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ABSTRACT Herein, we investigated the effects of using time segments, including visual presentation,
motor imagery, and rest time, as training data in a brain-computer interface (BCI) competition. Using BCI
Competition IV 2a and 2b, many researchers have attempted to create more robust classifiers with higher
classification accuracy. Some studies have also used visual presentation time and rest time as training data.
However, the use of training data outside ofmotor imagerymakes comparisons of performance acrossmodels
difficult, andmay lead tomodels that are overfitted to the experimental environment. In addition, it is possible
that brain activity other than motor imagery is involved in visual presentation. Hence, to examine the effects
of the selection of training data, we compared several classifiers, including linear discriminant analysis
(LDA), support vector machine, and convolutional neural networks (CNN), trainedwith data including visual
presentation time and rest time, with data only during motor imagery. The results showed an improvement
in performance when BCI Competition IV 2a and 2b data included visual presentation information in
the training data. For the greatest improvement among participants, training data with visual presentation
improved the accuracy by 13.44 % and 10.14 % in BCI Competition IV 2a (participant 9) for LDA and
CNN, respectively; and by 8.38 % and 16.68 % in BCI Competition IV 2b (participant 3) for LDA and
CNN, respectively. Training data that includes visual presentation information improves model performance,
therefore, we recommend using only motor imagery time to train the model.

INDEX TERMS Brain-computer interfaces, convolutional neural networks, deep learning, electroen-
cephalography, machine learning.

I. INTRODUCTION
Recently, a brain-computer interface (BCI) using electroen-
cephalography (EEG) during motor imagery has been devel-
oped. This has enabled the manipulation of robotic arms in
real-life applications [1], and virtual limbs and avatars in the
virtual space [2], [3]. Consequently, the development of this
technology may provide a new interface for patients with
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paralyzed limbs due to spinal injuries and cerebrovascular
accidents.

There are two types of BCI: synchronous BCI [4], where
participants are asked to perform a presentation task during an
indicated period of time; and asynchronous BCI [5], where
participants spontaneously control a specific EEG. In syn-
chronous BCI, the experimental time schedule consists of
a waiting period, task presentation period, motor imagery
period, and rest period. Usually, the task presentation time
is conducted before motor imagery time, and is necessary
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to indicate the motor imagery that the participant should
perform.

Jeong et al. visually presented a direction for 3 s, followed
by 4 s of motor imagery to decode the direction of motor
imagery [6]. Ofner et al. measured motor imagery in six
different upper extremities and presented auditory informa-
tion during trial measurements (beep-on). Two seconds after
the presentation of the visual information, participants were
asked to perform motor imagery [7]. In addition, Zolfaghari
et al. aimed to decode the speed of upper limb motor imagery.
They presented visual information for 12 s and had partici-
pants perform sustained motor imagery for 15.5 s after the
presentation [8].

It is difficult to perform such a variety of experiments as
they require specialist researchers, sophisticated equipment,
participants, and facilities. Therefore, a BCI Competition IV
was held in 2008, which provided high-quality neuroscience
data to various researchers. The purpose of this competition
was to find models with superior EEG classification perfor-
mance and address the challenges of practical BCI systems.
Several studies have used these datasets to evaluate classifier
performance [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21]. The competition provided datasets with
various practical challenges [22].

The BCI Competition IV 2a and 2b are well-known motor
imagery datasets that are used for the evaluation of EEG
analysis or classification models. In BCI Competition IV 2a,
the training model is required to be more comprehensive in
recognizing the four motor imageries. Moreover, the possi-
bility of achieving more natural usability can be evaluated.
BCI Competition IV 2b provides a dataset where two motor
imageries are performed. The main feature of this dataset
is that the time schedule and presentation contents differ
between the sessions. Simply, a useful classifier for this
dataset does not require recalibration.

Modern models used in classifying such motor imagery
have various techniques, including deep learning, transfer
learning, fuzzy models, and machine learning using linear
discriminant models [11], [23], [24], [25]. To the best of
our knowledge, from several reviews and recent papers [14],
[24], [25], [26], [27], training models with high classification
accuracies of 90 % or higher exist for BCI Competition IV 2a
[10], [13], [14], [20] and IV 2b [10], [12], [16].

The most significant problem with studies using the data
provided at BCI Competition IV is that they use tempo-
ral information, such as task presentation time, not motor
imagery, as training data. In a recent study, temporal informa-
tion, such as visual presentation time, which is not directly
related to motor imagery, was used as training data. Our
literature search revealed 10 studies on BCI Competition IV
2a [9], [11], [13], [15], [17], [19], [21], [28], [29], [30] and
five on BCI Competition IV 2b [17], [18], [21], [28], [30]
that used visual presentation time and rest time as train-
ing data and showed high classification accuracy. In addi-
tion, they were used in both machine and deep learning
classifiers.

There are two concerns with the use of data other than
motor imagery in competition data. One is the difficulty
of comparing the performance of different models. Even if
models show the same performance, when time segment used
for training data differs, it becomes difficult to make easy
comparisons across models. Our results show that the perfor-
mance of the models changes as the time segment is varied.
The second issue is the mismatch between the experimen-
tal and practical environments. In experiments with motor
imagery, the experimental designer directs the task through
visual presentations and cues. However, in the practical envi-
ronment, there is no visual presentation information that
would indicate the type of task by the experiment designer.
Therefore, using visual presentation information as training
data can result in overfitting the model to the experimental
environment.

