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ABSTRACT With the increasing penetration of renewable energy resources, such as wind and photovoltaic
(PV) production, in future microgrids, challenges arise due to the potential interruption of these resources
caused by changing weather conditions. In this paper, we propose a mixed-integer quadratic programming
(MIQP) based bi-level model for the optimal operation of microgrids under worst-case (WC) scenarios
of renewable energy resource outages. The upper-level problem formulates the minimization of energy
loss and load shedding in a demand-side management (DSM) program, as well as optimal charging and
discharging of electric vehicles (EVs) and energy storage systems (ESSs). The lower-level problem models
the maximization of renewable energy curtailment to account for the worst-case realization of renewable
resource outages. A decomposition and re-formulation method is adopted to solve the proposed bi-level
optimization model, which includes binary variables in both levels. The proposed model and algorithm are
implemented in the Julia programming language and solved with the Gurobi commercial solver. The model
is analyzed using a 33-node microgrid under different cases to evaluate its performance, showcasing optimal
microgrid operation results under worst-case renewable resource interruptions.

INDEX TERMS Microgrid, decomposition method, renewable resources, electric vehicles.

NOMENCLATURE
Set and Index
N Set of microgrid nodes, indexed by n.
H Set of hours, indexed by h.
B Set of microgrid lines, indexed by b.
S Set of scenarios, indexed by s.
K Set of value of the pieces of the curve,

indexed by k.
Parameters
rb, xb Resistance and reactance of the line,

respectively.
cph, c

q
h Cost of the real and reactive load cur-

tailment in demand side management,
respectively.

The associate editor coordinating the review of this manuscript and

approving it for publication was N. Prabaharan .

dpn,h, d
q
n,h Initial real and reactive load,

respectively.
σ s Probability of each scenario.
prn,h,s Power of renewable resources in each

scenario.
pevn,h,s Charging power of electric vehicle

stations in each scenario.
ρ Power factor of DG resources.
τ Percentage of load changes.
f
p
b,h, f

q
b,h Maximum real and reactive power

flow of the lines, respectively.

P
DG
n Maximum operating power of dis-

tributed generation.
Xn Maximum capacity of the battery.
ηchn , ηdisn Battery charging and discharging effi-

ciency, respectively.
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p̄chn , pch
n

Upper and lower bound of charging
power of battery, respectively.

p̄disn , pdis
n

Upper and lower bound of discharg-
ing power of battery, respectively.

ηevn Battery charging efficiency of the
electric vehicle.

socminn , socmaxn Minimum and maximum battery
energy in percent.

pch_ev
n

, pch_evn Minimum and maximum charging
power of electric vehicles, respec-
tively.

pdis_ev
n

, pdis_evn Minimum and maximum discharging
power of electric vehicles, respec-
tively.

drevn,h Energy demand of electric vehicles
for driving.

eevn,h, e
ev
n,h Minimum and maximum battery

energy capacity in electric vehicles,
respectively.

cevn,h Operating cost of electric vehicles.
βev
n,h Slope of the k-piece for linearizing the

cost curve.
pevn,h,k Power of the k-piece of the electric

vehicles.
pevh,k Maximum power considered for the

kth piece in linearization.
M Big number.
A Outage number of renewable energy

resource
Variables
f pb,h, f

q
b,h Real and reactive power flow of lines,

respectively.
Dp
n,h, D

q
n,h Shifted real and reactive load, respec-

tively.
Prn,h Dispatched power of renewable

resources.
Pevn,h Dispatched charging power of electric

vehicle stations.
PDGn,h Real power of distributed generation

(DG).
pchh , pdish Charging and discharging power of

the battery.
vn,h Microgrid node square voltage.
en,h Energy level of the battery.
enet_evn,h Net energy of battery charging and

discharging in electric vehicles.
pdis_evn,h , pch_evn,h Discharge and charging power of the

electric vehicle, respectively.
eevn,h State of energy in the battery of

electric vehicles.
Binary Variables
zn,h State of charge of the battery.
Idis_evn,h , Ich_evn,h State of charging and discharging of

electric vehicles, respectively.

nevn,h State of the vehicle to the grid (V2G).
αn Binary variable related to the state of

renewable energy resources.

I. INTRODUCTION
The primary sources of distributed renewable energy in
microgrids typically consist of wind turbines and photo-
voltaic systems. However, these resources are vulnerable
to fluctuations in weather conditions, which can result in
reduced power output or complete shutdowns. As a result,
any variations in the power generation from these resources
or their sudden interruption can significantly impact the
optimal operation of themicrogrid, as determined by the daily
operations of the microgrid operator.

Hence, the foremost challenge for microgrid operators is
to develop an optimal operating model that accounts for
potential interruptions or reductions in renewable energy
resources. The motivation behind this study is to address
the issue of optimal microgrid operation under worst-case
scenarios, wherein renewable energy resources face outages.
By incorporating such extreme conditions into the operating
model, the microgrid can be made more resilient, and
vulnerable points can be identified for further improvement.

