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ABSTRACT Semantic similarity between concepts in knowledge graphs is essential for several
bioinformatics applications, including the prediction of protein-protein interactions and the discovery
of associations between diseases and genes. Although knowledge graphs describe entities in terms of
several perspectives (or semantic aspects), state-of-the-art semantic similarity measures are general-purpose.
This can represent a challenge since different use cases for the application of semantic similarity may
need different similarity perspectives and ultimately depend on expert knowledge for manual fine-tuning.
We present a new approach that uses supervised machine learning to tailor aspect-oriented semantic
similarity measures to fit a particular view on biological similarity or relatedness. We implement and
evaluate it using different combinations of representative semantic similarity measures and machine learning
methods with four biological similarity views: protein-protein interaction, protein function similarity,
protein sequence similarity and phenotype-based gene similarity. The results demonstrate that our approach
outperforms non-supervised methods, producing semantic similarity models that fit different biological
perspectives significantly better than the commonly used manual combinations of semantic aspects.

INDEX TERMS Semantic similarity, ontology, knowledge graph, supervised learning.

I. INTRODUCTION
The life sciences field has increasingly taken advantage
of ontologies to tackle the challenges of managing and
analyzing the growing volumes of biomedical data. In the
computer science context, ontologies are artifacts that express
knowledge about a domain in a shareable and computa-
tionally accessible form [15]. To enable such a description,
ontologies consist of classes that describe types of entities
in a domain and relationships between the classes as well as
restrictions, rules, and axioms. The ontology data model can
be applied to a set of individual entities to create a knowledge
graph (KG) [8], where the nodes represent ontology classes
and real-world entities, and edges are employed in defining
ontology classes’ relations and semantic annotations (i.e., the
assignment of a real-world entity to an ontology class that
describes it [18]).

The associate editor coordinating the review of this manuscript and

approving it for publication was Vincenzo Conti .

In the life sciences, we have witnessed in the last
decade not only an increase in the number and size of
available ontologies, with over 800 biomedical ontologies
in BioPortal [42] but also in their relevance in biomedical
data management and research [15]. Ontologies are also
increasingly used to support data analysis and mining. One
of the fundamental tasks in this area is measuring the
similarity between entities described in an ontology, i.e.,
semantic similarity [27]. A semantic similarity measure
can be defined as a function that estimates the closeness
in meaning between two entities. Ontologies allow the
description of complex biological phenomena that are not
easily captured in mathematical form. As such, they provide
the scaffolding for comparing biological entities at a higher
level of complexity by comparing the ontology classes with
which they are annotated. There are a wide variety of bioin-
formatics applications that benefit from using semantic sim-
ilarity over biomedical ontologies, namely protein-protein
interaction (PPI) prediction [7], [45], disease-associated
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genes identification [3], [14], and drug-drug interaction
prediction [1], [19].

The specificity of these data mining tasks contrasts with
the broad domains covered by many biomedical ontologies.
Large and successful biomedical ontologies often afford mul-
tiple perspectives over the entities it describes, i.e., semantic
aspects. A semantic aspect represents a perspective of the
representation of KG entities and can correspond to a given
set of property types or portions of the graph. For instance,
the Gene Ontology (GO) [37] describes protein function
according to three semantic aspects: the molecular functions
they perform, the biological processes they intervene in and
the cellular components where they are active. Moreover,
it can also be the case that multiple ontologies describe the
same real-world entities, each covering a different semantic
aspect.

Depending on our viewpoint of the domain or the analytical
task for which we want to use semantic similarity, some
semantic aspects may be irrelevant to a specific definition
of similarity. Consider the following example of comparing
proteins according to their function. From a biochemist’s
point of view, two proteins playing the same molecular func-
tions are very similar. However, these proteins can be very
different from a physiological perspective if they participate
in different biological processes at the whole-organism level.
Therefore, depending on our goal, different semantic aspects
should be considered in similarity computation. Selecting
which semantic aspects to use and how they should be taken
into account usually falls to the domain expert, rendering
semantic similarity applications dependent on fine-tuning.
This brings us to the challenge of tailoring semantic similarity
measures (SSMs) to fit a specific application and biological
perspective on similarity.

This work presents a novel approach that integrates
semantic similarity and supervised learning methods to learn
semantic similarity models tailored to capture particular
biological similarity views better, producing a supervised
similarity. Since no gold standard exists for the similarity
between complex biomedical entities, we take advantage
of objective similarities to train the models and evaluate
them [6]. These objective similarities rely on objective
representations of entities (e.g., gene sequence, domains) and
calculate similarity using mathematical expressions or other
algorithms (e.g., BLAST-based similarity for sequences).
Although these objective similarities do not provide the
broad spectrum comparison that semantic similarity supports,
they are known to relate to relevant characteristics of the
underlying entities. The results achieved on the benchmark
datasets demonstrate our approach’s ability to significantly
improve the estimation of similarity between biomedical
entities.