Moreover, an EEG with visual presentation information
may contain information that classifies the type of task. Func-
tional magnetic resonance imaging (fMRI) signals obtained
by presenting images for 1 s can be used to classify images
[31]. Furthermore, studies on the categorization of visual
information, such as text, objects, and scenes, have been
conducted using EEG with a high temporal resolution [32],
[33], [34], [35].

These studies suggest that models with training data that
includes visual presentation information and other informa-
tion may affect performance. This can make it difficult to
compare the performance of different models and may result
in models that are not suitable for practical environments.
Nevertheless, in the evaluation of the experimental environ-
ment, training data that includes visual presentation infor-
mation has the potential to increase classification accuracy.
Therefore, we compared the performance of models trained
on data from different time segments.

Specifically, we created datasets for various time windows
and widths in BCI Competition IV 2a and 2b. The model
was trained using linear discriminant analysis (LDA), support
vector machine (SVM), neural network (NN), and convolu-
tional neural networks (CNNs) with created datasets.

In BCI Competition IV 2a and 2b, the results showed that
including the visual presentation time in the training data
improved the classification accuracy of classifiers, including
LDA, SVM, NN, and CNNs.

II. RELATED WORKS
Various experimental paradigms have been investigated to
analyze brain activity. We introduced processing tasks in
the brain in the competition data other than motor imagery
and classifiers in which various time segments are learned
through machine learning and deep learning.

A. VARIOUS BRAIN ACTIVITIES MIXED IN COMPETITION
DATA
During motor imagery, some of the motor cortex used in
motor execution is activated, which is an important piece of
information that contributes to discrimination, because the
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activity is similar to motor execution [36]. In BCI Compe-
tition IV 2a and 2b, we considered mixing different potential
activities than during motor imagery because of the conve-
nience of the experiment.

First, brain activity during the preparatory period before
motor imagery is thought to be mixed. During this period, the
higher motor cortex is activated by planning and preparing
for exercise. In fact, it is possible to decode and discriminate
motor preparation activity [37].

Second, brain activity also exists during visual presen-
tation. Kay et al. and Kamitani et al. reported that visual
information, such as images, can be discriminated from brain
activity using fMRI [31], [38]. In particular, Kay et al. clas-
sified visual information (120 natural images) by analyz-
ing voxels obtained by fMRI [31]. They used voxels from
the presentation of a natural image for 1 s followed by a
gray background at 3 s, and their model had a classification
accuracy of up to 92 %. Studies have also been conducted
on the temporal dynamics of brain activity in response to
visual information. Harel et al. reported that P2, which is an
event-related potential, peaked early (220 ms) after stimulus
onset for scene images [39]. For classification of images as
visual information, Spampinato et al. used a recurrent neural
network (RNN) and CNN to classify 40 images of ImageNet
presented during 0.5 s, achieving 85.4 % accuracy with EEG
data from 0.04–0.48 s [32]. Zheng et al. proposed different
deep learning models and achieved 97.13 % classification
accuracy using the Spampinato et al. dataset [32], [33].

Thus, based on previous studies [31], [32], [33], [34], [35],
[37], [38], the process of recognizing visual information,
determining the kind of imagery to make, and preparing a
plan takes place in the visual presentation in BCI Competition
IV 2a and 2b. These results indicate that visual presentation
time provides information that contributes to classification.
This means that performance may vary depending on the time
segment used for training data. In fact, our results show that
including visual presentation information in the training data
improves the performance of the models. This would make it
difficult to compare performance across different models.

Furthermore, The experimental environment would
include the experiment designer’s intent to present the type
of task [22], whereas the practical environment provides no
information that presents the experimenter’s task instructions
necessary for evaluation.

Therefore, we recommend using only motor imagery time
as training data to train the model.

B. TRADITIONAL MACHINE LEARNING AND DEEP
LEARNING APPROACHES
In this section, we introduce different time segments, fea-
ture extraction methods, and classification methods used for
machine learning and deep learning.

In machine learning, the feature extraction method using
a common spatial pattern (CSP) showed the best accuracy
in BCI Competition IV 2a and 2b [22]. Therefore, several

improved CSP methods have been proposed. Ang et al. used
Filter Bank CSP (FBCSP) in BCI Competition IV 2a and 2b,
where the time segment of 0.5–2.5 s from visual presentation
was used as training data and multiple bandwidth-limited
signals were used for feature extraction with CSP, respec-
tively [28]. Lotte et al. proposed Regularizing CSP in BCI
Competition IV 2a, using the time segment 0.5–2.5 s from
visual presentation as training data [29]. In BCI Competition
IV 2a and 2b, Fang et al. divided the time segment 0.5–3.5 s
from visual presentation to the end of motor imagery into
six time windows, each of which was processed by filter
banking [30].

An automatic time selection method was also proposed
based on the idea that the optimal time segment for learn-
ing is participant-specific. In BCI Competition IV 2a, Ang
et al. proposed an optimal spatial-temporal pattern (OSTP)
[40] selection method that automatically selects the optimal
time segment based on the signal-to-noise ratio-based mutual
information calculation method [41].

Mahmoudi et al. automatically selected the optimal time
segment out of three: 0.5–2.5 s, 1–3 s, and 1.5–3.5 s after
the start of visual presentation. In addition, based on mutual
information, they searched for the optimal time segment in
BCI Competition IV 2a, which varies from 2.5–7 s with a
window size of 2 s [42].

In deep learning, the neural network most commonly used
for motor imagery classification is the CNN [14], [24], [25],
[26], [27]. In the imaging field, AlexNet [43], Visual geom-
etry Group Network (VGGNet) [44], GoogLeNet [45], and
Residual NN (ResNet) [46] have been proposed. These net-
works were fitted to the input data through multiple nonlinear
transformations by increasing the layer depth, and a high
classification accuracy was obtained. However, EEG classi-
fication overfits because the amount of data is small, and the
capacity of the model is large in deeper layers.

