
formance for oil palm FFBwithmore complex characteristics
in terms of color gradations, such as underripe and ripe FFB.

Table 7 shows that the model can classify the ripeness
level of FFB very well for the empty and unripe categories,
achieving an mAP of more than 97% and an F-score of 0.99.
However, the model began to lose accuracy in classifying
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FIGURE 12. Example of testing results of mobile-based detection for the YOLOv4-tiny model.

FIGURE 13. Example of the testing result of mobile-based detection for YOLOv4-quantized model.

ripe, abnormal, and overripe FFB, with a mAP of 40–60%
and an F-score of 0.30–0.50. Models are often confused in
classifying ripe and overripe FFB due to the similarity in color
and shape. In the same way, the model has a poor level of
accuracy in the underripe category because it is often classi-
fied as unripe. The majority of underripe FFB is classified as
unripe; hence, themAP falls below 20% for theYOLOv4-tiny
model. The model also has poor accuracy for videos in the
combined category due to difficulty differentiating between
the many types of FFB, where the model can only achieve a
mAP level of 20–40% and an F-score of 0.15–0.30.

Models were evaluated using a confidence score in order
to gauge their object detection capability. The overall average
confidence score for the tested palm FFB categories is shown
in Figure 10 for all classes. The test’s findings show that all
models have a strong confidence score that is greater than

75%. This value indicates that the model can detect oil palm
FFB image objects with certainty, although this does not yet
indicate that the classification results are correct. However,
a model that has a high average confidence score will have
a more stable output. It is clear from the comparison of
the confidence score values that the YOLOv4-tiny model
received the highest score, followed by the YOLOv4-q-fp16
model with scores of 90% and 87%, respectively. Meanwhile,
the lowest value was achieved by the YOLOv4-q-fp8 model.
These results indicate that the YOLOv4-tiny model performs
the best object detection when implemented on smartphones
because this model was indeed developed to be imple-
mented on mobile devices. However, the YOLOv4-q-fp16
model still has quite good capabilities when implemented
on mobile devices, which are almost like the YOLOv4-tiny
model.
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To measure the speed of the model in classifying and
detecting objects, the speed of inference is measured with
the latency time value of each tested model, as shown in
Figure 11. Figure 11 shows that the YOLOv4-quantized
model has a much longer latency than YOLOv4-tiny. This
indicates that the inference time for the YOLOv4-quantized
model is slower than the YOLOv4-tiny model. This inference
process is greatly influenced by the size of the model because
the YOLOv4-quantized model has a larger size than the
YOLOv4-tiny model, which causes the inference process to
take longer. However, the speed of this inference does not
necessarily provide information related to the accuracy of the
model. Therefore, it is necessary to test the accuracy of each
model in order to determine the accuracy of the inference.

The application prototype was tested under actual testing
conditions at the palm oil mill grading location in order to
determine the performance of the proposedmodel. Figures 12
and 13 show the outcomes of model testing for detecting and
classifying the pile of oil palm FFB applied on a smartphone.
Figure 12 compares the detection results of the YOLOv4-
tiny method used on mobile devices to determine the degree
of ripeness of oil palm FFB in various categories. From the
test results, it was found that this model has a good level of
detection accuracy on FFB with empty bunches and unripe
fruit categories, as shown in Figure 12A. However, as shown
in Figures 12B and 12C, the YOLOv4-tiny approach still fre-
quently results in detection mistakes for both ripe and unripe
fruit. This shows that although the YOLOv4-tiny model can
carry out the detection process quickly, it has a poor level of
accuracy according to the F1 score and mAP values shown in
Table 7.
Figure 13 compares the detection results of the YOLOv4-

quantized model implemented on a smartphone for various
ripeness levels of oil palm FFB. From the results of this
comparison, it can be seen that the model can detect oil
palm FFB ripeness level categories with a good level of
generalization, as shown in Figure 13A, which can detect
FFB with empty bunches and unripe fruit bunch categories,
as well as in Figure 13C, which can detect unripe, under-
ripe, and properly ripe fruit categories. However, an error
still occurs when detecting ripe fruit combined with overripe
fruit, as shown in Figure 13C. This shows that, in contrast
to the YOLOv4-tiny model, the YOLOv4-quantized model
can distinguish more intricate class categories. In comparison
to the YOLOv4-tiny model, which includes complex object
and image characteristics, the YOLOv4-quantized model has
a greater generalization power for recognizing the ripeness
degree of oil palm FFB in the piles.

In broad sense, the YOLOv4-q-fp16model that we propose
has a higher level of detection precision than YOLOv4tiny.
Although the parameters used by YOLOv4-q-fp16 are still
larger than those used by YOLOv4tiny, which is one of the
supporting factors for better detection, YOLOv4-q-fp16 is
still feasible to implement on mobile devices despite having
a higher latency. As an alternative, YOLOv4-q-int8 can be
used to make the model lighter while still maintaining detec-

tion precision because it only has a 1.1% decrease in mAP
compared to YOLOv4-q-fp16.

IV. CONCLUSION
The separation of oil palm FFB that does not meet quality
standards is an important thing that needs to be done in the
palm oil production process. However, currently, it is done
manually, so the level of consistency is less controllable.
Therefore, it is necessary to develop a system that can auto-
matically separate oil palm FFB so that the results are more
consistent and have better accuracy. This research proposes
a model for detecting and classifying oil palm FFB using
smartphones and deep learning. The model used in this study
is YOLOv4, with various modifications both in terms of the
dataset used and the model hyperparameters. The test results
of the YOLOv4model show that the use of augmentation data
produces better performance than data without augmentation.
Then, to get the best YOLOv4 model that can detect and clas-
sify the ripeness level of oil palm FFB, it has been compared
with various YOLOv4 models, with the best results being
the YOLOv4-416 model with mAP, IoU, FPS, and BFlops
criteria. Furthermore, the YOLOv4 model is converted into
a model that can be implemented on smartphones with lim-
ited memory and processing speed using quantification. The
results of the quantification of the selected Its performance
with the YOLOv4-tiny model, which can be utilized to iden-
tify and categorize oil palm FFB categories, was compared to
that of theYOLOv4model. The test findings demonstrate that
although the quantized YOLOv4model’s inference process is
slower than that of the YOLOv4-tiny model, it is more accu-
rate when used on mobile devices. These findings show that
the suggested model can detect and categorize the ripeness
level of oil palm FFB, which has complicated color and size
features, on a smartphone with video input so that it can
detect and categorize in real-time. From the results of this
experiment, there is still an opportunity to improve the per-
formance ofmodels on smartphones because the performance
of detection and classification with the combined video class
category still has lower performance than the video class with
a single category. One of the proposed improvements is to
increase the training data on multi-category datasets.

The model utilized in this research demonstrates its effec-
tiveness in detecting post-harvest palm oil FFB, making it
suitable for sorting the maturity level of oil palm. However,
due to the diverse datasets required for detecting palm oil FFB
before harvesting, the application of this detection model in
oil palm plantation areas is limited. The implementation is
currently restricted to mobile devices as the model parame-
ters need to be reduced to match the hardware capabilities.
Nevertheless, there is a possibility that future implementa-
tions will utilize more suitable embedded devices, enabling
improvements in model performance. Ultimately, there is still
significant potential for further research in computer vision
within the palm oil industry, both in terms of expanding
datasets and enhancing existing object detection models.
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