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ABSTRACT Ear biting is a welfare challenge in commercial pig farming. Pigs sustain injuries at the
bite site paving the way for bacterial infections. Early detection and management of this behavior are
important to enhance animal health and welfare, increase productivity, andminimize inputs frommedication.
Pig management using physical observation is impractical because of the scale of modern pig production
systems. The same applies to the manual analysis of videos captured from pigsty. Therefore, a method of
automated detection is desirable. In this study, we introduce an automatic detection pipeline based on deep
learning for the quantification of ear biting outbreaks. Two state-of-the-art detection networks, YOLOv4 and
YOLOv7, were trained to localize the regions of ear biting. The detected regions were tracked over multiple
video frames using DeepSORT and Centroid tracking algorithms. Tracking provided the association between
detected instances in video frames, enabling the computation of the frequency and duration of occurrence.
The frequency and duration of ear biting were expressed as the cumulative performance of each group of
pigs. The pipeline was evaluated using two datasets from experimental and commercial farms with diverse
management and monitoring settings. The detection networks achieved comparable average precision values
of 98%& 97.5% and 85.6% & 80.9% on the respective datasets. The tracking algorithms produced 14% and
34% False-Alarm rates, respectively. The results show that automated detection and tracking of ear biting is
possible. Subsequently, we applied our method to videos in which pigs were managed in a manner that was
expected to affect the frequency of ear biting to different degrees. This method can be used as the basis of
an early warning system for the detection of ear-biting in commercial farms.

INDEX TERMS Animal behavior, animal welfare, deep learning, image analysis, object detection, object
tracking.

I. INTRODUCTION
Pigs housed in commercial conditions exhibit damaging
behaviors that reflect welfare challenges and cause health and
welfare problems in recipient pig [1]. Damaging behaviors
include tail, ear, and flank biting [2]. Risk factors include poor
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health status, limited possibilities to explore the environment,
high stocking density, and mixing of previously established
groups [3]. Attacks on body parts result in injuries, and
when farmers detect them, they may employ antimicrobials
(AM), particularly if there is evidence of secondary bacterial
infections. Pigs with severe lesions often require systemic
AM to prevent the spread of bacterial infections locally or
systemically [4]. The increased use of AM increases cost,
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reduces the quality of farm products, and contributes to drug
resistance [5], [6].

Tail biting is the most widely studied damaging behavior
and a major welfare problem in pig production [3], [7]. Ear
biting is generally a less studied damaging behavior than tail
biting. However, ear biting is considered a main risk factor
for ear necrosis [8], a growing and highly prevalent problem
in weaned pigs in some countries [9], and is associated
with disease and poor performance [10]. While ear biting
generally starts with gentle manipulation, it can escalate into
more damaging interactions [11]. The identification of ear
manipulation could serve as a precursor to an outbreak. Ear
biting may or may not be detected by cursory observation
during routine pig management. Most frequently, ear injuries
are the most common indication that ear biting occurs within
a pen, which may be too late for a remedial action. Clearly,
there is a substantial advantage in detecting ear biting early
and intervening appropriately. Owing to the enormous scale
of modern pig farms, where thousands of pigs can be housed
in a single building at any one time, detection through direct
visual inspection is impractical or even impossible. This
highlights the need to develop a system for the automated
(early) detection of ear-biting.

This study focused on the automatic detection of ear biting
as a component of the development of an early warning
system for managing pigs. Our method uses deep learning to
detect any behavior targeting the ear of a pen-mate including
sniffing, gentle manipulation, head knocking (the reaction of
the recipient pig to ear-biting), and ear-chewing. We do not
distinguish between different behaviors involving ear contact
but treat all interactions as ear-biting events. Specifically,
we describe a pipeline of deep learning-based methods and
demonstrate the effectiveness of the models by testing them
on two experimental datasets (Section III). These datasets
were previously acquired for the inspection of behaviors such
as feeding and posture; however, ear biting was observed
during the process. They also included a dataset used for
the development of an ethogram for ear-biting [11]. The
results of detection and tracking are presented in Section IV.
Finally, we discuss the results and some of their implications
in Section V.
The contributions of this paper are summarized as follows:

1) This study applies computer vision methods for the
automatic identification of challenging behaviors in pig
production and management. The proposed pipeline
adopts a state-of-the-art object detection network
to localize the contact regions in images and then
aggregates the detection to quantify the behavior.
Tracking was used to determine the frequency and
duration of occurrence at the group level to enable
the identification of affected pens. Pens with a
higher occurrence of ear-biting would receive remedial
actions.

2) Importantly, we created a new dataset to facilitate the
advancement of studies in this area.

3) To the best of our knowledge, this is the first published
study on the automatic quantification of ear-biting
behavior in pigs.

4) Investigate the impact of management manipulations
on frequency and duration of ear biting events.

II. LITERATURE REVIEW
The high prevalence of ear lesions associated with biting is
in agreement with [12] in which ear biting and manipulation
of body parts were scored more frequently than tail biting.
In both [12], [13], pigs were tail docked, which may explain
the higher incidence of ear biting, likely because docked tails
are not the most attractive or accessible part of the body to
bite.

There is little information on the aetiology of ear biting,
although it has been suggested that ear biting or chewing
and tail biting may be linked. Brunberg et al. [14] observed
that pigs housed in control pens exhibited a wider variety of
pig-directed abnormal behavior and that not all pigs in a pen
were performers of the behavior. Tail-biting pigs performed a
higher frequency of ear-biting than non-performers. A survey
of Dutch producers suggested that biting both tails and ears
was identified by farmers as a welfare problem in pig farming.
Similarly, a survey in Ireland identified that of the farms that
had experienced tail biting over a period of a year (51 of
58 participating farms), 86% had also experienced ear biting.
Of these incidences, farmers experience the greatest amount
of ear biting in the second stage post-weaning and the highest
incidence of tail biting in the finishing stage [15].

Computer vision tools are effective in detecting different
behaviors in pigs [16], [17]. Viazi et al. [16] extracted
the mean intensity of motion and occupation index from
video frames and processed these features using a Linear
Discriminant Analysis method. This method enabled the
classification of every behavior episode as aggressive or
otherwise. Behaviors with diagnostic relevance, such as
standing, were detected using depth information to track pig
positions in the videos [17]. Gaussian Mixture Models of 3D
point clouds were developed to classify standing and non-
standing postures. The average standing time can be used to
detect health and welfare challenges. Traditional computer
vision techniques are limited by the specific features used
for development, and the quality of hand-crafted features
depends on the quality of the image sources. Farm settings
vary (different camera settings, lighting conditions, animals
constantly moving about, and their orientation will change),
and these important variables should be considered for a more
generalized method.