Therefore, CNNs with relatively shallow layers have been
proposed. Here, methods to suppress overfitting include data
augmentation [14], fine-tuning [47], and regularization, such
as batch normalization [48] and dropout [49]. However, shal-
low layers may not learn enough features of the input data
owing to their small capacity.

Dai et al. adapted multiple data augmentation to temporal
data in the time segmentation 0.5–4 s from visual presentation
to the end of motor imagery. In addition, the signals were
divided using filter banks, and each was inputted in parallel to
a different convolution layer. In addition, they predicted that
there would be kernel sizes suitable for each participant, and
proposed a hybrid convolution scale CNN (HS-CNN) [17]
with multiple convolution layers with different kernel sizes
in parallel. Roy et al. adapted two feature extraction methods
and multiple data augmentation methods for temporal data
during motor imagery. They proposed a Multi-Scale CNN
(MSCNN) [11], which improves the HS-CNN and adds a
pooling layer to the parallel units. Li et al. proposed a multi-
level multi-scale feature fusion CNN (MLMSFF-CNN) [13]
that has a parallel structure, such as a Multi-Scale CNN, but
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FIGURE 1. Timing scheme of the paradigm of (a) BCI Competition IV 2a and (b) BCI Competition IV 2b; and time windows in window width which is
3 s (dashed line with diamond-shaped ends in the figure). Window width are 2, 2.5, 3, and 3.5 s. Each time window which has one window width
was slid in 0.1 s increments. Time windows with widths of 2, 2.5, 3, and 3.5 s produced 26, 21, 16, and 11 training data, respectively. The time
window on motor imagery only was used as a baseline (3–6 s and 4–7 s) for comparing the results of the various time windows in BCI Competition
IV 2a and 2b, respectively (line with diamond-shaped ends in the figure). (a) Each time window was slid between the start of the visual presentation
and the rest time (2–6.5 s). (b) In no-feedback session, each time window was slid between the start of the visual presentation and the rest time
(3–7.5 s). In addition, the fixation crosses are presented as visual information. In feedback sessions, gray smileys are presented as visual
information. The first two sessions do not have feedback, the second three sessions have feedback. The first three sessions are provided as training
data and the rest as test data.

extracts and concatenates the outputs of five convolutional
blocks with different depths. They also prepared training data
for multiple time intervals (from visual presentation, 0–4 s,
0.25–4.25 s, 0.5–4.5 s, 0.75–4.75 s, and 1–5 s), including
visual presentation time, motor imagery time, and rest time.

In machine and deep learning-based classifiers, many stud-
ies used time segments other than during motor imagery
as training data [9], [11], [15], [17], [18], [19], [21], [28],
[29], [30]. Thus, various models have been proposed that use
different time segments as training data, making simple com-
parison of performance between models difficult. Therefore,
we recommend using only data during motor imagery for
training.

III. METHODOLOGY
Our objective was to enable comparisons between models
by using motor imagery as training data, and train models
with data that closely resembles the practical environment.
Thus, we examined the effects of using temporal information
other than motor imagery as training data, which is currently
employed in many proposed models. Therefore, we trained
the machine learning and NNmodel at various time windows
and various window widths on two datasets.

A. DATASETS
We used two competition data sets.

The first dataset is BCI Competition IV 2a [22], [50],
[51]. Nine healthy participants performed left-hand (class 1),
right-hand (class 2), both feet (class 3), and tongue (class
4) motor imagery tasks. Fig. 1 (a) shows the time schedule
of the trial. Participants were presented with visual infor-
mation supporting the type of motor imagery 2 s after the
beep-on presentation. They were asked to perform a motor
imagery task until the fixation cross disappeared from the
screen (t = 6 s). In total, 288 trials were performed in one
session, followed by two sessions. The experiment was con-
ducted over two days, with data from the first day serving
as the training data and data from the second day as the test
data. EEG was measured using a 10–20 electrode system
with 22 Ag/AgCl electrodes (Fz, FC3, FC1, FCz, FC2, FC4,
C5, C3, C1, Cz, C2, C4, C6, CP3, CP1, CPz, CP2, CP4,
P1, Pz, P2, and POz) and three electrooculography (EOG)
channels. The sampling frequency was 250 Hz, and a 50 Hz
notch filter and 0.5–100 Hz bandpass filter were applied. The
second dataset was BCI Competition IV 2b [22], [52]. Nine
healthy participants were asked to perform left (class 1) and
right-hand (class 2) motor imagery tasks. Fig. 1 (b) shows
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the time schedule of the trials. In the no-feedback session,
a cross was presented for 3 s during the waiting period before
motor imagery and visual information supporting the type
of motor imagery was presented. One second after visual
presentation, 3 s of motor imagery was performed. In the
session with feedback, a gray smiley was presented during
the waiting period before motor imagery. In 3–7 s, the visual
information was presented. Participants were supported to
move the smiley to the left or right in response to the cue,
and from 3.5–7.5 s they received feedback with the smiley
changing to green for the correct direction and red for the
incorrect direction. During the feedback period, the smiley
changed color depending on the direction of movement. The
distance from the origin of the smiley was set according
to the integrated classification output over 2 s. Participants
were instructed to prolong their motor imagery during the
visual presentation period. The EEG was measured using
three bipolar electrodes (C3, Cz, and C4) and three EOG
channels. The sampling frequency was 250 Hz, and a 50 Hz
notch filter and 0.5–100 Hz bandpass filter were applied.