A. BACKGROUND REVIEW
The authors of [1] have proposed an optimal power flow
model that utilizes the method of Lagrange Multiplier
to mitigate droop in AC microgrids. In [2], a model
that employs the Karush-Kuhn-Tucker (KKT) optimality
condition is proposed as a means to reduce operation
losses in DC microgrids. In [3], a comprehensive review
of various operational, planning, and control methods for
DC microgrids has been conducted, encompassing different
study objectives. In [4], a game theory-based approach has
been proposed with the aim of maximizing the profit of
microgrids in electricity markets. In [5], a proposed approach
utilizes an evolutionary algorithm based on Archimedes
optimization for optimizing the operation and planning
of microgrids, with the objective of reducing economic
costs and increasing microgrid profits. In [6], a heuristic
algorithm has been proposed as a solution for optimizing
the operation of microgrids, taking into account various
types of distributed generation resources with the aim of
minimizing economic costs. In [7], an approach based on
dynamic programming has been proposed for optimizing
the real-time operation of multi-energy microgrids, aiming
to achieve optimal performance. In [8], a framework based
on an integrated stochastic optimization model has been
proposed for joint operation and maintenance in a multi-
microgrid environment, with the objective of enhancing
resilience. In [9], an approach based on mixed integer
linear programming (MILP) has been proposed for enabling
buildings to participate in enhancing microgrid resilience
by leveraging synergies between microgrid and building

VOLUME 11, 2023 59805



S. Shakerinia et al.: Optimal Operation of Microgrids With WC Renewable Energy Outage

management systems. In [10], a generic method based on
AC load flow is proposed for optimizing networks by
incorporating distributed energy resources, with the objective
of reducing power losses. In [11], a bi-level optimized
operation strategy has been proposed with the goal of
enhancing economic benefits and reducing operational risks
in microgrids. In [12], a method utilizing deep Q learning
has been proposed to mitigate load shedding in microgrids.
In [13], a multi-stage stochastic optimization model based
on mixed integer linear programming is proposed for
microgrid operation under uncertainty of islanded conditions.
Lastly, in [14], an energy management approach based on
distributed robust model predictive control is proposed for
multi-island microgrids, with the aim of mitigating the
adverse effects of uncertain renewable energy output. In [15],
a novel control algorithm has been developed to effectively
handle the complexities associated with high levels of
PV power and energy storage system integration in island
microgrids. The algorithm aims to optimize the microgrid’s
operation, specifically targeting reduced operating costs.
In [16], a comprehensive overview is provided, covering
diverse topics such as optimal production planning, demand-
side management, fuel and emission limitations, and the
critical role of optimization in microgrid operations. In [17],
a novel mixed integer linear optimization model has been
introduced for the efficient energymanagement of large-scale
energy storage systems, taking into account demand-side
management strategies to maximize the total annual profit.
In [18], a cutting-edge multi-objective optimization approach
based on deep learning techniques has been proposed for
scheduling flexible microgrids. The approach utilizes a
two-stage optimization process to minimize switching and
operation costs, while maximizing the overall performance.
Finally, in [19], an elitist genetic algorithm has been proposed
for optimal coordination of protection devices in distribution
networks that incorporate distributed energy sources and
microgrids. The objective is to reduce the impacts of
interruptions and operational costs, ensuring robust and
efficient microgrid operations. In [20], a novel mixed integer
linear programming-based model has been proposed to
enable effective operation of three-phase microgrids, with
a specific focus on achieving optimal energy and load
balance. In [21], a multi-layered approach that employs
optimal power flow techniques has been presented for
the operation of microgrids, with a particular emphasis
on incorporating energy storage systems to enhance their
performance. Additionally, in [22], a stochastic formulation
based on mixed integer linear programming has been
introduced as an innovative approach for the optimal
operation of microgrids, taking into account the inherent
uncertainties associated with wind turbines, energy storage
systems, and demand response resources. These state-of-the-
art methodologies offer advanced strategies for optimizing
microgrid operations, addressing various challenges such as
load balancing, energy storage, and uncertainty management,
to improve their efficiency, resilience, and sustainability.