Artificial intelligence is increasingly gaining popularity as
a key component of precision livestock farming especially
for learning and managing animal behavior in images [18].
Convolutional neural networks (CNN) provide suitable alter-
natives to feature engineering. CNNs can learn the diverse
features required for solving computer vision tasks directly
from data sources (particularly from images). Odo et al., [19]
presented the localization of small components in aerial
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FIGURE 1. Images showing characteristics of the datasets.

images. While the targets in [19] were stationary, the sensor
(camera) was placed on a moving aircraft. In image-based
pig management, the targets (pigs) move while the camera is
fixed. Both scenarios present additional challenges because
of the motion component. Several studies have demonstrated
the monitoring of behavior in pigs using CNNs [20], [21],
[22], [23], [24], [25], [26]. Pipelines often involve identifying
the location and orientation of each animal and its body
parts. The detected parts are used to monitor interactions, for
example, tail-mouth and ear-mouth pairs. Psota et al., [20]
applied a fully CNN to detect various parts of a pig, for
example, ears, shoulders, and tails, and [21] combined a
CNN and a recurrent neural network (RNN) to recognize tail-
biting. Considering that tail-biting and ear-biting outbreaks
are correlated in terms of their triggers and damaging effects,
automating ear-biting detection will be a useful addition to
the management of pig systems.

Several well-established deep learning-based object detec-
tion models have achieved state-of-the-art performance in
popular computer vision applications, such as the common
objects in context (COCO) challenge [27]. The choice
of method is often determined by the application-specific
requirements. Such requirements often include a trade-off
between speed and accuracy. For example, while a two-stage
detector such as the Faster R-CNN [28] may be more accu-
rate, one-stage networks such as the Single Shot multi-box
detector (SSD) [29] and RetinaNet [30] are faster. RetinaNet
uses focal loss to address the challenges of foreground
and background imbalances in images. Advancements in
one-stage detection networks have led to incremental
improvements in the detection capabilities. The ‘‘You Only
Look Once’’ (YOLO) models are a good example of the
development in this area. Specifically, YOLOv4 [31] used
feature aggregation including the ‘‘bag-of-freebies and bag-
of-specials’’ modules and improved the speed and accuracy
of object detection compared to previous versions. Recently,
YOLOv7 [32] was introduced and built on the successes of

the previous versions. This state-of-the-art object detection
method incorporates a ‘‘trainable bag of freebies’’. The
focus was on reducing the cost of training without loss of
speed at the inference time. The effectiveness of YOLO for
the automatic detection and management of pigs has been
demonstrated [22], [23], [24], [25].

CNNs have been applied to quantify different pig postures,
such as standing and lying postures, and can identify feeding
and drinking behaviors [26]. These behaviors are useful
for measuring the health and well-being of farm animals.
In addition to posture and feeding behavior, the identification
of potentially damaging interactions, such as pigs engaging
in ear and tail biting may also be important. An approach for
the automatic recognition of tail biting was presented using
a combination of an SSD and a Long-Short-Term-Memory
algorithm [21]. Oczak et al., [33] and Viazzi et al., [16]
identified several aggressive interactions in videos. For the
specific task of ear biting, [11] developed an ethogram
of biter and bitten pig during an ear biting-event. Pigs
vocalize in response to bites. Combining different sounds
and visual information helped identify the behaviors. Some
non-vocal behaviors that describe ear-biting are listed in
Table 1. To date, ear-biting has been observed manually
in videos. Manual observation is challenging considering
the scale of the farms and the number of parameters to be
monitored simultaneously. Automating the process of ear
biting detection is required for continuous monitoring and
management of pens.

Tracking is an important component for monitoring
objects in a video. A detection network localizes objects in
frames and the tracking system associates instances between
consecutive frames. Simple Online and Real-time Tracking
(SORT) [34] associates objects using a metric that relies
on the overlap of bounding boxes. The limitation of this
tracking technique is the high rate of identity switches
(IDS). IDS refers to the number of times the reported
identity of a ground-truth track changes. DeepSORT [35]
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TABLE 1. Description of ear biting behaviors [11].

was developed with a focus on reducing the issue of identity
switching. The contribution of [35] includes the replacement
of the association metrics with one that combines motion
and appearance information based on a deep appearance
descriptor.

III. MATERIALS AND METHODS
A. DATASETS
Figure 1 shows the video frames from the two datasets
used in this study. These datasets were previously collected
for the study of other pig behaviors, and ear biting was
observed during the investigation. Dataset I was derived from
a controlled experiment in which the conditions could be
adapted to suit the needs of data collection (e.g., lighting
and position of the camera). Dataset II was derived from a
commercial farm, where little deviation from the commercial
routine was allowed (e.g., the farmer dictated the position of
the video camera). Variations in management and monitoring
settings are considered relevant to the future application of
this method.

1) DATASET I
The first dataset comprised videos from an experiment
conducted at the Agri-Food and Biosciences Institute (AFBI)
in Hillsborough, Northern Ireland, between November
2019 and April 2020. The work was carried out under Project
License Number PPL2851 in accordance with the Animals
(Scientific Procedures) Act 1986 (The Parliament of the
United Kingdom, 1986). The dataset involved weaned piglets
at 28 ± 1 days of age with body weight of 9.47 kg ± 1.20
(mean ± SD). At weaning, the pigs were housed across
five rooms, where they spent six weeks. There were six
pens in each room, comprising ten mixed-sex pigs. Each
pen had a plastic slatted floor and a dimension of 2.7m
by 1.4m. No intentional health challenge was imposed on

the animals. Video cameras (4 M.P. Fixed Bullet Network
Cameras, HiLook IPC-B140H(-M), Hikvision, Hangzhou,
China) were connected to a network video recorder and
installed on the ceiling above the pen. This enabled the
monitoring of the entire pen, as shown in Figure 1a. Different
regions of the pen appeared to be evenly illuminated, ensuring
that the pigs were clearly visible in the image. Each group
was provided with environmental enrichment in the form of
a suspended wooden block and flavored plastic biting toy
(Porcichew, Nutrapet Ltd., U.K.). The pen temperature was
initially set at 28◦C but decreased 0.5◦C/day, stabilizing at
21◦C, and artificial lighting was provided daily when routine
stock checks were carried out. Pigs also had access to natural
light through windows. Artificial light was switched off daily
from 0.00 a.m.-2:00 a.m.We selected eight videos at random,
that is, three videos from Room 4 and five videos from Room
5 for training. Additionally, we selected two videos, one from
each of Rooms 2 and 3, for validation. Each 2h video at
25FPS produced 180,000 frames (i.e., 2 × 60 × 60 × 25).
This amounted to 1,440,000 images of the selected videos.
To facilitate data annotation, we sampled three frames per
second for each video (i.e., 2 × 60 × 60 × 3 = 21,600
frames). Table 2 shows only key frames, that is, images in
which an expert identified ear-biting behaviors.

