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ABSTRACT The automated classification and detection of vocal exclamations of panic made by human
beings in subway systems can enable more effective emergency response. Thus, in this study, we designed
four multiscale deep convolutional neural networks (models 1-4) with one- and two-dimensional layers for
detecting and classifying vocal exclamations of panic. First, we applied a decision-making framing-padding
algorithm formulated to preprocess vocal exclamations of panic. Vocal sounds were then mixed with noise
signals. Mel spectrogram, log-Mel spectrogram, and signal waveform data were used as learning data. The
implementation of an ensemble technique in model 1 improved classification performance by 0.25% and
0.75% in terms of the F1 score at signal-to-noise ratios (SNRs) of 15 and −15, respectively. Models 4 and 2
exhibited the best classification performance and achieved F1 scores of 99.74% (under SNR = 15)
and 80.56% (under SNR = -15), respectively. Model 2 performed the best in detecting screaming, quar-
relling, and loud talking when SNR= 15 (F1 scores of 94.59%, 49.06%, and 64.94%, respectively). Model 2
also performed the best in distinguishing screaming and non-screaming. Our models outperformed their
state-of-the-art counterparts in detection and classification at SNRs of 15 and 10.

INDEX TERMS Automatic classification, automatic detection, convolutional neural network (CNN), panic
sounds, signal preprocessing.

I. INTRODUCTION
Automated systems can be used to detect exclamations of
panic in an emergency and distinguish them from sounds
from people quarreling or talking loudly; these systems are
useful in subway systems because they can help station staff
detect and react to emergencies quickly [1]. Thus, in the
present study, we developed a convolutional neural network
(CNN) that classifies and detects panicked vocalizations on
the mass rapid transit (MRT) system in Taipei. We found that
Taipei MRT cars operate quite smoothly. It is unusual to see
passengers making much noise. Thus, loud exclamations are
highly likely to stem from an emergency. However, at present,
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station staff are made aware of these sounds only if they are
physically near the sound source or if a passenger makes a
noise complaint.

Due to a lack of datasets for human vocal exclamation of
panic and noise sounds, we developed our own two datasets:
one dataset with vocal signals collected from MRT cars
and the other dataset with noise signals. The vocal signals
were subject to deep preprocessing because (1) they dif-
fered in sample size and (2) they differed in how the vocal
volume evolved over time. For example, sounds of people
talking loudly tend to fluctuate in volume because they are
punctuated by brief moments of silence, whereas sounds of
screaming are consistently loud. Thus, to ensure that these
various types of signals can be processed by our system,
we developed an algorithm that we call the decision-making
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framing–padding algorithm. We blended sounds of human
voices that were screaming, talking loudly, or quarreling with
ambient noise, such as the sounds of moving or braking trains
or sounds of alerts for closing doors. We did so to produce
sounds that mimic those in a real-world train.

Feature extraction plays a key role in sound recognition [2].
Various two-dimensional (2D) and one-dimensional (1D) fea-
tures have been proposed in the literature [3]. In the present
study, we used spectrogram (2D) features and signal wave-
form (1D) features because they have been used in many
promising developments in the field [4], [5], [6], especially
those involving deep learning. The spectrogram is based
on the transformation of the signal waveform into a time-
frequency representation. In this manner, the amplitude of the
human panic sound is varied over time at different frequency
scales. On the other hand, signal waveform characterizes
variations in the amplitude of human panic sound over time.
Because each feature is differently described, we doubt that
the performance of each feature will be different. There-
fore, using two features concurrently can boost our model
performance.

Our convolutional layers are based on a multiscale sys-
tem, of which two types have been described in the litera-
ture [7], [8], [9]. Our multiscale system has different kernel
sizes. The proposed system differs from its state-of-the-art
counterparts in that 1D and 2D layers were consolidated and
executed simultaneously on the same model that facilitates
the presented work to overcome the drawbacks of each layer,
resulting in more accurate and robust.

