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ABSTRACT In limited-resource edge computing circumstances such as on mobile devices, IoT devices,
and electric vehicles, the energy-efficient optimized convolutional neural network (CNN) accelerator
implemented on mobile Field Programmable Gate Array (FPGA) is becoming more attractive due to
its high accuracy and scalability. In recent days, mobile FPGAs such as the Xilinx PYNQ-Z1/Z2 and
Ultra96, definitely have the advantage of scalability and flexibility for the implementation of deep learning
algorithm-based object detection applications. It is also suitable for battery-powered systems, especially for
drones and electric vehicles, to achieve energy efficiency in terms of power consumption and size aspect.
However, it has the low and limited performance to achieve real-time processing. In this article, optimizing
the accelerator design flow in the register-transfer level (RTL)will be introduced to achieve fast programming
speed by applying low-power techniques on FPGA accelerator implementation. In general, most accelerator
optimization techniques are conducted on the system level on the FPGA. In this article, we propose the
reconfigurable accelerator design for a CNN-based object detection system on the register-transfer level on
mobile FPGA. Furthermore, we present RTL optimization design techniques that will be applied such as
various types of clock gating techniques to eliminate residual signals and to deactivate the unnecessarily
active block. Based on the analysis of the CNN-based object detection architecture, we analyze and classify
the common computing operation components from the Convolutional Neuron Network, such as multipliers
and adders. We implement a multiplier/adder unit to a universal computing unit and modularize it to be
suitable for a hierarchical structure of RTL code. The proposed system design was tested with Resnet-20
which has 23 layers and it was trained with the dataset, CIFAR-10 which provides a test set of 10,000
images in several formats, and the weight data we used for this experiment was provided from Tensil.
Experimental results show that the proposed design process improves the power efficient consumption,
hardware utilization, and throughput by 16%, up to 58%, and 15%, respectively.

INDEX TERMS FPGA accelerator, CNN accelerator, RT level design techniques, low power techniques,
reconfigurable accelerator, CNN-based object detection, low power consumption, high performance, mobile
FPGA.

I. INTRODUCTION
Convolutional Neural Network(CNN)-based object detection
application has been applied in various systems including
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Field Programmable Gate Array (FPGA) devices from
personal mobile devices to industrial machines such as
healthcare devices, smart surveillance systems, Advanced
Driver Assistance Systems (ADAS), drones, and logistics
robots [1], [2], [3], [4], [5], [6]. To achieve high accuracy
of recognition, CNNs have become an essential feature of
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many diverse object detection-adopted devices, whether it is
cloud-based or edge devices. The primary implementation
issue of the CNN application is that computing complexity
is above average and the power consumption amount is huge
to achieve fast processing speed and high accuracy at the
same time. High computing complexity also involves a large
number of operation units, and massive memory accesses
as well. The dynamic power consumption occurs over the
data transfer process and in the time-delay process of com-
puting operation. It seems impossible to make the real-time
inference of CNN-based object detection on mobile FPGA
devices which have limited hardware resources such as mem-
ory size and lower processor performance. In these power and
hardware resource-limited circumstances, to improve per-
formance and reduce power consumption, many researchers
have proposed CNN accelerators at various design levels
including system level, application level, architecture level,
and transistor level [7], [8], [9]. Recent studies have proposed
a flexible CNN accelerator design for FPGA implementation
at the system level and a flexible FPGA accelerator for vari-
ous CNN architectures from lightweight CNN to large-scale
CNN [11], [12], [13], [14], [15], [16].

Since CNN-based object detection applications become
more common technology for unmanned drones, autonomous
vehicles, ADAS systems on the vehicle, and industrial
automation systems, researchers have been conducting CNN
object detection-related research in terms of the following
topics; implementation on the mobile FPGA-SoC board for
real-time processing, accelerator design for mobile FPGA-
System-On-Chip (SoC), and hardware optimization tech-
niques, are becoming popular. To overcome the lack of
hardware resources on the mobile FPGAs such as Xilinx
Ultra 96 and Xilinx PYNQ-Z1 which are popular FPGA-SoC
devices implemented on drone and IoT devices, many
papers have been published to achieve high performance,
low power consumption, and real-time processing speed
[17], [18], [19], [20], [21], [22], [23], [24]. The main focus
of their proposed implementation techniques in those papers
is reducing the size of the CNN architecture, pre-processing
the input feature map, tightening pipe-lining design, size
adjustment of the input and output feature maps, and code
optimization [9], [25], [26], [27], [22], [28], [29], [30], [31].
Moreover, in previous our research, we verified that RT-level
optimization is able to not only reduce the processing time
but also, save dynamic power [32], [33], [34].