The dataset was derived from an experiment that tested
the effects of different nutritional treatments on pig behavior.
Pigs received a starter diet 1 followed by Starter diet 2: Starter
1 diet (S1) contained 16.25 MJ/kg digestible energy (DE),
20% crude protein (CP); 1.65% Lysine (Lys), 2.11% crude
fiber (CF) and was offered for 13 days post weaning. Starter 2
(S2) contained 16.25 MJ/kg DE, 20% CP, 1.54% Lys, 2.29%
CF and was offered for 16 days. There were three treatments
of interest in this study.

• T1: Control - composed of the starter diets (S1, S2) with
20%CP and 2.11%CF, without any antimicrobial (ZnO)

• T2: Both S1 and S2 contained 18% CP and 3-4%
non-fermentable fiber.

• T3: Both S1 and S2 contained 16% CP and 3-4%
non-fermentable fiber.

The hypothesis was that different treatments would
result in different frequencies and durations of ear-biting
events. A decrease in the CP of the weaned pig diet may
decrease the incidence of digestive disorders, and is currently
recommended by the pig industry, but it has been shown
to increase the occurrence of damaging behaviors, such as
tail biting [36], which may or may not be alleviated by the
inclusion of dietary fiber [37]. It has been suggested that
the increased risk of damaging behaviors arises from the
fact that foraging behavior and redirected biting behavior
increase as pen mate blood becomes a more attractive source
of nutrients [12]. Hence, the second data sample comprised
30 videos for the quantification of behavior. We selected
one pen per treatment from each of the five batches of the
AFBI experiment for a total of 15 pens. We analyzed data
from two days (days 2 and 4) of the experiment to determine
the possible effect of the treatments on ear-biting (Table 6).
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Data points were extracted between 11:00 h and 12:00 h
of daily observations. This time of day is when the pigs
are the most active. In addition, this period was selected to
minimize the effect of spontaneous behaviors associated with
pig management, for example, when a staff member entered
the pen early in the morning and before the end of the day.

The videos had a resolution of 1920×1080 pixels, which
was reduced to 1024×580 pixels for easy computation
without losing information. Additional pre-processing was
required for the dataset to remove adjacent pens within
the field of view to ensure that pigs within a pen were
analyzed separately. The adjoining pen was masked as shown
in Figure 1a.

2) DATASET II
The second dataset was created from a 300 sow farrow-to-
finish commercial farm with a history of ear biting behavior,
located in Co. Cork, Ireland. The farmers were willing to
cooperate with the video data collection required for the
study, and the procedure was approved by the Teagasc
Animal Ethics Committee (TAEC 40/2013). As this was a
purely observational study, pigs were managed according
to the usual farming practices. Pigs were weaned at 28 ±

2 days of age and spent 4 weeks in pens measuring 3 m by
2.4 m, holding about 35 pigs, and subsequently to a larger
pen measuring 6 m by 2.9 m, as per commercial practice
to accommodate the increase in pig size. Two cameras
(Panasonic®, model HC-V250EB-K) were used, one for
each pen, placed above the pen in a lateral position at a height
of approximately 2 m, so that a full-view of the experimental
pen was attained.

As shown in Figure 1b, the lateral view of the pen
is such that pigs closer to the camera are more visible
in the image than those farther away, and the occlusion
is high. Additionally, the videos were collected from a
commercial setting and did not include the day or time of
observation. We selected twenty-two videos from first-stage
weaner pigs for development (19 videos for training and
3 videos for validation). Unlike Dataset I, we extracted and
used all the video frames from Dataset II because they were
relatively shorter (average length of 22 min). In addition,
we analyzed three videos to determine the frequency (i.e., the
average number of events in the observation) and duration
of the interaction. The resolution of the Teagasc dataset was
1280×720 pixels and was used without reduction because it
is more computationally manageable.

3) COMMON METHODOLOGY
Feeders were present in each pen and were provided ad
libitum. We collected two samples from each dataset for the
development (i.e., training and evaluation of the detection
networks) and quantification of ear-biting in the video.
Videos from both datasets were recorded at 25 frames per
second (FPS). The key frames, that is, video frames where ear
biting was visible, were manually annotated using the Visual
Geometry Group (VGG) Image Annotator [38]. Descriptions

of the contacts that represent ear-biting are listed in Table 1.
Each region of ear-biting was defined by a bounding box
overlaying the head to the forearm of the interacting pigs. The
size of the bounding boxes varies based on the orientation of
the biter and the bitten pig. It is important to emphasize that
the ground truths were extracted from videos of different pens
and different times of the day to ensure a fair representation
of the pen conditions and scenarios. To avoid bias, the videos
used for testingwere different from those used for training our
models, and the ground truth was extracted on a double-blind
basis. Table 2 summarizes the data points from both datasets
for the training and validation of the detection models,
which include the number of video frames and ground truth
bounding boxes. As therewere two datasets with different pen
settings and management conditions, we tested the detection
networks on the individual datasets and presented a more
representative model by combining the datasets.

B. DETECTION
Figure 2 shows a pipeline of the processes involved in the
automatic quantification of ear-biting in pigs. The two main
components in the pipeline are object detection and tracking
systems. The first stage involves the detection of regions in
images that exhibit ear-biting behavior. The detected regions
of interest are associated over multiple frames. In this study,
we trained and validated object detection networks. An ear-
biting event is often observed as a sequence of interactions
that may include the different behaviors listed in Table 1.
We detected interactions, but without discrimination between
the biter and bitten pigs, quick or gentle manipulation. All
contact with the ear in the mouth was detected as ear-biting.

We utilized the baseline versions of YOLO, namely,
YOLOv4-CSP [31] and YOLOv7 [32]. These are one-stage
detection models that can perform localization and classi-
fication tasks using a single dense layer. They are faster
than most state-of-the-art detection networks, and achieves
real-time processing without compromising the accuracy.
These features are particularly useful for the proposed
application, which requires repeated detection over a long
period of time. The models were implemented using
PyTorch framework. Network parameters vary in depth and
width, which determine the resources needed for its usage.
YOLOv4-CSP has over sixty-four million parameters and
is based on the CSPDarknet53 architecture [39] for feature
extraction. On the other hand, YOLOv7 [32] has 36.9 million
parameters, representing 43% reduction in computational
requirements. These networks were previously trained on
the MS-COCO dataset to detect 80 classes of objects.
We changed the number of nodes in the output layers of
the networks to match a single target, that is, ear-biting.
The MS-COCO weights were used for network initialization
during the training time. Table 2 lists the number of images
and annotations (i.e., bounding boxes of ear-biting regions)
used for training and validation. Similar hyper-parameters
were used in training both networks (base learning rate
of 1 × 10-3 and input size of 640 × 640). Batch sizes
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FIGURE 2. Pipeline for the detection and quantification of ear biting in pigs.

of 8 and 16 were used to train YOLOv4 and YOLOv7,
respectively. The batch size varied because of the size of the
networks and the available resources. Additionally, YOLOv7
used mosaic data augmentation to increase the variability
of the feature space. This technique combines four random
images into a single input image. All networks were trained
for a maximum of 100 epochs. The trained weights were
saved after each epoch, and the best model was selected
for testing. Training and evaluation were performed using
a GeForce RTX 2080 Ti GPU with a memory capacity of
10GB.