Additionally, four deep convolutional learning models
were proposed. The models differed in structure which
resulted in different performance benefits. The convolutions
were 1D and 2D layers. The first model contained twomodels
of 1D and 2D separately. These two models were concur-
rently trained, and their predicted probabilities were fused to
each other. The remaining models were developed by con-
solidating the structure of the first model. The classification
and detection performance of each model were compared
with each other. Furthermore, for the first time, we compared
the classification and detection performance of the proposed
models with the state-of-the-art counterparts.

The remaining parts of the article are structured as follows.
Section II provides a literature review. Section III details the
classification phase. Section IV discusses feature extraction
and deep learning models. Section V describes the detection
phase. Section VI presents the results of our evaluation exper-
iments and Section VII gives the conclusions of this study.

II. OVERVIEW OF THE RELATED RESEARCH
In this section, we overview the research related to signal
preprocessing, noise and sounds in the subway systems, and
deep learning models.

A. SIGNAL PREPROCESSING
Many signal preprocessing techniques have been proposed
in the literature [10], [11], [12]. For example, in [13],

a random-padding algorithm was proposed to eliminate tem-
poral differences between environmental sound signals in
preprocessing. In [14], a zero-padding system was created
for preprocessing. In this system, signals of a shorter-than-
normal duration are padded with 0s. In [15], a preprocessing
system was developed for decomposing signals into small
sizes.

B. NOISE AND SOUNDS IN SUBWAY SYSTEMS
In [16], sounds from bells ringing, trains moving, and trains
braking, which are commonly found in subway systems, were
analyzed. We used similar types of noise in this study;
however, our implementation differed from that in [16],
as described in Section III of this paper.

C. DEEP LEARNING MODELS
Various multiscale systems have been proposed in the liter-
ature. Gong et al. [17] proposed three types of multiscale
CNNs with parallel convolutions to classify 1D, 2D, and
three-dimensional hyperspectral images. Thuwajit et al. [18]
proposed a multiscale CNN for detecting electroencephalo-
gram seizures, and this model performed well on three
datasets. Liu et al. [19] used a multiscale 1D CNN to diag-
nose motor faults and determined the optimal kernel size.
Jiang et al. [9], formulated amultiscale coarse-grained system
with 1D parallel convolutions to diagnose faults in wind
turbine gearboxes.

The major objective and contributions of this paper are as
follows:

1) Our system classifies and detects various vocal excla-
mations of panic. The classification was performed
under different noise conditions whereas the detection
was achieved by collecting more vocal sounds and
sample evaluation to determine the conditions of clas-
sifying noise.

2) We compiled a dataset by recording sounds of vocal
exclamations (which were then mixed with noise) or
using similar sounds from existing databases.

3) We designed a decision-making framing-padding algo-
rithm for preprocessing sound data. This algorithm dif-
fers from the framing [15] and padding [13] algorithms
in six respects. First, our algorithm proceeds in two
stages, and in each stage, the algorithm accepts a sound
signal only if it is louder than a certain threshold (the
level of human audibility in this study). Second, signals
with a smaller-than-desired sample size are fed into
the algorithm again until the desired sample size is
obtained. Third, no overlapping samples are present
between frames. Fourth, random padding is not used.
Fifth, zero padding is not used. Sixth, each generated
signal is labeled.

4) We developed two algorithms that are implemented
during classification and detection. One algorithm
fuses predicted probabilities from two models in the
classification phase, and another algorithm fuses the

59418 VOLUME 11, 2023



Y.-P. Huang, R. Mushi: Deep CNNs for the Classification and Detection

TABLE 1. Data collection for classification data.

loud-talking and quarrelling categories into a non-
screaming category. These algorithms aided the eval-
uation of how well our system distinguished screaming
from non-screaming.

III. CLASSIFICATION DATA COLLECTION AND DATA
PREPROCESSING ALGORITHM
In this section, we describe our approach to data collection,
our decision-making framing–padding algorithm for data
preprocessing, and our method for mixing vocal and noise
signals.