B. PREPROCESSING
We applied a third-order 0.5–30 Hz Butterworth bandwidth-
limited filter to the two datasets. We extracted EEG of differ-
ent time segments, as in Fig. 1, to test differences in classifica-
tion performance by learning different temporal information:
four time windows with widths of 2, 2.5, 3, and 3.5 s, each
sliding in 0.1 s increments.

First, in BCI Competition IV 2a, each time window with
one window width was slid from the visual presentation start
time to the rest time (2–6.5 s). In time windows with widths
of 2 s, 26 different time windows of 2–4 s, 2.1–4.1 s,. . . ,
4.5–6.5 s were created. In time windows with widths of 2.5 s,
21 different time windows of 2–4.5 s, 2.1–4.6 s,. . . , 4–6.5 s
were created. In time windows with widths of 3 s, 16 different
time windows of 2–5 s, 2.5–5.1 s,. . . , 3.5–6.5 s were created.
In time windows with widths of 3.5 s, 11 different time
windows of 2–5.5 s, 2.1–5.6 s,. . . , 3–6.5 s were created.
In total, there are 74 time windows.

Second, in BCI Competition IV 2b, each time windowwith
one window width was slid from the visual presentation start
time to the rest time (3–7.5 s). A total of 74 time windows
were created, as well as in the BCI Competition IV 2a case.

C. TRADITIONAL MACHINE LEARNING APPROACHES
Our goal was to investigate how the classification accuracy of
machine learning classifiers is affected by various time seg-
ments. We employed CSP for feature extraction with refer-
ence to the FBCSP [53], which showed the best results in BCI
Competition IV 2a; the spatial filterW of the CSP computes
spatial features with the best variance between two classes.
In addition, FBCSP adapts CSP to each frequency band called
a filter bank. Therefore, since frequency information is also
important as a feature, FFT was used to convert time domains
into frequency domains. Then, integral values were taken for

each of alpha (8–13 Hz) and beta band (13–30 Hz) and these
were used as feature values. These two feature extraction
methods were classified by LDA [54] and SVM [55].

D. DEEP LEARNING
Our goal was to investigate how the classification accuracy of
deep learning classifiers is affected by various time segments.

We employed CNN, which are often used as classifiers
in deep learning for motor imagery [24], [25], [26], [27].
We created CNNs with two different input formats. As shown
in Fig. 2, the structure is the same except for the convolu-
tional layers. The one dimensional-CNN (1D-CNN) adopted
a time× 1 input format, which maps the filter direction of the
convolution layer to the channel data of the input data. The
two dimesnsional-CNN (2D-CNN) adopts a time × channel
input format. Accordingly, the number of input filters in the
convolutional layer was one.

EEG is nonstationary and has covariate shifts that follow
different probability distributions for training and test data
[56]. To address this problem, the output of the convolution
layer is inputted to a batch normalization layer [48] with
regularization effects. The output of the batch normalization
layer is the input to the pooling layer. While the often-used
max pooling layer encodes distortions and translations in the
input data, it discards a large amount of data and pools them
non-continuously, which limits its generalization. Therefore,
we adapted the fractional max pooling layer [57] with ran-
domized pooling regions to reduce the size of the transmitted
data and determine a potential suitable kernel size for the
participants [17]. Finally, to reduce the number of calcula-
tions, smoothing was performed in the global average pooling
layer [58] and inputted to the dense layer. The ReLu function
[59] is often used as the activation function in motor imagery
classification to suppress gradient loss; the ReLu function
returns the input value if the input is positive but is otherwise
zero. We used Softplus function [60], which smooths the
zeros and linear parts of the ReLu function, in the hope of
improving stability.

It is also important to investigate whether other neural
networks perform well with the time segment. Therefore,
we conducted the same experiment on neural networks with
only fully-connected layers. We found a hidden layer size of
150, and used batch normalization [48] and dropout [49] used
as regularization techniques. The ReLu function was used as
the activation function; features fromCSP and FFTwere used
as input data and trained; CSP-NN and FFT-NN, respectively.

E. ANALYISIS AND EVALUATION METHODS
We used the libraries and frameworks provided to sim-
plify programming, using Python version 3. Feature extrac-
tion by CSP and classification by LDA were performed by
MNE-Python version 1.2.3 [61]. SVM were performed by
scikit-learn 1.2.2. NN and CNNs were trained on NVIDIA
GeForce RTX 3070 with Cudatoolkit version 11 in Pytorch
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FIGURE 2. Compositions of 1D-CNN and 2D-CNN used in our experiments. In 1D-CNN, the channel information was inputted as filter information in
the convolution layer. In 2D-CNN, the measurement data was inputted as shown in the 2D image Time × Channel. The orange enclosure in the figure is
kernel.

version 1.7.0. Codes used in this study will be available at
Code Ocean.

In the classifier using machine learning, features were
extracted using CSP and FFT, and were classified using
LDA and SVM (CSP-LDA, FFT-LDA, CSP-SVM, and FFT-
SVM). In BCI Competition IV 2a, because there are four
types of motor imagery, we used the one-versus-one (OVO)
decomposition shcheme [62] to make it a two-class classifi-
cation problem; six classifiers were created. The number of
features was set to four in the CSP. In SVM, the regularization
parameters and hyperparameters of Gaussian kernel were
set to 1.0 and the inverse of the number of feature values,
respectively. In the classifier using deep learning, we trained
the NNs, 1D-CNN and 2D-CNN. Cross-entropy was used for
the loss function andAdam [63] was used for the optimization
function.