Our main contributions are the following:
• We propose a novel approach that considers the different
KG semantic aspects used to describe entities and relies
on ML to learn a supervised semantic similarity that fits
an objective similarity.

• We design a comparative evaluation that includes five
KG-based similarity measures based on embeddings or
taxonomic semantic similarity and eight ML methods.

• We report extensive experimental results demonstrating
that our approach can produce a supervised semantic
similarity that outperforms static semantic similarity for
21 benchmark biomedical datasets.

II. RELATED WORK
An SSM can be defined as a function that estimates the
closeness in meaning between two entities. Several SSMs
have been proposed, with most measures falling in the
category of taxonomic semantic similarity (also referred
to as ontology-based semantic similarity, or only semantic
similarity) [12]. However, KG embeddings, a more recent
research direction, can also be used to compute semantic
similarity [20], [33], [34].

Taxonomic semantic similarity compares entities based
on the taxonomic relations within the ontology graph [27].
Taxonomic SSMs are generally designed by an expert based
on assumptions about how an ontology is used and what
should constitute a similarity. They extensively use the
taxonomical aspect of an ontology, comparing classes based
on subclass/superclass relations. Taxonomic SSMs can be
distinguished based on the entities they intend to compare
since we can measure the similarity between either ontology
classes or real-world entities (annotated with a set of classes).
In the case of GO, semantic similarity can be calculated for
two ontology classes, for instance, calculating the similarity
between two GO classes (e.g., the GO term protein metabolic
process and the GO term protein stabilization); or between
two entities each annotated with a set of classes, for instance
calculating the similarity between two proteins. Each protein
can be annotated with several GO classes, so to assess the
similarity between proteins, it is necessary to compare sets of
classes rather than single classes.

For class-based semantic similarity, edge-based measures
rely on algorithms designed for graph analysis [23], [28].
However, the majority of methods explore the properties
of each class involved, typically relying on the information
content (IC) of a class, a measure of how informative (or,
in other words, specific) a class is, and then using it to
measure the shared meaning between two classes. IC can
be calculated using external data, for instance, the frequency
of annotations of entities in a corpus [29], or based on
intrinsic properties, such as the ontology’s structure [32].
In entity-based semantic similarity, each instance is described
with a set of classes which are then processed using one
of two approaches: pairwise or groupwise. In pairwise
approaches, the semantic similarity is calculated between
classes in one set and classes in the other (using class-
based measures). In groupwise approaches, the measures can
directly compare the sets of classes according to information
defined in the ontology, circumventing the need for pairwise
comparisons [25], [38]. Purely set-based and vector-based
approaches are rare. In vector-based approaches, the sets
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are compared through their vector representations, with each
term corresponding to a dimension.

Regarding embedding semantic similarity, an embedding
is a vector representation that maps each node to a
lower-dimensional space. The structure of its local graph
neighborhood and its graph position is preserved as much
as possible. Several methods for building KG embeddings
have been proposed [5]. While some focus on exploring the
graph facts solely (like translational distance models [4],
[41] or semantic matching [40], [43]), others also include
additional information, such as entity types, relation paths,
axioms and rules, or textual information. More recently, path-
based approaches, such as RDF2Vec [30] and OPA2Vec [34],
have been proposed by transforming the ontology graph into
node sequences. For these approaches, a KG is represented
as a set of random walk paths sampled from it, and then
natural languagemethods are applied to the sampled paths for
KG embedding. After employing KG embedding methods,
each entity is represented by a vector. It is then possible to
compute the KG embedding similarity between two entities
by computing the distance of their corresponding vectors in
Euclidean space. In the GO case, the embedding methods
represent proteins or GO classes in a low-dimensional space
such that similar nodes in the ontology graph correspond to
close points.

More recently, approaches that combine taxonomic seman-
tic similarity with ML have been proposed. GARUM [39] is
based on a supervised regression algorithm that receives sev-
eral similarity measures of hierarchy, neighborhood, shared
information, and attributes, and then predicts a final similarity
score. In evoKGsim [35], we have used genetic programming
over aspect-oriented semantic similarities to predict PPIs.
However, most of the work combining ontologies and ML
is focused on embeddings. Kulmanov et al. [20] provide
an overview of methods incorporating SSMs and ontology
embeddings into ML methods.