A. CLASSIFICATION DATA COLLECTION
We collected primary and secondary data. To collect primary
data, we recruited 17 volunteers (aged 21–26 years) who
made sounds of screaming, talking loudly, and quarreling
that were recorded on a Vivo mobile phone (Table 1). The
distance between the sound source and the mobile phone was
50–300 cm.

Sounds of the volunteers talking loudly were recorded
when they engaged in (1) conversation individually in groups
of 2, 3, or 4 people and (2) conversation concurrently with
others in groups of 2, 3, 4, or 5 people over 2–9 min.

Sounds of the volunteers screaming were recorded when
they screamed individually or in groups. When the partic-
ipants screamed individually, they screamed once, twice,
or thrice. However, when the participants screamed as a
group, they screamed once in groups of 2, 3, 4, or 17
(i.e., all participants together). The screams ranged from
0.5 to 7 s in duration.

Sounds of the volunteers quarrelingwere recorded in a sim-
ilar manner to sounds of them talking loudly and screaming.
The sounds of quarreling lasted for 1–4 min.

We collected the following secondary data from the
following sources: 186 recordings of people screaming,
7 recordings of people talking loudly, and 18 recordings of
people quarreling [20]. The vocal signals were down-sampled
to 6000 Hz and then filtered using a pre-emphasis technique
at a coefficient of 0.97. This down-sampling frequency was
selected according to the maximum frequency of the scream-
ing sounds [21] because screams tend to have the highest
frequency among the considered vocalizations.

B. DECISION-MAKING FRAMING-PADDING APPROACH
Our decision-making framing–padding algorithm was
designed to handle multidimensional signals in a dataset;
it discards signals with voices that are softer than a given
threshold (the level of human audibility in the present study).
This algorithm has several nested loops (comprising if and for
conditions) that govern whether it proceeds to a subsequent
stage; thus, the algorithm is named the decision-making
framing–padding algorithm. The inputs of this algorithm are
audio signals, a reference power level, and a desired sample
size. In the present study, the desired sample size was the
dimension of the generated signal or frame and was set as
24 000 samples (equivalent to 4 s). The reference power
was set as 1 × 10−12. The output of the algorithm is a
generated signal and its label. The algorithm proceeds as
follows. In general, the algorithm determines the length of
a signal and labels the signal. First, the algorithm determines
whether the signal length is of a higher-than-desired sample
size. If the aforementioned condition is achieved, then the
ratio (N ) of the desired sample size to the signal length
is calculated. Subsequently, the ceil() and tile() functions
are applied in sequence. The ceil function is used to round
up N , and the tile function [30] repeats the entire current
sample of audio signal N times until the desired sample
size is attained. Once the desired sample size is reached, the
signal power (in decibels) is calculated, as described in (1).
Subsequently, the algorithm determines whether the signal
power is above a given threshold (in this study, this threshold
is the level of human audibility), and a signal is stored in
a final dataset if and only if the signal power is higher than
this threshold. Specifically, in this study, screaming and loud-
talking sounds had to have power values of≥100 and≥90 dB,
respectively.

Our description in the previous paragraph is for a situation
in which the signal length is smaller than the desired sample
size. Now, we describe how the algorithm processes signals
of a length greater than the desired sample size. For these
signals, the ratio (N−1), the signal length to the desired sam-
ple size, is calculated. Subsequently, the algorithm applies the
modf() function to determine the integer and decimal part of
N–1, each of which is processed separately. The integer part
determines howmany of the generated signals and their labels
will be obtained. For example, if the integer is 2, it means two
signals and their labels will be generated. Moreover, for each
generated signal, the algorithm tests against the threshold,
and then signals and their labels are generated. The decimal
part indicates the remaining signal samples that need to be
included. The remaining signal samples are usually less than
the desired sample size, so we do the same as in the first stage,
where the signal length was less than the desired sample size.
After that, the algorithm again tests against the threshold, and
finally, signals and their labels are generated. The application
of this algorithm yields a set of signals of uniform sample size
and acceptable power. The algorithm flowchart is illustrated
in Fig. 1.
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FIGURE 1. Proposed decision-making framing–padding algorithm.