In BCI Competition IV 2a, in the CSP-LDA, FFT-LDA,
CSP-SVM, and FFT-SVM, the evaluation method used data
from the second day as test data, and the data from the
first day were used as training data. In addition, in NN
and CNNs, the first-day data were divided into training and
validation data by five-fold-cross-validation. Validation data
were used for early termination. In BCI Competition IV 2b,

the first three sessions in CSP-LDA, FFT-LDA, CSP-SVM,
and FFT-SVM were used as the training data, and the fourth
and fifth sessions were used as the test data. In addition,
in NN and CNNs, the first three sessions were divided into
training and validation data using five-fold-cross-validation.
The fourth and fifth sessions were used as test data.

In BCI Competition IV 2a and 2b, we set the baseline
of accuracy using a time window with a window width of
3 s during motor imagery (3–6 s, 4–7 s) as the baseline in
Fig. 1 (a) and (b), respectively. All classification accuracies
calculated for all time windows differed from the baseline to
compare the classification accuracy during motor imagery.
In addition, due to the large number of combinations when
verified, CSP-LDA, 1DCNN, and 2DCNN were used for
detailed verification.

We classified BCI Competition IV 2a using feature extrac-
tion and machine learning. First, we calculated the classifica-
tion accuracy of each participant’s left- and right-hand motor
imagery during a sliding window of 0.1 s in the range of 2 s
to 6.5 s with a window width of 3 s using CSP-LDA. Sec-
ond, we calculated the average classification accuracy across
participants for left- and right-hand motor imagery in each
time window with window widths of 2, 2.5, 3, and 3.5 s using
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CSP-LDA. Third, OVO was used to calculate the average
classification accuracy across participants for all classes in
the 3 s window using CSP-LDA. For FFT-LDA, CSP-SVM,
and FFT-SVM, we classified right- and left-handed motor
imagery with a window with a width of 3 s, and calculated
the average classification accuracy of participants. In deep
learning, we first calculated the classification accuracy for
each participant in various time windows, and the average
classification accuracy across participants in various time
windows with various window widths in the 1D-CNN when
the window width was set to 3 s. Second, 2D-CNN, as in
the 1D-CNN, we calculated the classification accuracy for
each participant in fixed window widths and the average
classification accuracy across participants in time windows
with window widths. For CSP-NN and FFT-NN, the average
classification accuracy of the participants was calculated with
a window width of 3 s.

Next, we classified BCI Competition IV 2b. First, in the
CSP-LDA, we calculated the classification accuracy of each
participant during a sliding window of 0.1 s in the range
3–7.5 s with a windowwidth of 3 s and calculated the average
classification accuracy across participants during each time
window with window widths of 2, 2.5, 3, and 3.5 s. Second,
in the 1D-CNN as in the CSP-LDA, we calculated the classi-
fication accuracy in fixed window widths for each participant
and the average classification accuracy across participants in
time windows with window widths. Third, we calculated the
classification accuracy of the 2D-CNN in the same manner
as the 1D-CNN. For FFT-LDA, CSP-SVM, FFT-SVM, CSP-
NN, and FFT-NN, the average classification accuracy of
participants was calculated with the window width of 3 s.

IV. RESULTS
We extracted signals from different time segments of two
BCI Competition IV 2a, 2b. We trained the classifiers using
machine learning and deep learning to calculate accuracy. For
more detailed results, see Supplemental Materials.

A. BCI COMPETITION IV 2A
The classification of the left- and right-hand motor images
was performed in various time windows using LDA after
feature extraction by CSP, and the classification accuracy of
CSP-LDA was calculated when the window width was set to
3 s. Fig. 3 shows the results of the difference in classification
accuracy between the sliding window (3 s) and baseline
(4–7 s) in Fig. 1 (a).

First, from Fig. 3 (a), accuracies were higher when six
participants used the time data at visual presentation in the
range 2.1–2.3 s for training. In particular, accuracies at 2.4 s
in participants 5, 7, and 9 were 10 % higher than during the
motor imagery time (3 s). In contrast, for participant 4, the
accuracy of the training data during visual presentation at
2.4 s was 12.07% lower than duringmotor imagery time (3 s).
In addition, the accuracy using the training data, including
the time at rest decreased, with the exception of participant 5
(3.1–3.5 s).

Second, the results of the classification of motor imagery
in Fig. 3(b) for various time windows show that the classifi-
cation accuracy using the training data at the time of visual
presentation (2–2.8 s) is higher than that at baseline (3–6 s),
and the accuracy decreases as the time segment in the latter
half of the task is used as training data.

Third, we created six different classifiers in the OVO for
the fourmotor imagery classifications. Fig. 3(c), which shows
the average classification accuracy for participants in the 3 s
time window, indicates that the classification accuracy was
better for the 2.5–2.8 s time window than for the motor
imagery time window. In particular, the right vs. foot out-
performed the results during motor imagery for all visual
presentation times, with a maximum improvement of 5.56 %.
It was also found that the accuracy decreased with time after
motor imagery was used.

Now for the 1D-CNN and 2D-CNN with deep learning,
Fig. 4 shows the results of the difference in classification
accuracy between the sliding windows (3 s) and baseline
(4–7 s) in Fig. 1 (a).