III. METHODS
We have developed a novel approach1 [36] to learn the
similarity between entities represented in KGs (Definition 1)
optimized towards a specific objective similarity. This
tailoring is achieved by considering the similarities for
different semantic aspects (Definition 2), as opposed to the
static SSMs (Definition 5).
Definition 1: A KG is a graph KG = (V ,E) where V is

the set of vertices that represent either ontology classes Vc or
individuals Vi, and E is the set of edges that are established
between vertices, representing either ontology-level axioms,
such as subclass statements or property restrictions and
the assignment of an individual to a class through type
declarations.
Definition 2: A semantic aspect is a subgraph extracted

from the full KG, KGSA = (V ′c,V
′
i ,E
′) rooted in class a,

where each vertex v′c ∈ V
′
c is a subclass (directly or through

1https://github.com/liseda-lab/Supervised-SS

inference) of a, each vertex v′i ∈ V
′
i is an individual of a class

in V ′c, and where each e
′
∈ E ′ corresponds to an edge between

elements of V ′c ∪ V
′
i .

Definition 3: A semantic similarity is a function that
compares two individuals based on their representations
in the KG and returns a numerical score that reflects the
closeness in meaning between the individuals.
Definition 4: An objective similarity is a similarity

metric that compares two individuals based on an objective
representation of a specific property (e.g. two proteins
represented by their amino acid sequences can be compared
through their sequence similarity score.)
Definition 5: A static semantic similarity is a semantic

similarity that does not consider additional external input or
tailoring to a specific objective similarity.

Figure 1 shows an overview of the approach. The first step
involves identifying the semantic aspects describing the KG
entities. Our approach takes as pre-defined semantic aspects
the subgraphswhen theKGs havemultiple roots (such as GO)
or the subgraphs rooted in the classes at a distance of one
from the KG root class. As an alternative, semantic aspects
can be manually defined. The next step is representing each
instance (i.e., a pair of KG entities) according to static KG-
based similarities computed for each semantic aspect. The
third step in our approach is to select the objective similarity
for which we want to tailor the similarity. The last step is
employing an ML method to learn a supervised semantic
similarity. The ML algorithms are used for regression where
the expected outputs are the objective similarity values. The
models returned in the second step are then the combinations
of the similarity scores of the three GO aspects.

In addition to the three GO aspects, the similarity is
also calculated for the HP phenotypic abnormality subgraph
for the gene dataset. Therefore, instead of three semantic
aspects, we consider four semantic aspects. However, the
general approach is independent of the semantic aspects, the
specific implementation of KG-based similarity and the ML
algorithm employed in regression.

A. DATA
Our approach takes as input an ontology file, an instance
annotation file and a list of instance pairs with objective
similarity values. We evaluate our approach using benchmark
datasets and two different KGs.

1) BENCHMARK DATASETS
The 21 benchmark datasets are presented in Cardoso et al. [6]
and are available online2 (dated June 2020). These datasets
explore four objective similarities based on protein and gene
properties. This resulted in one gene dataset and 16 protein
datasets, divided by species, level of annotation comple-
tion and objective similarity, and four additional datasets,
combining all species’ protein pairs in the same objective
similarity group. Datasets range from 264 individual proteins

2https://github.com/liseda-lab/kgsim-benchmark
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FIGURE 1. Overview of the proposed approach.

and 428 pairs to 27 thousand proteins and 158 thousand
pairs.

The protein datasets are constituted of proteins identified
by their UniProt Accession Numbers and annotated with GO
classes. The number of proteins and pairs for each protein
dataset is supplied in Table S1 of the Supplementary File.
The gene dataset has 2026 distinct human genes identified
by their Entrez Gene Code and 12000 gene pairs. Each gene
is annotated with GO classes and HP classes.

In the PFAM datasets, two objective protein similarities
based on their biological properties were employed: sequence
similarity and PFAM similarity. In PPI protein datasets,
two objective similarities were also employed: sequence
similarity and PPI similarity. Concerning the gene benchmark
dataset, the objective similarity is based on phenotypic
series.

• Sequence similarity (Simseq) measures the relationship
between two sequences, and it establishes the likelihood
for sequence homology. We infer homology (i.e.,
common evolutionary ancestry) when two sequences
share more similarity than would be expected by chance.
A sequence similarity value is aimed to approximate the
evolutionary distance between proteins.

• PFAM similarity (SimPFAM) is computed by comparing
the functional regions (commonly termed domains)
that exist in each protein sequence. Protein functional
domains were extracted from the PFAM [9]. Since
protein domains typically correspond to functional sites
of a protein, determining the similarity between domains
can help to define protein function.