In [23], an innovative approach based on mixed integer
nonlinear programming has been proposed for the opti-
mal operation of multi-energy microgrids, with a specific
focus on reducing operating costs while also considering
environmental impacts. This approach leverages advanced
optimization techniques to enable efficient and sustainable
operation of microgrids. In [24], a three-level strategy has
been proposed for optimal stochastic operation of microgrids,
taking into account the charging of electric vehicles as a
key factor. This strategy aims to enhance the resilience of
microgrids by considering the uncertainties associated with
electric vehicle charging patterns and incorporating them
into the microgrid operation planning, thereby improving the
overall performance and reliability of the microgrid system.
In [25], a multi-agent-based hierarchical energy management
scheme for microgrids regarding flexible power and demand
response based on mixed integer linear programming (MILP)
is presented. In [26], a multi-stage energy management for
a hybrid microgrid with photovoltaic and hydrogen storage
based on MIQP is proposed. In [27], the authors proposed
a robust approach for residential microgrid energy manage-
ment with renewable resources, batteries, and demand-side
management. In the study [28], a control strategy based on
mixed model predictive control is proposed for the energy
management of grid-connected microgrids, considering bat-
tery, diesel generator, and photovoltaic systems. In [29],
an internal trading strategy has been proposed for optimal
energy management in the construction of microgrids with
combined cooling, heating, and power systems, aiming at a
multi-objective function. In [30], the authors have proposed
an optimal control strategy based on the inertia of the
weak grid-connected microgrid with a PV unit and energy
storage system to improve the dynamic response of the
microgrid. In [31], an optimal energy scheduling approach for
a microgrid with electric vehicles, based on electricity market
prices, is proposed to effectively manage the energy flow
and charge/discharge of electric vehicles in the microgrid.
In [32], an analytical optimization method is proposed for the
integration of photovoltaic sources, wind turbines, and energy
storage systems to improve microgrid voltage and losses.
In [33], the authors have proposed a reinforcement learning
(RL) approach for battery scheduling, to optimize user
objectives in microgrid energy management. Table (1) has
been prepared to demonstrate the superiority and differences
of this study compared to recent studies.

B. RESEARCH GAP
As can be seen from the literature review and Table (1),
there is a gap in studies in the analysis of the worst
outage of renewable units. Most of the studies have either
not considered this important or have modeled uncertainty
and have not considered the complete outage of renewable
resources. Considering that the outage of renewable units
is modeled with a binary variable, it turns the proposed
problem into a mixed integer bi-level problem, which is
not the case in most microgrid studies. In this regard,
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TABLE 1. Differences between this paper with recent studies.

a precise algorithm to solve the proposed model should be
considered.

C. RESEARCH MOTIVATION
One of the main motivations of this research is to provide
an optimization model for microgrid analysis when the
worst renewable energy resource outage occurs. This makes
the microgrid resistant to the worst outage of renewable
resources. Another major challenge of this study is the devel-
opment of an algorithm to solve the proposed mixed integer
bi-level model. As we know, the proposed mixed integer
bi-level model cannot be converted into a single-level one
by the conditions of KKT and strong duality. In this regard,
an algorithm based on reformulation and decomposition
has been developed to solve the challenging mixed integer
bi-level model.

D. CONTRIBUTION
The main contributions of this study are as follows:

• Proposing a mixed integer bi-level optimization model
based on mixed integer quadratic programming for
the optimal operation of the microgrid considering the
worst-case of renewable energy resource outage.

• Presenting an algorithm based on reformulation and
decomposition to solve mixed-integer bi-level problems
that have binary variables on both levels.

• Considering the optimal operation of distributed gen-
eration resources, demand side management, opti-
mal charging and discharging of ESS, and optimal
charging and discharging of electric vehicles in the
microgrid.

E. LIMITATION OF THE EXISTING STUDIES
One of the limitations of recent studies can be pointed to
the lack of modeling a mixed integer bi-level model due to
the complexity of the problem and its solution. A mixed
integer bi-level model cannot be solved by conventional
methods such as converting to KKT conditions and strong
duality because the binary variable exists in both levels; Also,
algorithms for solving bi-level problems, such as Benders
decomposition are not capable of solving such problems. As a
result, one of the limitations of recent studies is the lack of an
algorithm for solving mixed integer bi-level problems. As we
know, the modeling of various problems such as the problem
of the demand side management, charging and discharging
of batteries, charging and discharging of electric vehicles,
renewable resources, and distributed generation resources
in the optimal operation of microgrids in a bi-level model
increases the variables and limitations of the problem. As a
result, according to Table (1), there is a limitation on the
dimensions of the variables and limitations and problems
considered in the optimization ofmicrogrids in recent studies.
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In the next section, the proposed bi-level model and its
solution method are presented. In the third part, numerical
results are analyzed and finally, conclusions and suggestions
for the continuation of this study are presented.

II. THE PROPOSED METHOD
In this work, the bi-level optimization model is introduced
as the primary focus, followed by a description of the
decomposition-based method employed to solve the prob-
lem. The mixed integer bi-level model is divided into an
upper-level problem and a lower-level problem, which are
presented in detail below, outlining the formulation and
objectives of each problem.

A. UPPER LEVEL PROBLEM
The upper-level problem is a mixed integer quadratic pro-
gramming model for the optimal operation of the microgrid
with the presence of energy storage systems, demand-side
management programs, distributed generation, electric vehi-
cles, and renewable energy resources. The multi-objective
function of the upper-level problem is shown in (1a). The
proposed multi-objective function in the upper-level problem
includes the reduction of 5 terms, which are respectively
equal to reducing the cost of energy losses, reducing active
and reactive network load curtailment, reducing power
curtailment of renewable resources, and finally reducing the
power curtailment of electric vehicle charging stations.