We evaluated the detection models using a set of output
parameters: bounding boxes, that is, the coordinates of the
detected region, top-left (x1, y1) and bottom-right (x2, y2),
and the probability score. A higher probability implies better
detection confidence. Bounding boxes with a probability

of 0.25 and above were used for evaluation. Performance
depends on the degree of overlap between the ground-truth
bounding boxes and detected bounding boxes. We measured
the degree of overlap by determining the intersection over
union (IoU) of the corresponding bounding boxes. An IoU
≥ 0.5 was treated as a true positive prediction. Precision
was computed as TP

TP+FP and recall as TP
TP+FN where TP, FP,

and FN denote the counts of true positives, false positives,
and false negatives, respectively. Average precision (AP) is a
standard metric for estimating the performance of detection
models. AP is the area under the precision-recall curve and is
computed using the interpolation method [40].

C. TRACKING
The frequency and duration of episodes are important
parameters for measuring the prevalence of ear-biting in
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FIGURE 3. Qualitative results: detection of ear biting event in consecutive video frames with bounding boxes overlaid. The ground
truth (GREEN bounding boxes) and detected contact (RED bounding boxes).

a pen. The interaction(s) between the biter and bitten pig
was detected, and the duration of the interaction(s) was
measured. Tracking enables the association of detections
between multiple frames as members of the same event.
An object detection network identifies the region(s) of
interest in the current frame, and the tracker attempts to
associate these with the objects in the previous frame.
Tracking algorithms complement detection by following
tracks until the detection fails for at least 200 consecutive
frames.

We compared DeepSORT [35], an established multiple
object tracker that uses bounding boxes, motion and appear-
ance features, and a simple centroid tracking algorithm. The
centroid tracker relies only on bounding box information
to associate object instances, which results in a lower
computational overhead.

The centroid-tracking method assumes that the displace-
ment between centroids of the same event in consecutive
video frames is shorter than the displacement between
different events centroids. This technique involves measuring
the Euclidean distances between interactions. Regions closer
in consecutive video frames belonged to the same event.
Figure 4 illustrates the possible trajectories of pigs involved
in ear biting in two consecutive frames. The interactions e1
and e2 in the current frame, fk−1 can move in any direction
in the next frame fk . The possible trajectories of event e1 are
p and p′ leading to point A or B. The distance p is shorter
than p′. Hence, it is more likely that the interaction at A
progressed from e1. Similarly, the interaction at point B was

FIGURE 4. e1 and e2 are the centroids of the detected regions (BLUE).
Two points were detected in the next frame: A and B (RED). The event
trajectories from the current video frames, fk−1 to the next are e1A, e1B,
e2A, e2B.

most likely from event e2. A new event is recorded when there
are unpaired detection(s).

Bashir et al., [41] presented several metrics for evaluating
object detection and tracking including Tracker-Detection-
Rate, Object-Tracking-Error and False-Alarm-Rate. Equa-
tion (1) represents Object-Tracking-Error (OTE) which is
a measure of the average discrepancy between the ground
truth bounding box centroid and the centroid of tracked
region, where Nrg represents the total number of overlapping
frames between ground truth and tracker, xgi represents the
x-coordinate of the centroid of object in ith frame of ground
truth, xri represents the x-coordinate of the centroid of object
in ith frame of the tracker, and ygi represents the y-coordinate
of the centroid of object in ith frame of ground truth,
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TABLE 2. Datasets used for training and evaluation of the detection
networks.

yri represents the y-coordinate of the centroid of object in ith

frame of the tracker.

OTE =
1
N rg

∑ √
(xgj −xrj )

2+(ygj −y
r
j )
2

(1)

Tracker-Detection-Rate =
TP
TG

(2)

False-Alarm-Rate =
FP

TP+ FP
(3)

Tracker-Detection-Rate and False-Alarm-Rate are shown in
(2) and (3), respectively, where true-positive (TP) = number
of frameswhere both the ground truth and tracker agree on the
presence of ear biting, ground truth (TG)= number of frames
for the ground truth objects, false positive (FP) = number of
frames where the tracker contains at least one object, but the
ground truth does not contain any object or none of the ground
truth overlaps, that is, IoU is less than 0.5.

D. FREQUENCY AND DURATION OF EAR BITING
BEHAVIOR
Equation (4) shows the frequency of ear biting during the
inspection window. The duration of an event is shown as a
function of the number of frames in which the event occurs as
in (5). where fk is the k th frame of an event and, ek represents
the number of events detected in k th frame. N is the total
number of frames in the observation and r is the camera frame
rate. We introduced a wait period of 8 s between events to
allow sufficient time for the interacting pigs to disengage.
It also applies when the biter and bitten pigs go outside the
field of view, for example, when cut-off by the video frame.
Given a camera frame rate of, r = 25 FPS, 8 s is equivalent
to 200 frames. An event was tracked until it disappeared for
up to 200 consecutive frames.

Frequency =

∑N
k=1 ek
N

(4)

Duration =

∑n
k=1 fk
r

(5)

E. STATISTICAL ANALYSIS
The frequency and duration of ear biting from Dataset I
(AFBI experiment) shown in Table 4 were further analyzed
to determine if the effect of the dietary treatments differed
between the two observation days (interaction between
treatment x day). The data were normally distributed on

each day, as assessed using the Shapiro-Wilk test (p > 0.05).
The pigs in each pen were treated in the same way on the
two days, and dietary treatments may have had some effect
on the interactions between pigs. The analysis was carried
out using RStudio 
2022.07.2 Build 576, 2009-2022, The R
Foundation for Statistical Computing for Windows. In the
model, dietary treatment and day were used as fixed effects,
and batch was added as a random effect. The model was
solved using the Linear Mixed Effect and the test statistics
were extracted using analysis of variance with Satterthwaite’s
method.