Therefore, in this work, we applied the low-power tech-
niques to the baseline RTL code of the CNN accelerator gen-
erated from the Tensil and applied the hardware-optimized
techniques to the proposed reconfigurable FPGA hardware
accelerator design through the proposed automated optimiza-
tion tool for RTL code. The rest of this paper is organized
as follows: Section II introduces the low-power techniques
in RT-level for energy-efficiently accelerating the CNN com-
puting operation and overviews the basic RT-level-based opti-
mization hardware design flow based on generated a baseline
CNN accelerator RTL code by Tensil. Section III describes

FIGURE 1. Vivado HLS design flow.

the architecture of the proposed accelerator and the design
details of data flow and processingmodules in two parts, opti-
mization & modularization and low power techniques. Sec-
tion V discusses the implementation and simulation results
with previous works. Finally, the conclusions are given in
Section VI.

II. BACKGROUND
To design the CNN accelerator on an FPGA-SoC board, the
use of CAD tools and platforms is required. Each manufac-
turer provides the CAD tools and development platforms for
the implementation process and reconfigurable components
and parts on the FPGA (e.g., Vivado from Xilinx, Quartus
Prime from Intel, and PYNQ). However, due to the closed
platform feature of the Xilinx FPGA products, in the High
Level of Synthesis (HLS) design flow as shown in Fig-
ure 1, the Vivado HLS system can verify the functionality
of the C/C++/System C code and convert the code to the
register-transfer level (RTL) code for the FPGA hardware
operation and optimization [7], [23], [35], however, once
the RTL code is generated by Vivado HLS Tool, the code
is no longer readable or modifiable. On the other hand, the
platform-based design flow can import the VHDL/Verilog
code to set as customized IP blocks so that we can easily
modify the hardware design at the RT level or gate level
and intuitively configure the data flow for Processing System
(PS) and Programmable Logic (PL) through the Vivado IP
Integrator.

A. PLATFORM-BASED DESIGN FLOW WITH RTL CODE
The platform-based design flow was introduced by Xilinx
Vivado which is an integrated design environment program
tool as shown in Figure 2. The RTL code can be imported into
the IP block, and it can be assembled with other peripheral
IP blocks and PS IP blocks to generate the hardware design
for the bitstream. Jupyter Notebook is a web-based primary
computing environment of the PYNQ which is linked to
Xilinx platforms [36]. PYNQ is running based on Python
on the Jupyter Notebook with Linux kernel on the FPGA.
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FIGURE 2. FPGA SoC platform design architecture.

FIGURE 3. Conventional register.

FIGURE 4. Local explicit clock enable(LECE).

However, the Python library is not fully supported in the
PYNQ.

B. BASELINE RTL CODE GENERATION FOR CNN
ACCELERATOR: TENSIL
Tensil is a set of tools for designing the accelerator includ-
ing an RTL generator, a model compiler, and a set of
drivers [24]. The basic processing flow is that using the
selected machine learning accelerator architectures on the
limited FPGA-SoC devices, it generates the RTL code by
using a model compiler. The primary advantage of Tensil is
that it is able to create an accelerator without quantization or
other degradation. Tensil applies a few of the optimization
techniques for the selected FPGAs, thus the optimization
performance is not effective enough. Previously we applied
our low-power techniques to CNN accelerator RTL code
and verified the performance [33]. In section III, we apply
the techniques to the Tensil RTL code and evaluate the
effectiveness of the techniques on the FPGA-SoC boards,
PYNQ-Z1.

FIGURE 5. Local explicit clock gating (LECG).