min
∑
b∈B

∑
h∈H

H × rb
(
f p2b,h + f q2b,h

)
+

∑
n∈N

∑
h∈H

cph
(
dpn,h − Dpn,h

)
+

∑
n∈N

∑
h∈H

cqh
(
dqn,h − Dqn,h

)
+

∑
s∈S

σs

(∑
n∈N

∑
h∈H

(
prn,h,s − Prn,h

)
+

∑
n∈N

∑
h∈H

(
pevn,h,s − Pevn,h

))
(1a)

Equations (1b) and (1c) demonstrate the balance of active
and reactive power in the microgrid, respectively.∑
nm∈N

f pnm,h −

∑
mn∈N

f pmn,h + pdisn,h + Prn,h + PDGn,h − Dpn,h

− Pevn,h − pchn,h = 0 (1b)∑
nm∈N

f qnm,h −

∑
mn∈N

f qmn,h + ρPrn,h + ρPDGn,h − Dqn,h = 0 (1c)

Equations (1d) and (1e) indicate the limit of the total active
and reactive loads changed in the microgrid, respectively.
Constraints (1f) and (1g) indicate the range of changes in
active and reactive loads, respectively.∑

n∈N

dpn,h =

∑
n∈N

Dpn,h ∀h ∈ H (1d)

∑
n∈N

dqn,h =

∑
n∈N

Dqn,h ∀h ∈ H (1e)

dpn,h − dpn,hτ ≤ Dpn,h ≤ dpn,h + dpn,hτ ∀h ∈ H , n ∈ N (1f)

dqn,h − dqn,hτ ≤ Dqn,h ≤ dqn,h + dqn,hτ ∀h ∈ H , n ∈ N (1g)

The limits of the real and reactive power flow of the lines
are demonstrated by (1h) and (1i), respectively.

−f
p
b,h ≤ f pb,h ≤ f

p
b,h ∀h ∈ H , n ∈ N (1h)

−f
q
b,h ≤ f qb,h ≤ f

q
b,h ∀h ∈ H , n ∈ N (1i)

The constraint of microgrid node voltage is shown by (1j).

0.92 ≤ vn,h ≤ 1.12 ∀h ∈ H , n ∈ N (1j)

The square node voltage of the microgrid is obtained
according to equation (1k).

vn,h = vm,h − 2
(
rbf

p
b,h + xbf

q
b,h

)
∀h ∈ H , n ∈ N (1k)

The operating limit of distributed generation is demon-
strated by (1l).

PDGn ≤ PDGn,h ≤ P
DG
n ∀h ∈ H , n ∈ N (1l)

The charging and discharging limits of ESSs are demon-
strated in relations (1m) and (1n), respectively. The state of
energy in the battery is shown in relation (1o). Equation (1p)
demonstrates the limitation of the energy capacity of the
ESS.

pch
n
zn,h ≤ pchn,h ≤ p̄chn zn,h∀h ∈ H , n ∈ N (1m)

pdis
n

(
1 − zn,h

)
≤ pdisn,h ≤ p̄disn

(
1 − zn,h

)
∀h ∈ H , n ∈ N

(1n)

en,h = en,h−1+pchn,hη
ch
n −pdisn,h

/
ηdisn ∀h∈H , n∈N

(1o)

socminn Xn ≤ en,h ≤ socmaxn Xn ∀h ∈ H , n ∈ N (1p)

Equation (1q) demonstrates the charging limit of electric
vehicle charging stations.

0 ≤ Pevn,h ≤ Pevn,h,s ∀h ∈ H , n ∈ N , s ∈ S (1q)

Equations (1r) to (1bc) demonstrate the modeling of
electric vehicles in the microgrid. The net energy of battery
charging and discharging in electric vehicles according
to the efficiency of each battery is demonstrated in (1r).
Equation (1s) indicates the rate of injected and received
power from or to the microgrid by electric vehicles, which
is computed by the charging and discharging amount of the
battery. The state of charging and discharging of electric
vehicles is illustrated in (1t). Relations (1u) and (1v)
demonstrate the limitation of charging and discharging power
of electric vehicles, respectively. Equation (1w) indicates
the state of energy in the battery of electric vehicles.
Equation (1x) conducts the limitation of battery energy
capacity in electric vehicles. Relations (1y) and (1z) consider
the net energy of electric vehicle battery charging and
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discharging and the available energy of the electric vehicle
battery in the first and last hours. Equations (1bb) to (1bd)
illustrate the charging and discharging cost curves of electric
vehicle batteries.

enet_evn,h = pdis_evn,h − ηevn p
ch_ev
n,h (1r)

Pevn,h = pdis_evn,h − pch_evn,h (1s)

Idis_evn,h + I ch_evn,h = nevn,h (1t)

I ch_evn,h pch_ev
n

≤ pchevn,h ≤ I chevn,h p
ch_ev
n (1u)

Idis_evn,h pdis_ev
n

≤ pdisevn,h ≤ Idisevn,h pdis_evn (1v)

eevn,h = eevn,h−1 − enetevn,h −
(
1 − nevn,h

)
drevn,h (1w)

eevn,h ≤ eevn,h ≤ eevn,h (1x)

eevn,h=1 = eevn,h=24 (1y)

enet_evn,h=1 = enet_evn,h=24 (1z)

cevn,h = nevn,h

K∑
k=1

βevn,kp
ev
n,h,k (1bb)

nevn,h
(
eevn,h − eevn,h−1

)
≥ −

K∑
k=1

pevn,h,k , n
ev
n,h

(
eevn,h − eevn,h−1

)
≤

K∑
k=1

pevn,h,k (1bc)