First, for the 1D-CNN, Fig. 4(a) shows the results of the
difference between the classification accuracy of the sliding
the time window, which was set to 3 s, and the classification
accuracy during motor imagery (3–6 s). Fig. 4(a) shows that,
with the exception of participant 2, the classifiers that used
data during visual presentation for training had the highest
accuracy. Furthermore, for most participants, the accuracy
gradually increased between 2–2.5 s and gradually decreased
between 2.5–3 s, as shown in Fig. 4(a). After 3 s, accuracy
decreased. Participant 2, however, showed a steady increase
in accuracy. Fig. 4(b), which shows the average classification
accuracy of participants when classifying motor imagery in
various time windows, indicates that, as with the CSP-LDA,
the accuracy is higher for a wider time window. Furthermore,
the classification accuracy was the highest when using the
training data at the time of visual presentation, and the accu-
racy decreased as the temporal information in the latter half
of the task became the training data.

Second, for the 2D-CNN, Fig. 4 (c) shows that, as with the
1D-CNN in Fig. 4 (a), with the exception of participant 2,
the classifier that used the time data at visual presentation
for training had the highest accuracy. Initially, during visual
presentation, most participants showed a gradual increase in
accuracy between 2–2.4 s and a gradual decrease in accuracy
between 2.4–3 s. After 3 s, accuracy decreased. Figure 4(d),
which shows the average classification accuracy of partici-
pants when classifying motor imagery in various time win-
dows, shows that, as with the CSP-LDA, the training data at
visual presentation had the highest accuracy in each window
width. We found that as the time window slides from 2.5 s
to the end of the slide range, the classification accuracy
decreased.

Finally, Fig. 5 shows the difference between the baseline
and the average classification accuracy across participants

for all combinations in 0.1s increments from 2–6.5 s at a
window width of 3 s. The classifier using machine learning
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FIGURE 3. The differences in classification accuracy of CSP-LDA with BCI Competition IV 2a. The difference is based on the classification accuracy of the
time data during motor imagery (3–6 s). Positive values indicate improved accuracy. (a) The differences in classification accuracy with each participant
(P1-P9) when extracting time data of motor imagery of left-hand and right from 2–5 s to 3.5– 6.5 s in 0.1 s increments with a window width of 3 s. (b) The
difference in average accuracy across nine participants when extracting time data of motor imagery of left- and right-hand in 0.1 s increments with
various window widths (WW). (c) The difference in average accuracy across nine participants using OVO when extracting time data of four motor
imageries from 2–5 s to 3.5–6.5 s in 0.1 s increments with a window width of 3 s.

was a two-class classification during right- and left-hand
motor imagery.

Fig. 5 shows that accuracy improves with visually pre-
sented information for all verified models, and that data,
including rest time, show a decrease in accuracy.

These results indicate that machine learning and NN-based
classification is more accurate during visual presentation than
during imagery, and less accurate for data that includes rest
time

B. BCI COMPETITION IV 2B
In BCI Competition IV 2b, we used CSP-LDA, 1D-CNN, and
2D-CNN to classify motor imagery in various time windows.
Fig. 6 (a), (c), and (e) show the difference in classification
accuracy between the sliding window (3 s) and baseline
(4–7 s) for each model. The differences in participants’ aver-
age classification accuracies for various window widths and
baselines (4–7 s) are also shown in Fig. 6 (b), (d), and (f).

First, for the CSP-LDA, the classification accuracies were
calculated for various time window widths. Fig. 6 (a), which
shows the difference between the classification accuracy at a
window width of 3 s and that at motor imagery (4–7 s) in var-
ious time windows, shows that results for seven participants
were more accurate when the signals at visual presentation
were used for training. Participant 3 had more than 7 %
higher accuracy. However, for participants 6 and 9, accu-
racies were more than 5 % lower when using the training
data during visual presentation than during motor imagery.
Next, the classification of motor imagery was trained usin
data from various time segments with various time window
widths. Fig. 6 (b) indicates that the narrower the time win-
dow, the higher the accuracy. In addition, the classification
accuracy was highest when using the training data at the time
of visual presentation and decreased as the time informa-
tion in the latter half of the task was used as the training
data.

VOLUME 11, 2023 59549



K. Suemitsu, I. Nambu: Effects of Data Including Visual Presentation and Rest Time

FIGURE 4. The difference in classification accuracy of our 1D-CNN and 2D-CNN with BCI Competition IV 2a. The difference is based on the
classification accuracy of the time data during motor imagery (3–6 s). Positive values indicate improved accuracy; (a), (b) were used in 1D-CNN and
(c), (d) were used in 2D-CNN. (a), (c) The differences in classification accuracy of 1D-CNN with each participant (P1-P9) when extracting time data from
2–5 s to 3.5–6.5 s in 0.1 s increments with a window width of 3 s. (b), (d) The difference in average accuracy across nine participants when extracting
time data in 0.1 s increments with various window widths (WW).

Second, for the 1D-CNN, we calculated the classification
accuracy in various time windows. Fig. 6 (c) shows that seven
participants were more accurate when the signals at visual
presentation (3.3–3.5 s) were used for training. In particular,
the accuracy of participant 3 improved by 16.26 % (3.5 s).
When the classification of motor imagery was trained on data
from various time windows with various window widths, the
accuracy also increased gradually in the interval from 3–3.4 s
for all window widths, as shown in Fig. 6 (d). the accuracy
then gradually decreased in the interval 3.4–5.5 s.

Third, for the 2D-CNN, the classification accuracy was
calculated for various time window widths. As with the
1D-CNN, results were more accurate when the signals at
visual presentation (3.3–3.5 s) were used for training. In par-
ticular, the accuracy of participant 3 improved by 17.13%
(3.5 s). When the classification of motor imagery was
trained on data from various time segments with various

time window widths, the results were similar to those of the
1D-CNN.

Finally, Fig. 7 shows the difference between the baseline
and the average classification accuracy across participants for
all combinations considered in 0.1 s increments from 3–7.5 s
at a windowwidth of 3 s. Fig. 7 shows that accuracy improves
with visually presented information for most of the models,
and that data, including rest time, decreases in accuracy.