IV. RESULTS
Table 3 presnets the performance of the detection networks
for the two datasets (Table 2). The average precision
of YOLOv4 and YOLOv7 on Dataset I were 0.98 and
0.975 AP@0.5, respectively. The performances of the models
on Dataset II are listed in Table 3. On a combined dataset
(I & II), YOLOv4 and YOLOv7 recorded 0.918 and
0.919 AP@0.5, respectively. Figure 3 shows the detection in
a video sequence with overlaid bounding boxes of both the
ground truth and object detection results. In this example,
a detector missed a region of ear biting in frame 5026 and
detected it again in frame 5027 and 5028. The tracker treats
these as belonging to the same event until the detection
network fails in 200 consecutive frames.

The complete system comprising detection and tracking
was evaluated on a test video with a total of 3416 frames
where ear-biting was manually identified in 2113 frames
(ground truth). The precision and recall of DeepSORT-tracker
were 0.859 and 0.63, respectively. The Centroid-tracker
achieved precision and recall of 0.66 and 0.965, respectively.
Table 5 summarizes tracker performance. Figure 5 and
6 show plots of regions tracked by the DeepSORT and
Centroid tracker, respectively. The object tracking error,
which represents the average discrepancy between the ground
truth bounding box centroid and the centroid of the trackers,
is 16.8 and 20.4 for the DeepSORT and Centroid trackers,
respectively.

Tracking provides the event identification number and
video frames in which they are detected. The interaction
frequency and duration were calculated using these param-
eters. Figure 7 (a) and (b) show the event duration (i.e., the
spikes) for a typical one-hour observation of a pen during
days 2 and 4. Table 6 shows a summary of the data extracted
from Dataset I (frequency and duration) for the two days
observed, and Figure 9 captures the variation in frequencies
and durations grouped by treatment and day. These results
were obtained using the YOLOv4-based tracking methods.
The average frequency and duration of ear biting episodes
for Datasets I and II were (0.59 & 32 min) and (2.54 &
153 min), respectively, during a one-hour inspection window.
It should be highlighted here that the duration is cumulative
of all events and for this reason it can be more than one hour.

The statistical analysis of Dataset I (Table 6) showed that
neither dietary treatment nor the day of the experiment,
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TABLE 3. Results by the two detection networks used on two different datasets and showing Precision, Recall, AP@0.5 and AP@0.5:0.95.

FIGURE 5. Trajectory of regions detected by DeepSORT. The plot shows the degree of overlap between the ground truth
bounding box centroid and the centroid of the tracker with Object Tracking Error of 16.8.

TABLE 4. Detection results on combined dataset (I & II) by the two
detection networks used, showing Precision, Recall, AP@0.5 and
AP@0.5:0.95.

TABLE 5. Performance of YOLOv4 detection with the Centroid and
DeepSORT tracker.

nor the interaction between treatment and day, had a
significant effect on the frequency of ear-biting (treatment:

F2,20 = 0.4028 p = 0.6738 eta2 = 0.04; day: F1,20 =

0.2405 p = 0.6292 eta2 = 0.01 interaction between the
two: F2,20 = 0.3479 p = 0.7104 eta2 = 0.03) measured
on day 2 and 4. The same applies to their effects on
duration as dietary treatments, day and the interactions
between treatments and day did not have a significant
effect on the duration of ear-biting episodes: (treatment:
F2,20 = 0.2922 p = 0.7497 eta2 = 0.03; day: F1,20 =

0.2517 p = 0.6213 eta2 = 0.01 interaction between the
two: F2,20 = 0.2402 p = 0.7887 eta2 = 0.02) measured on
day 2 and 4.

V. DISCUSSION
Automatic detection of damaging behaviors, such as ear
biting, is important for effective management of outbreaks
through intervention. This could facilitate the introduction
of remedial measures to improve pig health and welfare.
In addition, the automated detection of the features of the
behavior would encourage further research and understand-
ing of its occurrence. Although direct observation is widely
practiced, such observations are impractical in commercial
farm settings because of their large scale. Multiple incidents
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FIGURE 6. Trajectory of regions tracked by Centroid- tracking. The plot shows the degree of overlap between the ground
truth bounding box centroid and the centroid of the tracker with Object Tracking Error of 20.4.

FIGURE 7. The duration of events in days 2 and 4 of the same pen (AFBI video) during one-hour (11:00-12:00) observation.

could occur simultaneously and could be missed because
of human limitations, such as, limited field of view and
fatigue. Ear biting is usually detected by its consequences,
that is, injuries in the affected areas. Such a detection
may be too late, and suggests that an outbreak has already
started. Therefore, the development of alternative methods
for automatic identification and management of abnormal
behaviors in pigs is encouraged. Current research efforts
are targeting the use of images and videos as they provide
non-invasive and cost-effective techniques to detect and
manage pigs [42].

As shown in Figure 1, pen configurations varied between
the two datasets and affected the way the pigs were
monitored. Dataset I (AFBI dataset) was derived from a
controlled experiment, and Dataset II (Teagasc dataset) was
obtained from a commercial farm where the opportunity
for ideal camera position and other modifications were
limited. The models showed superior AP on Dataset I,
where the pens were viewed from above, reducing occlusion
(Figure 1a). In addition, the low density of ten pigs per
pen, in accordance with regulations for experimentation,
minimized body contact. In contrast, the pigs in Dataset II
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were monitored from a lateral view, which introduces several
challenges. The camera position presented a situation where
pigs closer to it obstructed the visibility of those farther
away. In addition to the occlusion caused by viewpoint, there
were thirty-five pigs in the pen that constantly came into
contact with each other, reflecting commercial conditions.
There were also some lighting challenges that resulted in
uneven illumination as shown in Figure 1b.
Centroid tracking detected more ear-biting events, but

also recorded higher false alarms (34%) than DeepSORT
(14%). Tracker performance depends on the outputs of the
detection network. An instance associated with an episode
of ear biting may be missed in a frame, but detected in
the subsequent frame. Consecutive detection misses lead
to the fragmentation of tracks. To reduce fragmentation,
we set the maximum number of missed frames to 200,
that is, an event was tracked until the detector failed in
200 consecutive frames. A typical case in which this is useful
is when interacting pigs pause momentarily during an ear
biting episode. If the waiting time is within the set threshold,
the events belong to the same episode. High false alarms
would result in the use of scarce resources to monitor pens
where ear-biting did not occur. Future work will deal with
cases of false positive detection using metrics that would
ensure a detected region has at least two pig heads present
such that detecting ear biting in a region with a head-to-rear
of pigs is invalid.