FIGURE 6. Bus-specific clock gating (BSCG).

C. LOW POWER TECHNIQUES AT RT-LEVEL
1) LOW POWER CLOCK TECHNIQUES
Clock Gating(CG) is a basic low-power technique to enhance
performance and efficiency by disabling unnecessary clock
cycles as shown in Figure 3. Standby states are included in
many parts of the CNN computing process. This leads to
a significant amount of power consumption. CG eliminates
unnecessary clock cycle occurrences. Local Explicit Clock
Enable (LECE) [37], [38], [39] is a method using ENABLE
signal for 2:1 multiplexer or multiplexed D flip-flop to update
the output on the rising edge of the clock only when the
ENABLE signal is high as shown in Figure 4. The more bits
are used as an input, the more ENABLE signals occur. The
Local Explicit Clock Gating (LECG) [37], [38], [39] has the
equivalent fundamental of the LECE as shown in Figure 5,
however, LECG has the advantage of reducing power con-
sumption in the case of the multi-bit of output, by updating
output at once when completing the output update.
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FIGURE 7. Enhanced clock gating (ECG).

Bus-Specific Clock Gating (BSCG) [37], [38], [39] utilizes
the clock gating technique and adjusts the EN signal based on
the comparison of I/O signals as shown in Figure 6. In terms
of power consumption, XOR gates are significantly lower
power-consuming logic gates for the gate-level power anal-
ysis compared to AND/OR gates. Enhanced Clock Gating
(ECG) [37], [39] consists of XOR gates to control the input
clock signals and enable signals when considering multi-
bit I/O data as shown in Figure 7. The efficiency of the
power reduction would be maximized when there are larger
pipelines and IO bit sizes.

III. ARCHITECTURE DESIGN OF ACCELERATOR
A. ARCHITECTURE OVERVIEW
The block diagram in Figure 8 shows a data flow of the pro-
posed processing unit design for an FPGA-based CNN object
detection accelerator. For the programmable logic, each type
of block is defined specifically and is modularized to enhance
the implementation efficiency of various CNN models. The
proposed architecture can be mainly divided into computing
processing logic and memory system as detailed as follows:
In the memory system, there are three main functional com-
ponents for the on-chip and off-chip data transfer to prepare
data for computation. First, the buffers are responsible for
storing data. All the weights and intermediate feature maps
are arranged in a layer-by-layer format which is stored in
external DRAM. When loading a tile of data to the on-chip
input/weight/output ping-pong buffers, they are arranged in
a unique format according to the requirement of computa-
tion mode. Second, a dispatching module employs Direct
Memory Access (DMA) engine through DMA descriptors
generated by the DMA control module to fetch required data
from DRAM or save the results back to DRAM. Third, the
on-chip data scheduling modules, consisting of scatter and
gather modules, realize the serial-to-parallel or parallel-to-
serial conversions, which manipulate the data flow for the
following computation or transmission.

B. THE PROPOSED RECONFIGURABLE ACCELERATOR
HARDWARE ARCHITECTURE
As shown in Figure 9, the IP block design for the CNN object
detection accelerator consists of referencing IP blocks and

FIGURE 8. Proposed processing system and programmable logic unit.

FIGURE 9. IP block design for CNN object detection.

customized IP blocks (top_pynqz1_0). In the top_pynqz1_0
block, there are hierarchically defined multiply-accumulate
units (MACs), POOLs, memory bandwidth, memory access
scheduler, and CONV computing modules. The original Ten-
sil’s RTL codes do not have hierarchical architecture, How-
ever, in this case, analysis of the RTL code would take a long
time.