0 ≤ pevn,h,k ≤ pevh,k (1bd)

As can be seen, equations (1bb) and (1bc) are non-linear.
To linearize these two equations, we use the big M-method.
By defining a new variable and a large parameter M ,
we add new constraints to the model. For this purpose,
the linear model of equation (1bb) is as follows. Note that
�t,n illustrates the product of two expressions nevn,h and
K∑
k=1

βevn,kp
ev
n,h,k .

cevn,h = �n,h (1be)

�n,h ≤ M × nevn,h

�n,h ≤

K∑
k=1

βevn,kp
ev
n,h,k (1bg)

�n,h ≥

K∑
k=1

βevn,kp
ev
n,h,k −

(
1 − nevn,h

)
×M (1bh)

�n,h ≥ 0 (1bi)

As can be seen, equations (1be) to (1bi) are completely
linear and replace equation (1bb). In the same way and
with the same method, equation (1bc) can be linearized,
by defining a new variable and a big number. In such a
way that 9n,h is equal to the new variable to define the
multiplication of two terms (eevn,h − eevn,h−1) and n

ev
n,h.

9n,h ≥ −

K∑
k=1

pevn,h,k (1bj)

9n,h ≤

K∑
k=1

pevn,h,k (1bk)

9n,h ≤ nevn,h ×M (1bl)

9n,h ≤
(
eevn,h − eevn,h−1

)
(1bm)

9n,h ≥
(
eevn,h − eevn,h−1

)
−
(
1 − nevn,h

)
×M (1bn)

9n,h ≥ 0 (1bo)

As presented, equations (1a) to (1bo) are the upper-level
problem. The common variable between the upper-level
problem and the lower-level problem is the power of
renewable energy resources (Prn,h).

B. LOWER LEVEL PROBLEM
In the lower-level problem, the maximization of renewable
energy sources is done. Bymodeling the lower-level problem,
the grid is operated with worst-case renewable energy
resource outages. The objective function of the lower-level
problem is shown in (2a). As can be seen, the increase in the
power outage of renewable energy resources is considered a
lower-level problem.

max
∑
n∈N

∑
h∈H

∑
s∈S

prn,h,s − Prn,h (2a)

The limitation of operating renewable energy resources is
illustrated in (2b). Here αn demonstrates the binary variable
related to the state of renewable energy resources. If αn
is equal to 1, renewable energy is active, otherwise, it is
disconnected from the microgrid. A demonstrates the outage
number of renewable energy resource units considered. In this
paper, the number of different outages is also considered
which is analyzed in the results section. It can be seen that
the lower-level model is in the form of relations (2a) to (2c).

0 ≤ Prn,h ≤ prn,h,sαn∀h ∈ H , n ∈ N , s ∈ S, αn ∈ {0, 1}

(2b)∑
n∈N

αn = A (2c)

Finally, the proposed bi-level optimization model is in
the form of relations (1) to (2). The method of solving the
proposed bi-level model is described in the next section.

C. PROPOSED SOLUTION METHOD
The proposed bi-level optimization problem is in the general
form of equations (3a) to (3d), that relation (3a) is the
objective function of the upper-level problem and (3b) its
constraints, and relation (3c) is the objective function of the
lower level and (3d) the constraints related to it.

min
∑
b∈B

∑
h∈H

H × rb
(
f p2b,h + f q2b,h

)
(3a)

+

∑
n∈N

∑
h∈H

cph
(
dpn,h − Dpn,h

)
+

∑
n∈N

∑
h∈H

cqh
(
dqn,h − Dqn,h

)
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+

∑
s∈S

σs

(∑
n∈N

∑
h∈H

(
prn,h,s − Prn,h

)
+

∑
n∈N

∑
h∈H

(
pevn,h,s − Pevn,h

))
s.t. (1b) − (1bo) (3b)

max
∑
n∈N

∑
h∈H

∑
s∈S

prn,h,s − Prn,h (3c)

s.t. (2b) − (2c) (3d)

As seen, the bi-level model (3) has a binary composite
structure in both levels, which we act as follows to solve it,
which is obtained from [34].

We subsequently utilize the reformulation-and-
decomposition scheme which executes the column-and-
constraint generation plot to calculate (4) by a master
problem and two subproblems. To demonstrate the steps of
the proposed computational methodology, we first write the
brief form (4) as follows.

min ax + by (4a)

s.t. By+ Crn = d (4b)

Ax + Dy ≥ l, xϵ {0, 1} (4c)

∥Hy∥ ≤ hy (4d)

where rn ∈ argmax {en (rn + yn) : (4e)

s.t. Gnwn + Enrn + Onyn = fn (4f)

Fnwn + Knrn ≤ kn (4g)

rn ≥ 0,wn ∈ {0, 1}} ∀n ∈ N (4h)

where x and y indicate the upper level binary and continuous
variables, and rn and wn display the lower-level continuous
and binary variables.