Our focus was to identify all frames in which ear-biting
occurred and use this information to determine the frequency
and duration of the episodes. We presented frequency as the
number of events within the inspection window expressed
as a function of the frames in which the events occurred.
While most of the events were short-lived (5-25 s), some
continued for over 120 s (Figure 8). Although not directly
comparable, the frequency of ear biting episodes was higher
in Teagasc than in the AFBI dataset. There are several reasons
that may have contributed to this, including differences in
management, but discussing these is beyond the scope of this
study. Ear biting is often spontaneous, and the biter often
receives an immediate reaction from the recipient, such as a
head-knock. We also detected sniffing or gentle manipulation
of the ear of pen mates, which was identified as a precursor
for biting [33]. Early detection of all forms of ear-biting is
vital for preventive interventions.

We did not detect any effect of dietary treatment on the
frequency and duration of ear-biting episodes. This was
contrary to our original hypothesis, as we expected to see
an increase in ear-biting behavior, due to the reduction in
the protein content of the feeds offered to the pigs in the
AFBI experiment, as suggested by [12], [36], and [43].
It is possible that this was due to the time window of our
investigation, which occurred during the first four days post-
weaning. The first week after weaning is associated with
changes in pig housing, social and nutritional management,
and pigs appear more unsettled [44]. On the one hand, this
may lead to the manifestation of damaging behavior such

TABLE 6. Frequency and duration for two days observation of the AFBI
dataset (one-hour inspection window 11:00-12:00). Frequency is the
average number of events in the observation. Duration represents the
total time of interaction during the inspection window.

FIGURE 8. Frequency histograms of event duration from AFBI
(Batch 5 - Pen 1) for one-hour (11:00-12:00) observation.

as ear biting [10]. However, as pigs settle down differences
in ear-biting episodes due to dietary treatment may become
more apparent, and this is where dietary manipulation
benefits may arise.

Frequency is often expressed as the percentage of occur-
rence of categories of ear biting, for example, the frequency
of gentle manipulation, quick bite or pulling of the ear of
pen mates [11], [33]. In this study, we detected all contacts
targeting the ear of a pen mate as an ear-biting event.
Description of the individual types of ear-biting behaviors
are presented in Table 1. Different types of ear biting
behavior may pose different degrees of injury risk. An event
often involves multiple contacts of the different behavior
types. For example, the interaction may begin with gentle
manipulation and progress to chewing, followed by head
knock. Although distinguishing between different ear biting
types was beyond the scope of this study, it is possible that the
methodology developed here could be extended to account
for the greater granularity of the behavior. Ear biting detection
will be a useful management tool as it could introduce
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FIGURE 9. The effect of different dietary treatments (T1-3) on the frequency and duration of ear biting events on days 2 and 4 post weaning.

a management practice to stop the behavior before injury
is caused. Extensions of our method to identify consistent
offenders (biter pigs) would require continuous observations
for longer periods of time. The identification of such pigsmay
lead to management interventions, such as isolation.

VI. CONCLUSION
Ear-biting outbreaks present serious health and welfare
challenges to pigs in commercial settings, and early detection
is critical for efficient management that enhances their health
and welfare while minimizing input from antimicrobials.
This paper describes an approach to automatically quantify
interactions involving ear-biting between pigs using video
imaging. The main contributions of this study include the
detection and tracking of ear-biting events. We determined
the frequency and duration of events by considering all
frames in which the event was detected. The test results
on two independent datasets demonstrate the effectiveness
of the models for identifying ear-biting interactions directly
from the images. YOLOv4 and YOLOv7 achieved average
detection speeds of 13.5 ms and 8.5 ms, respectively,
demonstrating the potential of the proposed pipeline for real-
time application.

Our method detected and quantified ear biting at group-
level. We consider this the first step in the development
of an on-farm early warning system for ear-biting detec-
tion. Clearly there are several barriers to overcome when
up-scaling this deployment. These include training and
testing of the method with more diverse training data arising
from, for example, different management settings and pig
sizes. If the desire is to operate the deployment in near-real
time, then the system needs to detect the individual performer

to enable immediate remedial actions such as the removal of
the offender from the pen before real damage occurs. This
tool has the potential for efficient management of behavior
by ensuring the deployment of resources to a few pens where
there is a high frequency and duration of occurrence instead of
monitoring all pens within a farm. Quantifying performance
at the group level meant that individual performers was
not considered. The identification of individual pig will
facilitate fine-grained intervention, such as the isolation of
the offender. In this study, we are interested in group-level
performance, that is, the aggregate performance of activities
in the pen. Future work will investigate individual-level
measurements, which will require pig identification. This can
be achieved by assigning permanent IDs to all detected pigs
such that ear-biting regions are associated with individual
performers.

Ear-biting outbreaks present serious health and welfare
challenges for pigs in commercial settings. Early detection
enables early intervention, which maximizes the likelihood
of success [17]. This is not only critical for efficient
management but will also enhance pig health and welfare
while minimizing the input from antimicrobials.

ACKNOWLEDGMENT
The authors would like to thank the AFBI Pig Unit staff for
their input in the experiments reported here and also would
like to thank the Pig Producer and his staff for facilitating
the on-farm recording, which resulted in the Teagasc dataset.
Dr. Niall McLaughlin of the School of Electronics, Electrical
Engineering and Computer Science commented on an earlier
version of this manuscript. The European Commission’s

VOLUME 11, 2023 59755



A. Odo et al.: Video Analysis Using Deep Learning for Automated Quantification of Ear Biting in Pigs

support for the production of this publication does not
constitute an endorsement of the contents, which reflects only
the views of the authors, and the Commission cannot be held
responsible for any usewhichmay bemade of the information
contained therein.

REFERENCES
[1] L. A. Boyle, S. A. Edwards, J. E. Bolhuis, F. Pol, M. Z. Šemrov, S. Schütze,

J. Nordgreen, N. Bozakova, E. N. Sossidou, and A. Valros, ‘‘The evidence
for a causal link between disease and damaging behavior in pigs,’’ Front.
Vet. Sci., vol. 8, Jan. 2022, Art. no. 771682.

[2] N. van Staaveren, A. Hanlon, and L. A. Boyle, ‘‘Damaging behaviour and
associated lesions in relation to types of enrichment for finisher pigs on
commercial farms,’’ Animals, vol. 9, no. 9, p. 677, Sep. 2019.

[3] J.-Y. Chou, R. B. D’Eath, D. A. Sandercock, N. Waran, A. Haigh, and
K. O’Driscoll, ‘‘Use of different wood types as environmental enrichment
to manage tail biting in docked pigs in a commercial fully-slatted system,’’
Livestock Sci., vol. 213, pp. 19–27, Jul. 2018.