The primary feature of FPGA devices is in reconfigura-
bility. Therefore, to maximize the flexibility of the FPGA-
SoC design, the proposed RTL code of the CNN acceler-
ator was designed with hierarchical and modularized main
modules including MACs, Conv, Multiplier, Adder, MUX,
and ALU as shown in Figure 10. This figure shows that
the proposed flexible accelerator design has the scalabil-
ity to support the different CNN architectures such as the
YOLO series and ResNet20. After the modularization of
the MAC unit, we applied our low-power techniques such
as clock gating, XOR gate, and OR gate for MUXs. This
design is able to accommodate add-on detectors, such as
Single-Shot Detectors (SSD) and Multibox detectors. For the
memory access modules such as InnerDualPortMem1, Dual-
PortMem1, MemSplitter, and MemBoundarySplitter, mem-
ory partitioning techniques are applied. To accelerate the
CPU computing operation, the memory reassignment tech-
nique has been applied so that the memory size and flow
would be changed once it detected the pre-assigned compu-
tation. For example, our target CNN accelerator architectures
should be using fixed 16-bit, then we can pre-assign the
memory size prior to the input data or the weight. This would
be helpful to compute the sequential computation operation
such as convolution operation.
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FIGURE 10. Flexible accelerator design overview.

FIGURE 11. Low power design flow.

FIGURE 12. Conventional MAC unit design.

IV. PROPOSED HARDWARE IMPLEMENTATION
A. LOW POWER HW DESIGN TECHNIQUES AT RTL
As shown in Figure 9, in this experiment, our optimization for
low power is targeted to the Tensil’s processing flow. Step 1.
Based on the neural architecture file, .tarch, Tensil helps
generate the TCU RTL code for basic hardware resource
design as shown in Figure 11. Step 2. After the RTL code
is generated, we applied our low-power techniques including
LECG, Split memory, BSC, and ECG. Step 3. Using Vivado,
we designed the hardware IP block. From the IP block design,
we were able to get the bit-stream file. Step 4. Based on
the customized bit stream, we were able to implement the
hardware accelerator for the CNN object detection algorithm.
Step 5. We simulated it on the FPGA board and evaluated the
power consumption of the target DNN-based object detection
processing by using Vivado.

FIGURE 13. Proposed MAC unit design.

The optimized multiplier design using a power-efficient
adder block based on power analysis was implemented at
RT-level as shown in Figure 13. In convolution computa-
tion, the computation complexity of the multipliers can cause
dynamic power consumption and delays. To reduce the com-
plexity of the adder and multiplier, first, we tested the full
adder designs through the transistor-level design process. For
the MAC module, Bus Specific Clock (BSC) is applied. In a
conventional register, the data input is active and lasts until
the end of the period. In this case, the power could be wasted.
When BSC is applied to register Z, the XOR can control
enabling the clock so that the clock toggles are not wasted.
Compared to the conventional design in Figure 12, the AND
gate and Latch were added to safely disable the clock without
allowing any glitches to reach the register clock.

B. PROPOSED MAC HARDWARE DESIGN
The detailed technique approaches are as follows: 1. MAC
unit is the major power consumption unit of the convolution
operation in which the data transmissions occur frequently.
This technique is applied to remove the wasted clock toggles
during the data input is deactivated. 2. The proposed adder
group with BSC can reduce the wasted clock toggles so that
it can reduce the power consumption of the adder unit. 3.
In stochastic multiplication, two unary bit-streams can be
operated using AND gate and the OR gate can be applied
instead of the MUX operation. Not only as the same as
MUX, OR gate can support parallel MAC operation, but
also, it consequences a reduced dynamic power consumption
result. Eventually, we utilized this parallel MAC structure
using OR gate as shown in Figure 13. Figure 14 shows the
proposed MAC pseudocode which has been applied to BSC
and OR-based MAC computing operations.

C. FLEXIBLE ACCELERATOR DESIGN FOR
MULTI-ARCHITECTURE AND OPTIMIZATION TECHNIQUES
Based on the analysis result of the target CNN architecture,
we customize the pipe-lining of the data flow and assignmax-
imized buffer capacity in the BRAM and external memory.
The fixed-point numbers are able to reduce the computa-
tion resource consumption and it also is able to reduce the
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FIGURE 14. Psuedocode for proposed MAC operation.

bandwidth requirements, however, for getting high perfor-
mance, the optimized size of bandwidth should be defined
by the analysis of the network architecture. Once the data
transmission size is fixed, memory splitting and merging
should be applied. Our CNN accelerator is based on the 16-bit
fixed point bandwidth which is given by the reference [24].
We modularize the RTL code based on thorough analysis,
which helps easy modification for implementing the accel-
erator design.