• Protein-protein interaction similarity (SimPPI) has a
binary representation: 1 if the proteins interact, 0 oth-
erwise. Two proteins are considered to be similar if they
interact. PPIs are responsible for many critical functions
in biology and are highly relevant to disease states.

• Phenotypic series similarity (SimPS) is based on
OMIM’s Phenotypic Series [2], which are groups of
identical or similar phenotypes and their associated
genes. Phenotypic similarity reflects the similarity

between genes and can help to find biological modules
of functionally related genes.

2) GENE ONTOLOGY KNOWLEDGE GRAPH
GO [37] is the most widely used biological ontology.
It defines the universe of classes, also called ‘‘GO terms’’,
associated with gene product (proteins or RNA) functions
and how these functions are related to each other concerning
three aspects: (i) molecular function (MF), the activities that
occur at the molecular level performed by the gene product;
(ii) biological process (BP), the larger process in which the
gene product is active; (iii) cellular component (CC), the
cellular compartments in which the gene product performs
a function. Figure 2 shows a small fraction of the GO and
annotated proteins.

We built the GO KG with explicit type declarations that
link proteins to the GO classes describing them according
to their GO annotations. Therefore, the nodes of the GO
KG represent proteins or GO classes, while edges represent
relationships between the GO classes or links between
proteins annotated with GO classes. In this work, the GOKG,
with its three semantic aspects (BP, CC and MF), is used to
compute the similarity between two proteins for the protein
datasets and two genes for the gene dataset.

3) HUMAN PHENOTYPE KNOWLEDGE GRAPH
The HP [21] contains terms describing phenotypic abnormal-
ities found in human hereditary diseases. The HP is organized
as independent subontologies that cover different categories:
‘‘Phenotypic abnormality’’, ‘‘Mode of inheritance’’, ‘‘Clin-
ical course’’, ‘‘Clinical modifier’’ and ‘‘Frequency’’. Since
the subontology ‘‘Phenotypic Abnormality’’ is the ontology
branch that describes the phenotypes associated with the
gene, the HP KG comprises this subontology and HP
annotations. AnHP annotation associates a specific genewith
a particular HP class.

In the HP KG, the nodes are HP classes or genes. The
edges represent ontology relations or links between genes and
HP classes via their annotations. Figure 3 shows an example
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FIGURE 2. Example of a protein represented under three semantic
aspects of the Gene Ontology: biological process, molecular function and
cellular component. For simplicity, only a small portion of each semantic
aspect subgraph is shown.

FIGURE 3. Example of a disease represented under two out of five
semantic aspects of the Human Phenotype Ontology: phenotypic
abnormality and mode of inheritance. For simplicity, only a small portion
of each semantic aspect subgraph is shown.

subgraph of the HP KG. In this work, the HP KG is used to
compute the semantic similarity between two genes based on
the phenotypes that describe them.

B. STATIC SIMILARITY COMPUTATION
The following subsections present the specific details of
the five different KG-based SSMs: two based on taxonomic
similarity and three based on embeddings.

1) TAXONOMIC SEMANTIC SIMILARITY
We employ two state-of-the-art measures, derived by combin-
ing one IC approach (ICSeco) with one of two set similarity
measures (ResnikBMA, SimGIC), using the Semantic Mea-
sures Library 0.9.1 [13]. These were selected by their high
performance in the biomedical domain [24].

ICSeco is a structure-based approach proposed by Seco et
al. [32] based on the number of direct and indirect

descendants that measures how informative (or, in other
words, specific) a class is. It is given by

ICSeco(t) = 1−
log

[
Ndescendants(t)+ 1

]
log

[
Nnodes

] (1)

where Ndescendants(t) is the number of indirect and direct
descendants from term t (including term t), and Nnodes is
the total number of concepts in the ontology.
ResnikBMA is a pairwise approach based on the class-

based measure proposed by Resnik [29] in which the
similarity between two classes corresponds to the IC of
their most informative common ancestor. In this pairwise
approach, the semantic similarity between two instances is
calculated between classes in one set and classes in the other

ResnikBMA(e1, e2) =

∑
t1∈S(e1) sim(t1, t2)

2|S(e1)|

+

∑
t2∈S(e2) sim(t1, t2)

2|S(e2)|
(2)

where S(ei) is the set of annotations for entity ei and
sim(t1, t2) is the semantic similarity between class t1 and class
t2 and is defined as:

sim(c1, c2) = max {IC(c) : c ∈ {A(c1) ∩ A(c2)}} (3)

where A(ci) is the set of ancestors of ci.
SimGIC is a groupwise approach where the sets of classes

are directly compared according to information defined in the
ontology, circumventing the need for pairwise comparisons.
It was proposed by Pesquita et al. [25] and is based on a
Jaccard index in which each term is weighted by its IC

SimGIC(e1, e2) =

∑
t∈{S(e1)∩S(e2)} IC(t)∑
t∈{S(e1)∪S(e2)} IC(t)

(4)

where S(ei) is the set of annotations (direct and inherited) for
entity ei.