[4] College of Veterinary Medicine Administration, Iowa State University of
Science and Technology. (2022). Vices (Tail Biting, Ear Biting, Flank
Biting, Navel Sucking). Accessed: Oct. 28, 2022. [Online]. Available:
https://vetmed.iastate.edu/vdpam/FSVD/swine/index-diseases/ear-biting

[5] D. Murphy et al., ‘‘EMA and EFSA joint scientific opinion on measures
to reduce the need to use antimicrobial agents in animal husbandry in the
European union, and the resulting impacts on food safety (RONAFA),’’
EFSA J., vol. 15, no. 1, Jan. 2017, Art. no. e04666.

[6] S. J. More, ‘‘European perspectives on efforts to reduce antimicrobial
usage in food animal production,’’ Irish Vet. J., vol. 73, no. 1, pp. 1–12,
Dec. 2020.

[7] A. Valros and M. Heinonen, ‘‘Save the pig tail,’’ Porcine Health Manage.,
vol. 1, no. 1, pp. 1–7, 2015.

[8] M. Malik, K. Chiers, F. Boyen, S. Croubels, and D. Maes, ‘‘Porcine ear
necrosis,’’ Vet. J., vol. 271, May 2021, Art. no. 105655.

[9] N. van Staaveren, J. A. C. Díaz, E. G. Manzanilla, A. Hanlon, and
L. A. Boyle, ‘‘Prevalence of welfare outcomes in the weaner and finisher
stages of the production cycle on 31 Irish pig farms,’’ Irish Vet. J., vol. 71,
no. 1, pp. 1–9, Dec. 2018.

[10] J. Pessoa, C. McAloon, M. R. da Costa, E. G. Manzanilla, T. Norton,
and L. Boyle, ‘‘Adding value to food chain information: Using data on
pig welfare and antimicrobial use on-farm to predict meat inspection
outcomes,’’ Porcine Health Manage., vol. 7, no. 1, p. 55, Dec. 2021.

[11] A. Diana, L. Carpentier, D. Piette, L. A. Boyle, D. Berckmans, and
T. Norton, ‘‘An ethogram of biter and bitten pigs during an ear biting event:
First step in the development of a Precision Livestock Farming tool,’’ Appl.
Animal Behav. Sci., vol. 215, pp. 26–36, Jun. 2019.

[12] Y. V. D. Meer, W. J. J. Gerrits, A. J. M. Jansman, B. Kemp, and
J. E. Bolhuis, ‘‘A link between damaging behaviour in pigs, sanitary
conditions, and dietary protein and amino acid supply,’’PLoSONE, vol. 12,
May 2017, Art. no. e0174688.

[13] D. L. Teixeira, L. C. Salazar, D. Enriquez-Hidalgo, and L. A. Boyle,
‘‘Assessment of animal-based pig welfare outcomes on farm and at the
abattoir: A case study,’’ Front. Vet. Sci., vol. 7, Oct. 2020, Art. no. 576942.

[14] E. Brunberg, P. Jensen, A. Isaksson, and L. J. Keeling, ‘‘Behavioural
and brain gene expression profiling in pigs during tail biting outbreaks–
evidence of a tail biting resistant phenotype,’’ PLoSONE, vol. 8, Jun. 2013,
Art. no. e66513.

[15] A. Haigh and K. O’Driscoll, ‘‘Irish pig farmer’s perceptions and
experiences of tail and ear biting,’’ Porcine Health Manage., vol. 5, no. 1,
p. 30, Dec. 2019.

[16] S. Viazzi, G. Ismayilova, M. Oczak, L. T. Sonoda, M. Fels, M. Guarino,
E. Vranken, J. Hartung, C. Bahr, and D. Berckmans, ‘‘Image feature
extraction for classification of aggressive interactions among pigs,’’
Comput. Electron. Agricult., vol. 104, pp. 57–62, Jun. 2014.

[17] S. G. Matthews, A. L. Miller, T. PlÖtz, and I. Kyriazakis, ‘‘Automated
tracking to measure behavioural changes in pigs for health and welfare
monitoring,’’ Sci. Rep., vol. 7, no. 1, p. 17582, Dec. 2017.

[18] S. Wang, H. Jiang, Y. Qiao, S. Jiang, H. Lin, and Q. Sun, ‘‘The research
progress of vision-based artificial intelligence in smart pig farming,’’
Sensors, vol. 22, no. 17, p. 6541, Aug. 2022.

[19] A. Odo, S. McKenna, D. Flynn, and J. B. Vorstius, ‘‘Aerial image
analysis using deep learning for electrical overhead line network asset
management,’’ IEEE Access, vol. 9, pp. 146281–146295, 2021.

[20] E. Psota, M. Mittek, L. Pérez, T. Schmidt, and B. Mote, ‘‘Multi-pig part
detection and association with a fully-convolutional network,’’ Sensors,
vol. 19, no. 4, p. 852, Feb. 2019.

[21] D. Liu, M. Oczak, K. Maschat, J. Baumgartner, B. Pletzer, D. He, and
T. Norton, ‘‘A computer vision-based method for spatial–temporal action
recognition of tail-biting behaviour in group-housed pigs,’’ Biosyst. Eng.,
vol. 195, pp. 27–41, Jul. 2020.

[22] H. Ahn, S. Son, H. Kim, S. Lee, Y. Chung, and D. Park, ‘‘EnsemblePigDet:
Ensemble deep learning for accurate pig detection,’’ Appl. Sci., vol. 11,
no. 12, p. 5577, Jun. 2021.

[23] Z. Sha, H. Feng, X. Rui, and Z. Zeng, ‘‘PIG tracking utilizing fiber optic
distributed vibration sensor and YOLO,’’ J. Lightw. Technol., vol. 39,
no. 13, pp. 4535–4541, Jul. 1, 2021.

[24] J. Kim, Y. Suh, J. Lee, H. Chae, H. Ahn, Y. Chung, and D. Park,
‘‘EmbeddedPigCount: Pig counting with video object detection and
tracking on an embedded board,’’ Sensors, vol. 22, no. 7, p. 2689,
Mar. 2022.

[25] A. Alameer, I. Kyriazakis, and J. Bacardit, ‘‘Automated recognition of
postures and drinking behaviour for the detection of compromised health
in pigs,’’ Sci. Rep., vol. 10, no. 1, p. 13665, Aug. 2020.

[26] A. Alameer, I. Kyriazakis, H. A. Dalton, A. L. Miller, and J. Bacardit,
‘‘Automatic recognition of feeding and foraging behaviour in pigs using
deep learning,’’ Biosyst. Eng., vol. 197, pp. 91–104, Sep. 2020.

[27] T.-Y. Lin,M.Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, ‘‘Microsoft COCO: Common objects in context,’’ in
Proc. Eur. Conf. Comput. Vis. (ECCV). Cham, Switzerland: Springer, 2014,
pp. 740–755.