The average power is calculated as follows:

Pav =
1
n

·

n∑
k=1

s(tn)2 (1)

The threshold (in decibels) is calculated as follows:

threshold = 10 · log10

(
Pav
ref

)
(2)

FIGURE 2. Waveforms of noise signals of (a) alert of door closing and
(b) train braking.

FIGURE 3. Overview of the traditional method of combining audio signals.

where s(tn) is the signal waveform, n is the signal dimension,
and ref is the reference power.

In Fig. 1, thresholds one to three are the thresholds for
screaming, loud talking, and quarreling, respectively.

C. NOISE AND SOUNDS IN MRT TRAIN CAR
We recorded noise of the following types in an MRT car:
(1) trains braking, (2) doors opening and closing, (3) alerts
of the door closing, (4) trains speeding up, and (5) train
announcements. Recordings of train announcements were
made close to and far from a train speaker. The noise signals
had the same dimension as the desired sample size (Fig. 2).

D. TECHNIQUE FOR BLENDING AUDIO SIGNALS
The vocal and noise signals were linearly combined as
per the traditional technique for combining audio signals
(Fig. 3) [22]. This combination is encapsulated in the blend-
ing coefficient λ, which is dependent on the signal-to-noise
ratio (SNR). The term λ is calculated using (3), where x(t)
is the blended signal, v(t) is the vocal signal, n(t) is the noise
signal, Pv is the power of the vocal signal, and Pn is the power
of the noise signal.

λ =

√
Pv
Pn

· 10−
SNR
10 (3)

We initially collected a set of 331 signals, which became
1325 signals after being processed by the decision-making
framing–padding algorithm (Table 1). These 1325 signals
comprised 271 sound clips of people screaming, 393 sound
clips of people quarreling, and 661 sound clips of people talk-
ing loudly. These signals were mixed with the noise signals,
and the total number of signals increased to 7950 in the final
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dataset, which comprised 1626 sound clips of people scream-
ing, 2358 sound clips of people quarreling, and 3966 sound
clips of people talking loudly. We split the whole dataset
into 64%, 16%, and 20% for training, validation, and testing,
respectively. So, there were 1590 data in the test dataset.

IV. FEATURE EXTRACTION AND DEEP
LEARNING MODELS
A. FEATURE EXTRACTION
The audio signals in our dataset are spectrogram and time-
domain signals. The spectrogram signals were from Mel and
log-Mel spectrograms, whose formulas are presented in [14]
and [23], respectively. The time-domain signals, which are
denoted SIG-WAVE, comprised blended vocal and noise sig-
nals. Each spectrogram feature was also concatenated with
its first and second derivatives. We adopted horizontal [5]
rather than vertical concatenation [24], [25], [26], [27] and
used a method proposed in our previous study [14], in which
multiple image features are combined. The concatenations of
Mel and log-Mel spectrogram features with their derivatives
are denoted as MEL and log-MEL, respectively. The shape of
each concatenated spectrogram feature was (32, 1204), and
the shape of each SIG-WAVE feature was (24000).

B. DEEP LEARNING MODELS
We designed four deep multi-scale CNNs (named models
1 to 4). The goal is to choose some better models that out-
perform those state-of-the-art counterparts. Our CNN model
adopted three kernel sizes to capture different regions of input
features. These models are illustrated from Fig. 4 to Fig. 7,
where blue and brown bars represent convolutional layers and
maximum pooling layers, respectively. Maximum pooling is
used after every convolution. In general, maximum pooling
is advantageous because it results in smaller network sizes
for deeper networks. The yellow bar represents activation
layers, and the rectified linear unit function is used to boost
nonlinearity. Green bars represent the global average pooling
layers. Global average pooling is used to globally convert the
dimensions of a feature map. Finally, black bars represent
merge layers, which are used for concatenation.