The coefficient matrices and vectors (A, a,B, b,En, en, l,
D, d,Fn, fn,Gn,H , h,Kn, kn,On) with suitable dimensions
are regarding these variables. In inequality (4d), we let
symbol ∥•∥ show the l2−norm for matrices (vectors).
Equation (4e) indicates the objective function and (4f)-(4h)
are the lower level’s primal constraints model.

For algorithm development, we need to build a decom-
posable structure; we have used [34] to reformulate the
bi-level model (4), so duplicating the lower-level variables
and constraints in the upper-level model and adding an extra
limitation (5e) as follows:

min ax + by (5a)

s.t. [(4b) − (4d)] (5b)

Gnw′
n + Enr ′

n + Onyn = fn,Fnw′
n + Knr ′

n ≤ kn (5c)

r ′
n ≥ 0,w′

n ∈ {0, 1} (5d)

en
(
r ′
n + yn

)
≤ max {en (rn + yn) : (5e)

s.t. Gnwn + Enrn + Onyn = fn,Fnwn + Knrn ≤ kn (5f)

rn ≥ 0,wn ∈ {0, 1}} ∀n ∈ N (5g)

where the repeated lower-level variables in the upper-level
are denoted by r ′

n and w
′
n. Notice that (5c)-(5d) are specified

for the worst-case realization of renewable resource outages.
Due to (5e), we derive that model (5a)-(5g) is equipollent
to the main optimization of the bi-level (3). Eventhough
more complex than (3), the reformulated problem (5a)-(5g)
propose a helpful outline to conclude non-trivial bounds to
problem (3). LetW be the set of all feasible realization of wn
and w̃n be a characteristic realization of wn. By enumeration
wn and presentation its continuous variables r̂nn , we can
rewrite (5e)-(5g) as follows:

en
(
r ′
n + yn

)
≤ max

{
en
(
r̂ w̃nn + yn

)
(6a)

s.t. Gnr̂ w̃nn + Enw̃n + Onyn = fn (6b)

Knr̂ w̃nn + Fnw̃n ≤ kn (6c)

r̂ w̃nn ≥ 0, w̃n ∈W, n ∈ N (6d)

When w̃n is given, it is observed that, the right-hand side
of (6a)-(6d) are a linear model. Moreover rather than having
a complete enumeration, (6a)-(6d) developed pursuant to a
subset W̃ ⊆W results in a relaxation of (5a)-(5g), or equality
the main bi-level problem (3). As explained in the next part,
these aspects enable us to develop the decomposition method
using the column-and-constraint generation method [35].

1) SUBPROBLEM
The following subproblem SP1n is formulated and calculated
for the worst-case renewable energy outage, for a given
upper-level decision (x∗, y∗):

SP1n : 9n
(
x∗, y∗n

)
= max en

(
rn + y∗n

)
(7a)

s.t. Gnwn + Enrn + Ony∗n = fn : λn (7b)

Fnwn + Knrn ≤ kn : µn (7c)

rn ≥ 0,wn ∈W (7d)

Eventhough the problem SP1n is a mixed-integer linear, for
a fixedwn, the rest of the problem is linear. The dual variables
of constraints (7b) and (7c) are denoted by λn and µn.
Specifically, SP1nproposes an optimal solution of lower-
level (3c)-(3d) for the investment plan (x∗, y∗n). However,
it could have several solutions. The second subproblem,
i.e., SP2, derives from one that is regarding the upper-level
problem. So SP2 is mixed-integer model, as follows:

SP2 : 9
(
x∗, y∗

)
= min ax + by (8a)

s.t. [(7b) − (7d)] (8b)

en (rn + yn) ≤ 9n
(
x∗, y∗n

)
∀n ∈ N (8c)

2) MASTER PROBLEM
With the formulations (5)-(6), the master problem is created
by: 1) duplicating the lower-level variables (show by
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FIGURE 1. Framework of the proposed approach.

w′
n and r ′

n) and constraints in the upper-level model; and
2) replacing the lower-level model (in iteration n) of a fixed
realization w̃jn ∈ W̃ ⊆ W by its Karush–Kuhn–Tucker
conditions (continuous primal variables are marked by r̂ jn,
and dual variables by λ

j
n and µ

j
n). The master problem’s

dense form is suggested within the algorithm description
(see (9) below and also [35]). In the following, the steps of the
modified column-and-constraint generation decomposition
method are given to solve the whole bi-level optimization
model. Let LB and UB be the lower and upper bounds,ϵ be
the optimality tolerance and τ be the repetition index.
This method dynamically provides more strong lower

bounds (from the master problem) and upper bounds (from
subproblems) and, in each iteration, it adds new variables
and constraints to the master problem until the difference
between bounds is not bigger than optimal tolerance ϵ.
The mathematical proof of the limited convergence of this
algorithm to the optimal value can be found in [34] and [35].
Fig. 1 demonstrates the framework of the presented approach.
Fig. 2 demonstrates the flowchart of the proposed bi-level
solution. It should be noted to confirm that the master
problem is a complementary program that can be transformed
into a regular mixed-integer quadratic program by linearizing
(9e)-(9f) using the big-M method. Accordingly, existing
commercial mixed-integer solvers can be used to compute all
subproblems and master problem.