[28] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-
time object detection with region proposal networks,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[29] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot multibox detector,’’ in Proc. Eur. Conf.
Comput. Vis. (ECCV). Cham, Switzerland: Springer, Sep. 2016, pp. 21–37.

[30] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for dense
object detection,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2,
pp. 318–327, Feb. 2020.

[31] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, ‘‘Scaled-YOLOv4:
Scaling cross stage partial network,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 13024–13033.

[32] C.-Y. Wang, A. Bochkovskiy, and H.-Y. Mark Liao, ‘‘YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,’’
2022, arXiv:2207.02696.

[33] M. Oczak, G. Ismayilova, A. Costa, S. Viazzi, L. T. Sonoda, M. Fels,
C. Bahr, J. Hartung,M.Guarino, D. Berckmans, and E. Vranken, ‘‘Analysis
of aggressive behaviours of pigs by automatic video recordings,’’ Comput.
Electron. Agricult., vol. 99, pp. 209–217, Nov. 2013.

[34] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, ‘‘Simple online
and realtime tracking,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP),
Sep. 2016, pp. 3464–3468.

[35] N. Wojke and A. Bewley, ‘‘Deep cosine metric learning for person re-
identification,’’ in Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV),
Mar. 2018, pp. 748–756.

[36] N. R. Taylor, D. C. J. Main, M. Mendl, and S. A. Edwards, ‘‘Tail-biting:
A new perspective,’’ Vet. J., vol. 186, no. 2, pp. 137–147, Nov. 2010.

[37] J.-Y. Chou, K. O’Driscoll, D. A. Sandercock, and R. B. D’Eath, ‘‘Can
increased dietary fibre level and a single enrichment device reduce the risk
of tail biting in undocked growing-finishing pigs in fully slatted systems?’’
PLoS ONE, vol. 15, no. 10, Oct. 2020, Art. no. e0241619.

[38] A. Dutta and A. Zisserman, ‘‘The VIA annotation software for images,
audio and video,’’ in Proc. 27th ACM Int. Conf. Multimedia, Oct. 2019,
pp. 2276–2279.

[39] C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and
I.-H. Yeh, ‘‘CSPNet: A new backbone that can enhance learning capability
of CNN,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops (CVPRW), Jun. 2020, pp. 1571–1580.

[40] R. Padilla, S. L. Netto, and E. A. B. da Silva, ‘‘A survey on performance
metrics for object-detection algorithms,’’ in Proc. Int. Conf. Syst., Signals
Image Process. (IWSSIP), Jul. 2020, pp. 237–242.

59756 VOLUME 11, 2023



A. Odo et al.: Video Analysis Using Deep Learning for Automated Quantification of Ear Biting in Pigs

[41] F. Bashir and F. Porikli, ‘‘Performance evaluation of object detection and
tracking systems,’’ in Proc. 9th IEEE Int. Workshop PETS, Jun. 2006,
pp. 7–14.

[42] Q. Yang and D. Xiao, ‘‘A review of video-based pig behavior recognition,’’
Appl. Animal Behav. Sci., vol. 233, Dec. 2020, Art. no. 105146.

[43] M. McAuley, S. Buijs, R. Muns, A. Gordon, M. Palmer, K. Meek, and
N. O’Connell, ‘‘Effect of reduced dietary protein level on finishing pigs’
harmful social behaviour before and after an abrupt dietary change,’’ Appl.
Animal Behav. Sci., vol. 256, Nov. 2022, Art. no. 105762.

[44] I. Kyriazakis, A. Alameer, K. Bučková, and R. Muns, ‘‘Toward the auto-
mated detection of behavioral changes associated with the post-weaning
transition in pigs,’’ Front. Vet. Sci., vol. 9, Jan. 2023, Art. no. 1087570.

ANICETUS ODO (Member, IEEE) received the
B.Eng. degree in computer engineering, in 2001,
the M.Eng. degree, in 2009, and the Ph.D. degree
in engineering from the University of Dundee,
in 2022. He is currently a Postdoctoral Research
Fellow with the School of Biological Sciences,
Institute for Global Food Security, Queen’s Uni-
versity Belfast. His research interests include
image analysis and deep learning. He has been
involved in interdisciplinary research collabora-

tions with people in the academia and industry. Recently, he worked on
the application of deep learning for image-based monitoring of overhead
electrical towers. His works were presented at major conferences and
published in journals.

RAMON MUNS is currently a Principal Research
Officer and the Head of the Monogastric Research
Unit, Agri-Food and Biosciences Institute (AFBI),
and a Honorary Lecturer with Queen’s University
Belfast. He has nine years of expertise in pig
production research, involving management and
nutritional strategies to improve health and wel-
fare, and minimize the environmental impact of
pig systems. He has published 35 peer-reviewed
papers and over 45 scientific abstracts from

national and international conference proceedings. He co-supervised one
Ph.D. student. He and his team conduct their work in collaboration with
a wide range of research institutions at national and international levels as
well as with industry partners. His research interests include management
and nutritional strategies to support animal health and resilience, especially
in pigs born with smaller weights in large litters.

LAURA BOYLE received the M.Agr.Sc. and Ph.D.
degrees. She is currently a Senior Research Officer
with Teagasc with over 25 years of research
expertise in farm animal behavior and welfare
science. She is currently in the educational and
advisory roles with the Animal and Grassland
Research and Innovation Center, Moorepark. She
is also an Adjunct Professor with the School of
Veterinary Medicine, University College Dublin.
Additionally, she informing policy at the national

level, she was also an Expert with the European Food Safety Authority,
from 2020 to 2022, working on the new Scientific Opinion for Pig Welfare.
She has published almost 130 peer-reviewed papers, has over 300 scientific
abstracts in national and international conference proceedings, and co-
supervised almost 30 Ph.D. and master’s students. Her research interests
include link between animal health and welfare and the contribution animal
welfare can make to the sustainability of agriculture.

ILIAS KYRIAZAKIS is currently a Professor in
animal and veterinary science with the School
of Biological Sciences, Institute for Global Food
Security, Queen’s University Belfast. He is also a
veterinarian who is interested in the introduction
of disruptive technologies to livestock systems,
to improve animal health, welfare, and produc-
tivity while reducing the environmental impact
of their systems. His approach and his team are
characterized by multi-disciplinarity and he has

collaborated extensively with computer scientists and engineers to achieve
this, with a focus thus far being on the application of the technologies to
pig and poultry systems. A substantial part of his research is conducted in
collaboration with a variety of stakeholders, including the industry, so that
the solutions developed by his team enjoy applications.

VOLUME 11, 2023 59757