Therefore, we demonstrated that with traditional machine
learning and deep learning, the accuracy improves when
visual presentation information is incorporated into the train-
ing data.

V. DISCUSSION
We investigated the performance of the machine learning and
deep learning classifiers on two datasets by varying the time
window and window width used for training. The results
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FIGURE 5. The difference in average accuracy across nine participants of
with BCI Competition IV 2a when extracting time data from 2–5 s to
3.5–6.5 s in 0.1 s increments with a window width of 3 s. The difference is
based on the classification accuracy of the time data during motor
imagery (3–6 s). Positive values indicate improved accuracy.

showed that in BCI Competition IV 2a, both machine learn-
ing and deep learning models exhibited higher classification
accuracy when the visual presentation time was included in
the training data than when only motor imagery was included
in the training data.

A. RESULT OF BCI COMPETITION IV 2A AND 2B
In BCI Competition IV 2a, classification accuracy was
improved using training data that included visual presentation
time (2–3 s). This may be due to brain activity that dis-
criminates the presented visual information. Multiple studies
have shown that visual information, such as images, can be
discriminated from brain activity. It is important to note that
the images are presented for a short period of time, less than
1 s [31], [32], [33], [34], [35], [39], which is similar to the
visual presentation time of BCI Competition IV 2a. This
suggests that the information contributing to the classification
appears within 1 s. This finding supports our hypotheses.

In BCI Competition IV 2b, CSP-LDA showed similar
results to BCI Competition IV 2a; Leeb et al. also used
LDA to perform classification without feedback in multiple
time window widths of 1, 1.5, 2, 2.5, and 3 s [52]. The
results showed that, similar to our findings, the 2 s window
width improved accuracy the most. However, although they
did not specify which time segment they explored, the high
performing time interval was 4.84–6.84 s on average for the
participants, which differed from our results. While we used
0.5–30 Hz bandwidth information, Leeb et al. used the opti-
mal bandwidth from 8–30 Hz range, with bandwidths of 2,
4, 6, and 8 Hz for a total of 72 bandwidths. Their bandwidth
was much narrower than that in our study; furthermore, they
did not use bandwidth information in the 0.5–8 Hz range.
Therefore, it can be inferred that only the frequency band
relevant for motor imagery was used, which would have
improved performance at 4.84–6.84 s. Our results showed

that performance improved when lower frequencies were
included. Conversely, the results of this study in deep learning
showed that classification accuracy was improved by using
training data that included visual presentation time (3–4 s)
as in CSP-LDA. In BCI Competition IV 2b, there are only
three channels (C3, Cz, and C4), but information from the
visual cortex may propagate, albeit attenuated, and contribute
to classification.

In both datasets, accuracy was improved by training data
that included visual presentation information. Here, Fig. 5
and 7 show that the average accuracy aross participant is only
a few percentage higher than that of the training data. How-
ever, this small difference is important for a fair comparison
between the models.

A well-known competition in the image field is the Ima-
geNet Large Scale Visual Recognition Challenge, which was
held annually from 2010 to 2017. Recently, ImageNet has
been used to evaluate models. In 2020, Noisy Student Train-
ing [64] and Big Transfer [65] used top-1 accuracy on Ima-
geNet for evaluation, resulting in a 2.4% and 1.4% improve-
ment in accuracy, respectively, compared to the previous
state-of-the-art of 86.4% [66]. In BCI Competition IV 2a,
Liu et al. showed a 2.79% improvement in accuracy over the
previous method [19], and in BCI Competition IV 2b, Roy
et al. claimed a 2.49% improvement in accuracy [11].

A comparison of these previous studies shows that a few
percent difference between accuracies of models determines
the superiority of the model. The small differences have
a technical impact on the peripheral fields. Therefore, the
results of this study are important for the realization of fair
competition.

B. TRIAL AVERAGES OF TEMPORAL PROFILES AND
SPATIAL TOPOGRAPHY OF BCI COMPETITION IV
2A AND 2B
We averaged each channel and each class in BCI Competition
IV 2a and BCI Competition IV 2b to increase the validity of
our hypothesis that there is information in visual information
that contributes to classification and created the spatial topog-
raphy, as shown in Fig. 8 and 9. In BCI Competition IV 2a,
we used data from participant 9, whose accuracy improved in
visual presentation time. In BCI Competition IV 2b, partic-
ipant 3 whose accuracy improved in the visual presentation
time. The results of the analyses, with and without feedback,
are also presented.

In BCI Competition IV 2a, Fig. 8 shows that both right-
and left-handed tasks show the largest amplitude at the time
of visual presentation. Furthermore, the spatial topography at
2.25 s indicates that brain activity near the visual cortexwas
active. Therefore, it is more likely that the classification
model learns the visually presented image rather than the
brain activity of motor imagery.

In BCI Competition IV 2b, we discuss left-handed motor
imagery with participant 3, whose accuracy was improved
by the use of visual presentation information. The difference
between C3 and C4 was larger with feedback (Fig. 9 (b))
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FIGURE 6. The difference in classification accuracy of CSP-LDA, 1D-CNN, and 2D-CNN with BCI Competition IV 2b. The difference is based on the
classification accuracy of the time data during motor imagery (4–7 s). Positive values indicate improved accuracy. (a), (b) were used CSP-LDA,
(c), (d) were used 1D-CNN, and (e), (f) were used 2D-CNN. (a), (c), and (e) The differences in classification accuracy of 1D-CNN with each participant
(P1-P9) when extracting time data from 3–6 s to 4.5–7.5 s in 0.1 s increments with a window width of 3 s. (b), (d), (f) The difference in average
accuracy across nine participants when extracting time data in 0.1 s increments with various window widths (WW).

than without feedback (Fig. 9 (a)) at the visual presenta-
tion time (3.5–4 s), suggesting that accuracy was improved
at the visual presentation time. Furthermore, in the spatial
topography at 3.5 s, the distribution was symmetrical for
left- and right-handed motor imagery (Fig. 9 (c) and (d)),
indicating that the features contributing to the classification
were represented.