The results of data analysis considering different study
cases are presented in the next part of the paper.

III. NUMERICAL RESULTS
In this paper, the microgrid of 33 nodes is considered
for the analysis of the proposed method and model. The
proposed microgrid has 33 buses and 32 lines, and distributed
generation resources are installed in nodes 6, 13, 16, 18, 22,
30, and 33. The energy storage system and PV resources are
installed in nodes 3, 6, 10, 14, 21, 26, 30, and 32, respectively.
As well as wind generation are located in nodes 6, 12, 17,
20, 27, and 33, respectively. Charging stations for electric
vehicles are located on nodes 8, 17, and 28, respectively.

FIGURE 2. Flowchart of the proposed decomposition algorithm.

FIGURE 3. Proposed 33-node microgrid.

TABLE 2. Data of batteries and DGs.

Figure (3) illustrates the schematic of the proposed
microgrid. The location of each of the wind renewable energy
sources, electric vehicles, and energy storage systems along
with photovoltaic sources is shown in this figure.

Table (2) illustrates the data related to the battery and
distributed generation resources. Lithium-type energy storage
systems with 95% efficiency are considered. The maximum
charge and discharge power is 100 kW and the maximum
battery capacity is 500 kWh. The initial energy of the
battery in the first hour is considered equal to 20 kW. The
minimum and maximum SOC of the battery is considered
to be 10 and 90%. The maximum power of distributed
generation resources is 1000 kW and the power factor is 0.85.
The maximum capacity of wind and photovoltaic renewable
sources for each unit is considered to be 500 kW.
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TABLE 3. Comparison of the results obtained from different cases in the
33-bus network.

To analyze the proposed model and show the impact of
the number of worst-case renewable resource outages, the
following cases are considered.
Case 1: Without the outage of renewable energy resources.
Case 2: The outage of two PV renewable energy units and

two wind units.
Case 3: The outage of four PV renewable energy units and

four wind units.
Case 4: The outage of six PV renewable energy units and

six wind units
Table (3) demonstrates the results of simulations in

different considered cases. Briefly, it can be seen that the
proposed model has been resistant to any number of worst
cases of renewable resource outage so that no load shedding
has occurred in any of the study cases. According to the
results of table (3), the impact of the worst-case scenario
of renewable resources outage is on the energy losses
and voltage of the nodes. It can be concluded that the
optimal operation of the microgrid in the upper-level problem
has caused no load curtailment with optimal management
between load and energy.

In the first case, where there is no curtailment of renewable
energy resources, the energy loss is equal to 0.166 MWh
and the lowest network voltage is equal to 0.9749 p.u. The
maximum production of distributed generation, PV, and wind
energy are 47.5, 2.62, and 3.6MWh respectively for 24 hours.
In the second case, two PV andwind renewable resource units
are disconnected from the microgrid. As can be seen, based
on the proposedmodel, the worst-case of renewable resources
outage in this case for PV is equal to nodes 14 and 21 and for
wind energy is equal to nodes 12 and 27. The energy loss,
in this case, is equal to 0.172 MWh and the lowest network
voltage is equal to 0.9740 p.u. The maximum production of
distributed generation, PV, and wind energy are 48.9, 2.05,
and 2.78 MWh respectively for 24 hours. In the third case,

FIGURE 4. Optimal charging and discharging of energy storage systems in
the first case.

four PV and wind renewable resource units are disconnected
from the microgrid. As can be seen, based on the proposed
model, the worst-case of renewable resources outage in this
case for PV is equal to nodes 10, 14, 21, and 32 and for wind
energy is equal to nodes 12, 17, 27, and 33. The energy loss,
in this case, is equal to 0.181 MWh and the lowest network
voltage is equal to 0.9734 p.u. The maximum production
of distributed generation, PV, and wind energy are 51, 1.5,
and 1.6 MWh respectively for 24 hours. In the fourth case,
six PV and wind renewable resource units are disconnected
from the microgrid. As can be seen, based on the proposed
model, the worst-case of renewable resources outage in this
case for PV is equal to nodes 6, 10, 14, 21, 26, and 32 and
for wind energy is equal to nodes 6, 12, 17, 20, 27, and 33.
The energy loss, in this case, is equal to 0.197 MWh and the
lowest network voltage is equal to 0.97 p.u. The maximum
production of distributed generation, PV, and wind energy are
53, 088, and 0 MWh respectively for 24 hours.

Finally, the simulation results showed that according to the
worst outage of renewable energy resources, the microgrid
with the proposed model has high flexibility and no load
curtailment occurred in any number of outages of renewable
energy resources. The results prove that the proposed model
and method can be effective in the operation of microgrids
with the possibility of the worst outage of renewable energy
resources.