2) KNOWLEDGE GRAPH EMBEDDING SIMILARITY
We apply three KG embedding approaches, namely
RDF2Vec, TransE, and distMult, using an RDF2Vec python
implementation3 and the OpenKE library.4 These approaches
were selected because they represent the main types of
KG embedding techniques. RDF2Vec [30] is a path-based
approach adapted to RDF graphs, that employs neural
language models over randomwalks on the graph. TransE [4]
is the most representative translational distance embedding
approach that exploits distance-based scoring functions.
distMult [43] is a semantic matching approach that exploits
similarity-based scoring functions.

We generate protein or gene KG embeddings for each
semantic aspect using these approaches (parameters for
each embedding method are supplied in the Supplementary
File), and then, to compute the KG embeddings similarities,
we employ cosine similarity between the vectors representing
each entity in the pair.

3https://github.com/IBCNServices/pyRDF2Vec
4https://github.com/thunlp/OpenKE/tree/OpenKE-Tensorflow1.0
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C. SUPERVISED SIMILARITY COMPUTATION
Our approach combines the semantic similarities computed
for each semantic aspect and returns a supervised similar-
ity (see Algorithm 1). A supervised regression algorithm
computes the aggregation function. Therefore, each regressor
receives the similarity values for each semantic aspect
as input features (independent variables) and an objective
similarity value as the expected output (dependent variable)
and returns an aggregated similarity score as the predicted
output. We evaluate eight representative classes of ML
models to train regressors using scikit-learn 21.3 [22] library:
linear regression (LR), bayesian ridge (BR), K -nearest
neighbor (KNN), genetic programming (GP), decision tree
(DT), random forest (RF), XGBoost (XGB), and multi-layer
perception (MLP). Details and parameters are available in the
Supplementary File.

Algorithm 1 Supervised Semantic Similarity
1: ssm← semantic_similarity_measure
2: regressor ← regression_algorithm
3: function get_ss(ent_pairs, kg)
4: ss← ∅ ▷ dictionary to hold ss scores for each pair
5: root ← get_root(kg)
6: semantic_aspects← get_sa(root)
7: for s in semantic_aspects do
8: sg← get_sg(s) ▷ subgraph rooted in s
9: for e1, e2 in ent_pairs do

10: ss[e1, e2].append(compute_ss(e1,e2,sg,ssm))
11: return ss
12: function get_sup_ss(ent_pairs, objective_sim, kg)
13: ss_scores← get_ss(ent_pairs, kg)
14: X_train,X_test ← split_train(ss_scores)
15: y_train, y_test ← split_train(objective_sim)
16: model ← create_model(regressor)
17: model.fit(X_train, y_train)
18: sup_ss_scores← model.predict(X_test)
19: return sup_ss_scores

IV. RESULTS AND DISCUSSION
The focus of our evaluation approach is to assess the
ability of our approach to improve semantic similarity
computations, avoiding the need for expert knowledge.
For each combination of an SSM with an ML algorithm,
we compute the Pearson’s correlation coefficient between
the obtained supervised similarity (predicted values) and the
respective objective similarities (expected values). For cross-
validation, each dataset is split into ten folds. The same ten
folds are used throughout all the experiments. For each fold,
we take that fold as the test set and the remaining nine folds as
the training set. Each ML algorithm learns on the training set
and outputs its predictions for the test set, where the Pearson
correlation coefficient is calculated. The results we report
are the median and the interquartile range (IQR) of the ten
Pearson correlation coefficients calculated on the ten folds.

We compute the static similarity for each semantic aspect and
use, as baselines, the single aspect similarities and two well-
known strategies for combining the single aspect scores, the
average and maximum. By comparing these baselines to the
supervised approaches, we aim to investigate the ability of
ML methods to learn combinations of semantic aspects that
improve the calculation of similarity.