V. EXPERIMENT AND RESULTS WITH DISCUSSION
A. EXPERIMENT ENVIRONMENT
For the basic hardware platform, we chose the PYNQ-Z1
board instead of the regular ZYNQ-7020 board, where the
PYNQ is an open-source project from AMD [36]. It embeds
Xilinx ZYNQ-7020, and also provides a Jupyter-based frame-
work with Python APIs. The PYNQ-Z1 board has the
FPGA-SoC platform which is composed of PL and PS.
The basic software development tool is Jupyter Notebook,
a web-based software programming platform. It is also sup-
porting Python, C/C++ programming languages, and other
open-source libraries such as OpenCV. Our experiment envi-
ronment is as follows in Figure 15. The imported CNN
architecture is the Resnet-20. It has 23 layers and it was
trained with CIFAR-10 which provides a dataset of 10,000
images in several formats. We used the provided weight file
and converted the ONNX format of the ResNet Model [40].
ONNX, a machine learning (ML) model converter, provides

FIGURE 15. FPGA testbed (Xilinx PYNQ-Z1 FPGA).

FIGURE 16. HW resource report comparison of tensil sample simulation
and our work tested on PYNQ-Z1.

the converted ML model code in ONNX format. Tensil com-
piler generates three import artifacts, a .tmodel, .tdata, and
.tprog files. Once the .tmodel manifest for the model into the
driver is loaded, it tells the driver where to locate the binary
files, program data, and weights data. They were not open
data and, we are using them without any modification, so that
means the accuracy was not changed.

B. FPGA IMPLEMENTATION RESULTS
Compared with Tensil’s optimization result, we verified more
register buffers are activated for our proposed structure. Once
we check the functionality and performance result, then you
can modify the structure by RTL code modification. Then
we can improve the specific hardware resources and power
consumption of the design. Analyzing the result leads to
improved performance of CNN processing. Figure 16 shows
the power consumption reduction of the processing system
unit. We were able to archive the 43.9 (GOPs/W) as a power
efficiency result, compared to other FPGA board implemen-
tations, it increased 1.37 times. the hardware resource utiliza-
tion in DSPs is increased 2.2 times from the result of [24].

C. POWER CONSUMPTION RESULTS
Our optimization will decrease 16% of the dynamic power
consumption. Also, the total On-Chip power will deduct 20%
of the total power consumption. Once the global buffer is
activated, the unused global clock buffer and the second
global clock resource will help to improve the performance of
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TABLE 1. Comparison result of FPGA implementation.

the design. Moreover, this can be the solution to some high
fan-out signals to make the device fully functional. In the
pipeline logic, inserting an intermediate flip-flop(FF) can
improve the working speed of the device, however, too many
flip-flops make computational complexity. Our low-power
techniques show better performance than the performance of
FFs.

VI. CONCLUSION
In this article, the proposed highly reconfigurable FPGA
hardware accelerator showed improved performance in terms
of the processing speed and power consumption result during
inference of various CNNs. The hardware optimization is
conducted mainly for two purposes: to improve the through-
put and to reduce power consumption. For improving perfor-
mance, the minimized data transferring strategy was applied
by assigning the maximum amount of buffers during the
computations and by applying a controlled pipeline design
for minimized data access. For achieving energy efficient
results of CNN object detection operation, not only the data
access controlling for minimized memory access, but also we
proposed the RT level low power techniques-applied recon-
figured MAC units such as advanced clock gating-applied
adder, register Z with bus specific clock, and OR-basedMAC
architecture to RTL code of the proposed accelerator. The
proposed hardware accelerator for ResNet-20 was imple-
mented on mobile FPGA-SoC, PYNQ-Z1, and the power
consumption was measured during inference operation. As a
result, the throughput result showed a 15% improvement
compared with the baseline RTL code of the accelerator,
also power consumption was reduced by 16%, and hard-
ware utilization was increased by 58%. The object detection
processing speed was 9.17FPS, which shows that real-time
processing is feasible in mobile FPGA.
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