Figure (4) demonstrates the optimal charging and discharg-
ing of batteries. The vertical negative axis indicates the charge
and the vertical positive axis indicates the discharge of the
batteries. As it seems, most batteries are charged in the early
hours when energy is cheap and discharged during peak
hours. It can be seen that all the batteries in the microgrid
have the same behavior, only their charging and discharging
power are different. In this figure, each color belongs to an
energy storage system in nodes 3, 6, 10, 14, 18, 21, 26,
30 and 32.

Figure (5) demonstrates the production of DG units. It can
be seen that most of the DG units have production during
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FIGURE 5. Production of DG units in the first case.

FIGURE 6. Charging electric vehicles in the first case.

peak times. In this figure, red, blue, green, purple, yellow,
orange, and gray colors indicate distributed generation power
in nodes 33, 30, 22, 18, 16, 13, and 6, respectively.

Figure (6) illustrates the charging of electric vehicles
during the day in the first case. It indicates the energy
purchased during the day in the first case. It can be seen
that most energy purchases are related to peak load times.
In this figure, the colors red, yellow, and blue demonstrate
the charging power of electric vehicles at nodes 17, 28, and 8,
respectively.

Figures (7) and (8) demonstrate the production of PV and
wind units during the day, respectively. In these figures, the
production of each PV or wind unit is shown with a different
color. As you can see, PV units only produce from 6:00
AM to 7:00 PM. In the same way, the highest production in
wind units is from 11 am to 2 pm and the lowest amount of
production is from 6 am to 10 am and 7 pm to 10 pm. It should
be noted that this amount of production for PV and wind units
is based on the worst-case scenario of the production of PV
and wind resources. In Figure (7), purple, blue, green, red,
gray, yellow, orange and black are the power of PV resources
in nodes 3, 6, 10, 14, 18, 21, 26, 30, and 32, respectively.
In Figure (8), blue, green, yellow, pink, orange, and red colors

FIGURE 7. PV generation in the first case.

FIGURE 8. Wind generation in the first case.

correspond to the power of wind units at nodes 6, 12, 17, 20,
27, and 33, respectively.

Figure (9) illustrates a comparison between the initial
network loads and the changed loads in the demand-side
management program. As can be seen, the peak load has been
reduced in the demand side management program. Here, the
blue curve illustrates the changed load in the demand-side
management program, and the orange curve is the initial
microgrid load (unchanged). This figure demonstrates the
exact performance of the demand side management in
reducing the microgrid peak.

Finally, Figure (10) demonstrates the voltage of distribu-
tion network buses every hour. It can be seen that most of
the voltage changes are in the range (0.996 to 1 p.u). This
illustrates that in the proposed model, the voltage of the
distribution network is well maintained within the allowed
range.

To illustrate the impact of battery energy storage systems
(BESS) on important microgrid indicators such as loss and
voltage, Table 4 has been prepared. Here, the case where the
battery is in the microgrid is also compared with the case
where the battery is not in the microgrid. As can be seen,
energy losses without batteries have increased by about 79%,
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FIGURE 9. Comparison between the initial network loads and the
modified loads in the first case.

FIGURE 10. Box plot of changes in the size of the distribution network
bus voltage during the day in the first case.

TABLE 4. The effect of battery in the optimization of microgrids.

this demonstrates the high impact of energy storage systems
in reducing microgrid energy losses. On the other hand, it can
be seen that the battery had an almost half percent effect on
improving the microgrid voltage.

IV. CONCLUSION
In this paper, a bi-level model based on mixed-integer
quadratic programming (MIQP)was proposed for the optimal
performance of microgrids in the worst case of renewable
energy resource outage, which is in the upper-level problem
of minimizing energy loss, and load shedding. It was
formulated in the demand-side management program and
modeled in the lower-level problem of maximizing output
and reducing renewable energy resources. At the lower
level, the worst-case realization of renewables is achieved,
and at the upper level, the optimal operation of the
distribution network is realized at the worst-case realization
of renewable resources. A reformulation and decomposition

based method considered to solve the proposed bi-level
model, which is more reliable than similar method. The
33-node microgrid has been considered for the analysis
of the proposed model and method, which proved the
accuracy and optimal performance of the proposedmodel and
method. In short, the following results were obtained after
simulating different modes of renewable energy resources
outage; a) the proposed model provides optimal operation by
considering the worst-case renewable resource outage, which
leads to reduced system vulnerability (load curtailment);
b) considering that the proposed model is a mathematical
optimization model of MIQP type, therefore, global optimal
solutions are guaranteed by the Gurobi solver; c) due to
the short time of solving the problem, it can be used for
larger and online networks. To continue this study, the
following are also recommended; 1) considering amulti-level
model to investigate the impact of the outage of renewable
energy resources at the level of the multi-area microgrids;
b) considering the gas network and modeling power-to-gas
(P2G) systems to investigate the conversion of surplus energy
to gas and sale to the natural gas network.
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