Table 1 compares the results obtained using static
similarity and supervised similarity for sequence, PFAM,
PPI and phenotypic series similarities. The static similarity
was obtained using different SSMs, and then the Pearson
correlation coefficient was computed for each objective
similarity. Regarding supervised similarity, the median and
IQR of Pearson correlation values were calculated for the
proposed approach using an SSM with an ensemble method
(XGB or RF) for each objective similarity, the combinations
previously shown to produce the best results. For the sake
of brevity, Table 1 only shows the results for the protein
datasets with one level of annotation combining all species’
protein pairs in the same objective similarity group. However,
Tables S5-S8 of the Supplementary File provide the results
for the remaining protein datasets, SSMs and ML algorithms
and show that the combination of SSM-ML that increases
performance is always composed of a taxonomic SSM and
an ensemble method.

A. STATIC SIMILARITY
The behavior of the five similarity-based semantic measures
employed is, for most datasets, consistent. Comparing the
two taxonomic semantic similarity approaches, we verify
that, in most cases, the maximum correlation is achieved
when the ResnikBMA approach is used. Regarding the KG
embedding approaches, TransE has performed worse than
the other embedding methods. Therefore, the results obtained
with TransE were excluded from Table 1 but are shown in the
Supplementary File. distMult, a semantic matching method,
is the second-best class of embeddings. Finally, RDF2Vec
achieves the maximum correlation in the majority of datasets.

The differences between KG embedding approaches are
not unexpected since the methods that put more emphasis
on local neighborhoods, such as translational distance
approaches, are less suitable since they fail to capture
longer-distance relations. This is relevant when most of the
information to be processed is represented in the ontology
portion of the KG, where taxonomic relations play an
essential role. RDF2Vec, a path-based approach, can capture
taxonomic (longer-distance) relations, which translates into a
broader representation of the entities, achieving better results
than the other embedding methods in most experiments.

When comparing the two types of semantic similarity,
taxonomic similarity performs well across many evaluations
and, in most datasets, performs better than embedding
similarity. The initial assumption was that embedding simi-
larity could outperform taxonomic similarity since semantic
similarity is limited to the taxonomic relations within the
ontology. In contrast, embeddings consider all types of
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TABLE 1. Pearson correlation coefficient between the objective similarity and different SSMs for the baselines and the median and IQR of Pearson
correlation coefficient between the objective similarity and supervised similarity obtained using XGB or RF. In bold, the best result for each PPI_ALL1
dataset-SSM.

relations, and therefore, the embedding representations could
be more informative in principle. However, the ability of
taxonomic similarity to take into account class specificity
may give it the advantage over embedding similarity to
estimate similarity more accurately. Besides, taxonomic sim-
ilarity measures are usually hand-crafted, providing human-
interpretable results for further analysis. On the contrary,
embedding methods describe an entity as a numerical vector
and, most of the time, are not interpretable since it is not
possible to obtain an explanation for the results.

It is also important to point out the differences between
semantic aspects. These differences depend on the objective
similarity we are considering. For the sequence similarity,
the differences between semantic aspects are not relevant,
and no semantic aspect is clearly superior to others. Previous
works [16] already suggested the absence of a strong
correlation between sequence and semantic similarities since
there are many proteins with low sequence similarity and
high semantic similarity. Concerning the PPI similarity,
proteins interacting in a cell are expected to participate in
similar cellular locations and processes. As expected, the
results indicate that using only the semantic similarity for
MF provides worse results than the other single aspects.
In opposition, we verify that the MF is a relevant semantic
aspect for the PFAM similarity. The more functional (or
PFAM) domains two proteins share, the more likely it will be
to share molecular functions since these domains are usually
responsible for assigning functions to proteins. For the gene
dataset, the HP semantic aspect achieves better results than
the GO semantic aspects. These results were also expected

since the more phenotypic series two genes are associated
with, the more likely they share HP classes. Regarding static
combination approaches, in most cases, they achieve better
results than the single aspects, with the average combination
outperforming the maximum.

B. SUPERVISED SIMILARITY
The objective similarities reflecting different biological
features allow us to use ML algorithms to learn a supervised
similarity towards a domain viewpoint. We employ eight
representative ML methods, including classical, ensemble,
and neural network-based methods. The heat maps depicting
the median Pearson correlation coefficient between the
objective similarities and supervised similarity obtained with
different MLmethods and SSMs for each objective similarity
are supplied in the Supplementary File and facilitate the
comparison of ML algorithms.