Model 1 contains two sub-models: models 1a and 1b.
Model 1a contains several 2D layers and two parallel
branches, as illustrated in Fig. 4(a). The inputs for the two
branches are MEL and log-MEL, respectively. Each branch
then branches off further into three parallel streams. Each
stream contains three convolutional layers, three maximum
pooling layers, one activation layer, and one global average
pooling layer. The convolutional layers kernel size for the
first, second, and third streams were 3 × 3, 5 × 5, and 7 × 7,
respectively. The number of filters in convolutional layers for
each stream was set in the order of 8, 16, and 32, respectively.
The maximum pooling size is 2 × 2. The global average
pooling layer is used to convert 2D feature maps into 1D
feature maps. Because two parallel branches are present, two
merge layers are formed. These two merge layers are further

concatenated for the overall featuremaps to be generated. The
extracted feature is then passed to the fully connected (dense)
layer and dropout layer before being classified at the output
layer, where the SoftMax function is used as the activation
function. The number of units in the dense layer was 100, and
a dropout of 50% was used in this study to avoid overfitting
during training.

Model 1b receives signal waveforms as input; these wave-
forms are then fed to three parallel streams. These three
parallel streams have an architecture that is identical to that
of the parallel streams for one branch of model 1a in all
respects except for the dimensionality of the layers. Model
1b contains 1D layers. The outputs of the parallel streams are
then concatenated, and the resulting featuremap is transferred
to the fully connected layer and output layer, as illustrated in
Fig. 4(b).
Model 2 is a consolidatedmodel that is functionally similar

to the combination of models 1a and 1b. The feature extracted
from the consolidated structure is transferred to the fully con-
nected layer and finally classified at the output layer (Fig. 5).
Model 3 is identical to model 2 except for the following

point of difference. In model 2, the combined features formed
through the combination of models 1a and 1b—are fed to the
fully connected layer. However, in model 3, the combined
features are first reshaped to allow them to be fed to three
consecutive 1D CNNs. Each of these CNNs contains 16, 32,
64 filters, respectively, and has a kernel size of 10, 10, and 3,
respectively. The padding in model 3 is the same as that in
model 2. The output feature from the convolutional layer is
then passed to the global average pooling layer, dense layer,
and output layer (Fig. 6).
Model 4 is based on a modification of models 1a and 1b.

Specifically, we removed the fully connected layer and output
layers of models 1a and 1b and added one reshape layer and
three consecutive 1D CNNs followed by a global average
pooling layer, dense layer, and output layer to each of the two
models (Fig. 7).

1) PROPOSED ENSEMBLE TECHNIQUE FOR MODEL 1
Ensemble techniques are used to improve classification per-
formance. We trained models 1a and 1b simultaneously and
fused their predicted probabilities. Our ensemble technique
is illustrated in Fig. 8 and described in Table 2. First, the
combined predicted probabilities for models 1a and 1b are
represented as zero matrices (Pa and Pb, respectively). Sub-
sequently, a combined predicted probability matrix (P) is
constructed, where the element in row k and column iof P
is the greater-value element between Pa and Pb in row k and
column i.

2) EXPERIMENTAL SETUP AND EVALUATION METRICS
The experimental setup and performancemetrics were similar
to those in our previous study [14]. In addition, training ended
after 50 epochs, the categorical cross-entropy function was
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FIGURE 4. (a) Model 1a and (b) model 1b.

FIGURE 5. Model 2.

used as the loss function, andAdamwas used as the optimizer.