Analysing the eight employed ML methods, the results
show that the regression models obtained by DT are globally
lower compared to the other ML algorithms. DT is one of
the most commonly used approaches for supervised learning.
However, since it is based on recursive binary splitting,
DT may not be suitable for the current regression problem
of finding the best combination of semantic aspects. LR and
BR also show lower correlations in many cases. LR and
BR assume a linear relationship between the independent
and dependent variables, which is not valid for many cases.
This characteristic may explain why theseMLmethods could
not learn suitable combinations of semantic aspects. While
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KNN, GP, and MLP achieve comparable results, ensemble
methods, like XGB and RF, achieve higher results in most
experiments. This is not unexpected since ensemble methods
combine the decisions from multiple models to improve the
overall performance. These methods have been successfully
applied to different domains [31].

The results indicate that taxonomic semantic similarity is
a more suitable similarity-based semantic representation for
learning. Although the static similarity results have already
demonstrated that taxonomic semantic similarity achieves
higher correlations than KG embedding similarity, these
differences are more evident when we apply ML methods.
Interestingly, statistical tests (see the Supplementary File)
show that significant performance differences are more
common when comparing SSMs rather than ML methods.
Therefore, it is not straightforward to identify the best
combination of SSMwith anML algorithm that will work for
all datasets and use cases. Nevertheless, the results support
that combining a taxonomic SSM (ResnikBMA or SimGIC)
with an ensemble method (RF or XGB) is a safe choice.

C. STATIC VERSUS SUPERVISED SIMILARITY
The results in Table 1 show that whatever the ensem-
ble method and taxonomic SSM, supervised similarity
consistently achieves higher correlation values than static
similarity. Improvements over the single aspect similari-
ties are consistent for all datasets and also clear when
considering the combination baselines. However, there are
some differences between the objective similarities. For
sequence similarity, it is known that the relationship between
sequence similarity and semantic similarity is non-linear [26],
so improvements over the best static similarity are very
pronounced (up to 58% for PPI_ALL1). Regarding PFAM
similarity, supervised similarity outperforms both single
aspects and static combinations (average and maximum),
although the improvements are more relevant for single
aspects. Concerning PPI similarity, improvements over the
single aspect baselines are, as expected, more pronounced
for the MF baseline (between 44 and 47%). The differences
between static and supervised similarity are much more
accentuated in the gene dataset for the GO single aspects.

It is important to note that, although interpretable models
achieve lower performance values than black-box models in
most cases, as shown in heat maps (Figures S1-S5 of the
Supplementary File), the supervised similarity obtained using
LR and GP can still improve over the baselines. Furthermore,
we verify that also for embedding similarity, our approach can
learn a combination of semantic aspects that outperforms the
best static similarity.

To better compare the static similarity and our supervised
similarity, we also generated violin plots. Figure S6 of the
Supplementary File shows, for each dataset, three violins: the
distribution of the objective similarity values; the distribution
of supervised similarity obtained using one of the best
SSM-ML method combinations, ResnikBMA coupled with

XGBoost; and the distribution of the static similarity using the
average of the single semantic aspects similarities computed
with the best overall measure, ResnikBMA. For the sequence
similarity, the distribution and the median for the objective
and supervised similarity values are very similar but differ
entirely from the static similarity. Regarding PPI and PFAM
and phenotypic series similarities, the supervised similarity
distribution has a broader range of values than the static simi-
larity, which is closer to the objective similarity distributions.
In the PPI similarity, the shape of the distribution of the
supervised similarity is also closer to the objective similarity,
with two wider areas closer to zero and to one. These results
confirm our approach finds semantic aspect combinations
that capture a given similarity perspective.

1) SUPERVISED SIMILARITY INTERPRETABILITY
Although static SSMs, such as taxonomic SSMs, are hand-
crafted and interpretable, supervised learning can lead to
losing this valuable characteristic. Therefore, it is interesting
to compare ML algorithms not only in terms of performance
but also in terms of interpretability. The models obtained by
KNN, BR, MLP and ensemble methods are more challenging
to interpret, although some methods for explaining black-
box models have been proposed [10]. In opposition, the LR
models predict the target as a weighted sum of the feature
inputs. These linear equations have an easy-to-understand
interpretation. Table 2 shows, for each objective similarity,
an LR model obtained in one of the folds.

The solutions obtained by DT and GP are also, in principle,
interpretable. However, in both cases, trees may grow to be
very complex while learning complicated datasets, which can
raise some difficulty in interpreting the solutions. Figure 4
shows, for each objective similarity, a GP model obtained
in one of the folds. To allow a better understanding, these
models were simplified to remove redundant and inviable
code. Although the frequency in which a given variable
appears in a GP model does not necessarily measure its
importance for the predictions, the GP model analysis can
indicate which semantic aspects are most relevant for each
objective similarity. The obtained DT models are not shown
since they are very large with multiple levels deep, which
decreases their interpretability and visualization.

2) USING SUPERVISED SIMILARITY FOR PROTEIN-PROTEIN
INTERACTION PREDICTION
The supervised similarity tailored to relevant biological
similarities can be transferred to predictive tasks such as
the PPI prediction. In several works, the prediction of PPI
is formulated as a classification problem where a similarity
score for a protein pair exceeding a certain threshold
indicates a positive interaction [11], [17], [44]. Therefore,
we used our supervised semantic similarity tailored to the PPI
objective similarity to predict whether two proteins interact
and compared it with supervised similarity tailored to the
sequence similarity. Figure 5 compares supervised similar-

60642 VOLUME 11, 2023



R. T. Sousa et al.: Supervised Biomedical Semantic Similarity

TABLE 2. Linear regression models.

FIGURE 4. Parse trees representing GP models are shown for: (a) SimPFAM; (b) SimPPI; (c) SimPS.

FIGURE 5. Precision-Recall curves and area under the curve (AUC)
obtained for the PPI_ALL1 dataset using static similarity (Avg and Max),
supervised similarity tailored to PPI similarity (PPI-RF and PPI-XGB), and
supervised similarity tailored to sequence similarity (SEQ-RF and
SEQ-XGB).

ity with Precision-Recall curves evaluated using the best
overall SSM, ResnikBMA, coupled with two ML methods,
RF and XGB. The chart shows that the supervised similarity
tailored to PPI obtained with XGB generally achieves the
best AUC results. In contrast, the supervised similarity
tailored to sequence similarity achieves the worst results.
The difference between using the inappropriate supervised
similarity and the suitable one is dramatic: between 0.15 and
0.20 for XGB and RF, respectively. These results support
the importance of calculating a similarity appropriate for our
purpose.

The Precision-Recall curves for the remaining datasets
are supplied in the Figure S7 of the Supplementary File.
Comparing the charts for different datasets, we observe
that the supervised similarity tailored to the PPI similarity
obtained with XGB generally achieves the best AUC results.

V. CONCLUSION
Measuring the similarity between two gene products is
fundamental to biomedical informatics research. Biomedical
ontologies and KGs provide meaningful context to data
and support the comparison of biomedical entities through
semantic similarity. Many KGs afford different perspectives
on the data. However, existing SSMs are general-purpose
and typically depend on expert knowledge to select and
combine the relevant KG semantic aspects for each use case.
Tailoring semantic similarity to a viewpoint of the domain or
a particular use case in an automated fashion had not yet been
tackled.

We have developed a novel approach that considers the
different KG semantic aspects used to describe entities and
relies on ML to learn a supervised semantic similarity to
fit an objective biological similarity. It captures a specific
biological similarity view without needing domain experts to
fine-tune it.

To evaluate the effectiveness of our approach, we used
21 benchmark datasets, categorized by species, annotation
completeness level, knowledge graphs (KGs) used, and
objective similarity measures employed. The objective sim-
ilarities correspond to widely employed biological similarity
metrics - PPI similarity, protein function similarity, protein
sequence similarity and phenotype-based gene similarity -
and were used to train and test the supervised models. The
results show that our supervised similarity model achieves
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significant improvements over classical taxonomic SSMs as
well as the more recently proposed KG embedding-based
measures. Furthermore, it can find better semantic aspect
combination functions than static combinations emulating
expert knowledge. Finally, we demonstrate that tailoring an
SSM to the appropriate use case has a marked influence on
predictive performance based on SSM, as evidenced by our
case study on PPI prediction.

We evaluated both interpretable and black-box machine
learning algorithms and compared their performance and
interpretability. While the black-box models produced
predictions with higher accuracy in our experiments,
the supervised similarity obtained using LR and GP
still showed improvement over the baseline models and
allowed for an insightful analysis. This highlights the
need to explore the trade-off between performance and
interpretability.

Our approach is independent of the SSM and the chosen
ML method. Until now, we have combined eight represen-
tative classes of ML models with five SSMs that consider
semantic and structural information. Recently, embedding
methods, such as OPA2Vec [34], that also consider lexical
information, can be implemented and incorporated into our
methodology.

Although we have applied supervised ML algorithms to
tailor semantic similarity to different similarity objectives,
the proposed approach is versatile and can also be applied
to tailor semantic similarity to a specific learning task.
Consequently, there are multiple real-world tasks where KG-
based similarity is a suitable instance representation that can
benefit from this work. Future work should evaluate the
impact of supervised similarity in tasks such as drug-target
interactions or gene-disease associations.
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