F1 score =
TP

TP+ 0.5(FP+ FN )
× wi (4)

MCC

=
(TP× TN ) − (FP× FN )

√
(TP+ FP) · (TP+ FN ) · (TN + FP) · (TN + FN )

(5)

where TP denotes the number of true positives, TN is the
number of true negatives, FP represents the number of false

FIGURE 6. Model 3.

FIGURE 7. Model 4.

FIGURE 8. Proposed structure of an ensemble technique of model-1.

positives, FN is the number false negatives, and wi denotes
the weight ratio of class i.

V. EVALUATION EXPERIMENTS
A. DATA COLLECTION FOR DETECTION
Data for the detection of human exclamations were collected
and preprocessed in the samemanner as that for classification
data. Specifically, we recorded an initial sample of 15 audio
clips; 7 clips were of volunteers screaming, 5 were of volun-
teers talking loudly, and 3were of volunteers quarrelling. This
sample expanded to contain 167 audio clips after being pre-
processed with the decision-making framing–padding algo-
rithm. These 167 clips comprised 37, 57, and 73 clips
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TABLE 2. Code procedure for fusing predicted probability of model-1.

of volunteers screaming, talking loudly, and quarrelling,
respectively.

B. PROPOSED TECHNIQUE FOR FUSING CATEGORIES
Categories can be fused, and performance on some combina-
tion of categories can be compared with performance on one
or some other combination of categories. We fused categories
by combining the predicted probabilities of two categories
and comparing the combined probability with the predicted
probability of the third category (Table 3).

TABLE 3. Fusion of categories on the basis of predicted probabilities.

VI. RESULTS AND DISCUSSION
A. CLASSIFICATION RESULTS OF MODEL 1
The classification output by eachmodel were also fused using
our ensemble technique. Table 4 presents the classification
results of model 1.

Model 1a exhibited its best performance when SNR =

15 (F1 score and Mathew correlation (MCC) of 99.24%
and 0.9878, respectively) and its worst performance when
SNR = −15 (i.e., high noise; F1 score and MCC of 77.20%
and 0.6316, respectively). When SNR= 15, model 1a labeled
327 (actual number = 325), 476 (actual number = 468),
and 787 (actual number = 785) clips as clips of screaming,
quarrelling, and loud talking, respectively.

Model 1b exhibited its best performance when SNR = 15
(F1 score and MCC of 98.05% and 0.9686, respectively) and
its worst performance when SNR= −15 (F1 score andMCC
of 54.86% and 0.4850, respectively).

When the ensemble technique was applied, model 1 exhib-
ited its best performance when SNR = 15 (F1 score and
MCC of 99.49% and 0.9919, respectively) and its worst per-
formance when SNR = −15 (F1 score and MCC of 77.95%
and 0.6434, respectively). According to the confusion matrix
of model 1 (Fig. 9), when SNR = 15, the model labeled 325,
472, and 793 clips as clips of screaming, quarrelling, and loud
talking, respectively.

The results indicated that (1) the models performed better
at higher SNRs, (2) model 1a outperformed model 1b at
almost all SNRs, and (3) the ensemblemethod yielded a slight
improvement in classification performance.

FIGURE 9. Confusion matrix of model 1.

TABLE 4. Classification performance of model 1 under different SNRs.

B. CLASSIFICATION RESULTS OF MODEL 2, 3, AND 4
Table 5 presents the classification results of models 2, 3, and 4
when SNR = 15. Model 2 exhibited its best performance
when SNR = 15 (F1 score and MCC of 99.37% and 0.9898,
respectively) and its worst (but still satisfactory) performance
when SNR= −15 (F1 score andMCC of 80.56% and 0.6870,
respectively). Despite model 2 performed well in distin-
guishing between loud-talking and quarrelling sounds when
SNR = 15; it misclassified four and six signals of quarrel-
ing and loud talking, respectively, as belonging to the other
category.

Similarly, model 3 exhibited its best performance when
SNR= 15 (F1 score andMCC of 99.56% and 0.9929, respec-
tively) and its worst performance when SNR= −15 (F1 score
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and MCC of 67.38% and 0.5054, respectively). Model 3 was
also good in distinguishing between sounds of quarrelling
and loud talking; it misclassified two and five signals of
quarrelling and loud talking, respectively, as belonging to the
other category.

Model 4 outperformed models 2 and 3. Model 4 exhibited
its best performance when SNR = 15 (F1 score and MCC of
99.74% and 0.9959, respectively) and its worst performance
when SNR= −15 (F1 score andMCC of 76.22% and 0.6402,
respectively).

TABLE 5. Classification performance of models 2, 3, and 4 under
different SNRs.

C. COMPARISON OF CLASSIFICATION PERFORMANCE
OF MODELS 1-4
Among the four models, model 4 performed the best overall,
and models 1 and 2 performed the best under high-noise
conditions. Specifically, if we set F1 score to be 80%, then
all four models met the threshold under higher noise of
SNR= −10 andmodel 2 can even sustain under SNR= −15.
Furthermore, model 4 had the highest number of train-

able parameters (213715), followed by model 2 (185683),
and model 1b had the lowest number of trainable parame-
ters (58579). Note that these figures were indicated later in
Table 6. Higher numbers of trainable parameters are more
favorable.

D. COMPARISON OF THE PROPOSED MODELS WITH
THEIR STATE-OF-ART COUNTERPARTS
IN CLASSIFICATION
The proposed models were compared with their state-of-the-
art counterparts at SNR values of 15 and 10 (Table 6).

The features used by the state-of-the-art methods differ
from those in our dataset. We used only those features of
Sharma and Kaul [28] that were feasible to implement when
running their method. The method of Sharma and Kaul [28]
achieved an F1 score and MCC of 95.54% and 0.9281,
respectively, when SNR = 15. Moreover, their method
achieved an F1 score and MCC of 93.60% and 0.8972,
respectively, when SNR= 10. The use of SIG-WAVE features
in the model 1b led to our models outperforming counter-
part [28] in terms of F1 score (2.51% and 4.14% higher at
SNR = 15 and 10, respectively).
For the method of Saeed et al. [22], we used the mean

coefficients as a feature from the Mel-frequency cepstrum

TABLE 6. Classification performance of the proposed models and their
state-of-the-art counterparts.

and combined them with the other remaining features. The
method of Saeed et al. [22] achieved an F1 score and
MCC of 95.09% and 0.9210, respectively, when SNR = 15.
Moreover, this method achieved an F1 score and MCC
of 93.77% and 0.8997, respectively, when SNR = 10.
The use of SIG-WAVE features in the model 1b led to
our models outperforming counterpart [22] in terms of F1
score (2.96% and 3.97% higher at SNR = 15 and 10,
respectively).

We trained the model of Liu et al. [19] in the following
manner. Because the blocks in the system of Liu et al. differ
in their dimensions, we adopted one convolutional layer with
a filter and a kernel size of 1 [29] to enable skip connec-
tions to be connected in the following block. We adopted a
batch size of 4 and adopted 64 units in the fully connected
layer. SIG-WAVE was used as the input. The method of
Liu et al. achieved an F1 score and MCC of 96.38% and
0.9424, respectively, when SNR= 15. Moreover, this method
achieved an F1 score and MCC of 90% and 0.8503, respec-
tively, when SNR = 10.
For the method of Jiang et al. [9], we extended their

architecture to contain four parallel branches. Four-scale,
coarse-grained signals were then generated and fed to parallel
branches. The method of Jiang et al. [9] achieved an F1
score and MCC of 99.56% and 0.9929, respectively, when
SNR = 15. Moreover, this method achieved an F1 score and
MCC of 99.87% and 0.9979, respectively, when SNR = 10.

59424 VOLUME 11, 2023



Y.-P. Huang, R. Mushi: Deep CNNs for the Classification and Detection

TABLE 7. Detection results of model 1 for three categories.

TABLE 8. Detection results of model 1 for screaming and non-screaming.

TABLE 9. Detection results of models 2, 3, and 4 for three categories.

Among the state-of-the-art methods, the method of
Jiang et al. [9] exhibited the best performance.

For the method of Gong et al. [17], we combined their
1D multiscale filter bank with the fully connected layer of

TABLE 10. Detection results of models 2, 3, and 4 for screaming and
non-screaming.

TABLE 11. Detection results of the proposed models and their
state-of-the-art counterparts for screaming and non-screaming.

our models. This method achieved an F1 score and MCC
of 92.13% and 0.8742, respectively, when SNR = 15. Fur-
thermore, it achieved an F1 score and MCC of 91.19% and
0.8589, respectively, when SNR = 10.

E. DETECTION RESULTS OF MODEL 1
The developed models detected sounds from all three cat-
egories (screaming, talking loudly, and quarrelling) poorly
when SNR = 10 (Tables 7). Specifically, model 1b achieved
F1 scores of 77.85% and 34.21% for detecting loud talking
and quarrelling, respectively. However, model 1a performed
well in detecting screaming and non-screaming, with its F1
scores being 89.74% and 96.88%, respectively (Tables 8).

F. DETECTION RESULTS OF MODELS 2, 3 AND 4
Model 2 exhibited good performance and the best perfor-
mance among all models when SNR = 15; it achieved F1
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scores of 64.94%, 49.06%, and 94.59% in detecting loud
talking, quarrelling, and screaming, respectively (Table 9).
However, model 2 could not detect quarrelling well and often
confused it for talking loudly.

Models 2 and 4 performed excellently in detecting
screaming and non-screaming when SNR = 15 (Table 10).
Model 2 achieved F1 scores of 94.59% and 98.46%
for screaming and non-screaming, respectively, and model
4 achieved F1 scores of 92.96% and 98.10% for screaming
and non-screaming, respectively.

G. COMPARISON OF THE PROPOSED MODELS WITH
THEIR STATE-OF-ART COUNTERPARTS IN DETECTION
Model 2 performed considerably better than its state-of-the-
art counterparts as shown in Table 11. It exhibited F1 score
of 97.60% and MCC value of 0.9305 that outperformed
their state-of-the-art counterparts by 8.73% ∼ 46.51% and
0.2428 ∼ 0.5527, respectively, when SNR = 15. Under
SNR = 10, model 2 outperformed their state-of-the-art coun-
terparts by 6.84% ∼ 41.64% and 0.1780 ∼ 0.4673, respec-
tively. Model 4 exhibited the second-best performance, and
it had an F1 score and MCC of 92.95% and 0.9119, respec-
tively, when SNR = 15 and 10.

VII. CONCLUSION
In this paper, we propose a system that detects vocal excla-
mations of panic and distinguishes them from other types
of vocal exclamations. We developed a decision-making
framing–padding algorithm for preprocessing vocal sounds.
Vocal sounds were then mixed with noise signals for data
augmentation and for simulating actual sound that may occur
in subways.

We created four deep CNN models that use MEL, log-
MEL, and SIG-WAVE as inputs. These models differed
in their classification performance. Model 1a outperformed
model 1b at low and high SNRs. The application of an ensem-
ble technique to model 1 improved its classification perfor-
mance. Model 4 performed excellently (F1 score: 99.74%;
MCC: 0.9959) at low noise levels, and model 2 performed
satisfactorily (F1 score: 80.56%; MCC: 0.6870) at high noise
levels.Model 4 outperformed its state-of-the-art counterparts,
in part because of the features that it uses.

With regard to detection, models 2 and 4 exhibited better
performance than their state-of-the-art counterparts in distin-
guishing screaming from non-screaming in both F1 score and
MCC.

In future research, we aim to expand our dataset to cover
different types ofMRT noise, more categories of human vocal
exclamations of panic, and to implement our system by using
edge computers.
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