C. ANALYSIS OF VISUAL PRESENTATION TIME AND REST
TIME OF BCI COMPETITION IV 2A AND 2B
We showed that visual information processing may con-
tribute to classification. Therefore, we also examinedwhether
training the model with only visual representations, motor
images, and rest time intervals contributes to classification
performance.
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FIGURE 7. The difference in average accuracy across nine participants
with BCI Competition IV 2b when extracting time data from 3–6 s to
4.5–7.5 s in 0.1 s increments with a window width of 3 s. The difference is
based on the classification accuracy of the time data during motor
imagery (4–7 s). Positive values indicate improved accuracy.

First, we evaluated the statistical significance compared
to the baseline. In BCI Competition IV 2a, we set the null
hypothesis that the hypothesized mean of the classification
accuracy at baseline (3–6 s) and the hypothesized mean of
the classification accuracy that was most improved using a
window width of 3 s during the visual presentation were
equal. In BCI Competition IV 2b, we set the null hypothesis
that the hypothesized mean of the classification accuracy at
baseline (4–7 s) and the hypothesized mean of the classifica-
tion accuracy that was most improved using a window width
of 3 s during visual presentation was equal. We performed
a t-test to determine whether the null hypothesis could be
rejected (p < 0.05).

TABLE 1. Results of t-test between the most accurate time window and
baseline at 3 s time window width.

As shown in Table 1, in BCI Competition IV 2a, sig-
nificant differences were found in CSP-LDA and 1D-CNN.
Significant differences were also observed. In BCI Competi-
tion IV 2b, significant differences were found in 1D-CNN and
2D-CNN.

Second, in BCI Competition IV 2a and BCI Competi-
tion IV 2b, respectively, we used EEG data with a short
window width (1 s) during visual presentation time (2–3 s,
3–4 s), motor imagery (3–4 s, 4–5 s), and rest time (6–7 s,
7–8 s) for training LDA, 1D-CNN, and 2D-CNN and calcu-
lated participants’ average classification accuracy. As shown
in Fig. 10 and 11, all time segments, except for the BCI
Competition IV 2b rest time (7–8 s), show performance that

exceeds the chance level (50 %) by approximately 10 % or
more. Therefore, we is observed that there is information con-
tributing to classification in each time segment. For specific
values, see Supplemental Materials.

D. EVALUATION OF DATA SIMILAR TO PRACTICAL
ENVIRONMENTS BY LEARNING FROM EXPERIMENTAL
ENVIRONMENTAL DATA
Fig. 10, 11, and Table 1 indicate that visual presentation
information affects classifier performance. These findings
suggest that using time segments that are not intervals of
motor imagery can make it challenging to compare sim-
ple models. Furthermore, the visual presentation information
is combined with class information that is mixed with the
experiment designer’s intention to direct the task content.
Thus, the model may be overly fitted to the experimental
environment. However, learning using data other than motor
imagery, such as visual presentation information, mixed with
the intention of the experiment designer may result in a more
robust model, potentially allowing for the classification of
data from practical environments with higher accuracy.

Therefore, we trained the classifier on data containing
visual presentation information. We investigated whether the
classifier could better recognize data from motor imagery
segments, which are time segments which differ from train-
ing and are considered similar to the practical environment.
In BCI Competition IV 2b, feedback information is given to
the test data by the integrated classification accuracy of the
LDA, which is trained on data 2 s prior to the time of feed-
back presentation [52]. In short, the feedback information is
influenced by the data 2 s prior to that time schedule. Because
of this, simple comparisons between training and test data at
different time points are difficult to make. Therefore, we used
only BCI Competition IV 2a. We assessed a window with a
width of 3 s from 2–5 s to 2.9–5.9 s in 0.1 s increments for all
classifiers tested in this study. Using the model trained with
training data containing the visual presentation, we classified
data in the motor imagery segment (3–6 s), which is data
similar to the practical environment.

The results of data classification in motor imagery seg-
ment, as shown in Fig. 12, revealed that including with
visual presentation information in training data led to higher
accuracy (max 3.76%) when the visual presentation was not
included in the CNN. However, combinations in which the
classifier was adapted after feature extraction were more
accurate (max 2.24%)when visual presentationwas included.
For more detailed results, see Supplemental Materials.

Since a convolutional layer is like a band-pass filter,
because it captures periodic time change [17], [67], including
time sequences, other than motor imagery, it would have
reduced accuracy.

Alternatively, in the other combinations, the model does
not take temporal connections into account, and it is thought
that learning features are localized. However, among the other
combinations, there are those for which the accuracy of the
data is better for only the time of motor imagery. These two
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FIGURE 8. Trial averages of temporal profiles and spatial topography with (a) left- and (b) right-hand tasks for participant 9 in the BCI
Competition IV 2a. The signals with 22 colors in the figure show their respective channels corresponding to the upper left-brain map. The
block above the waveform is the time schedule for the trial.

FIGURE 9. Trial averages of temporal profiles and spatial topography during right and left-handed tasks for participants 3 in the BCI
data. (a), (b), (c), and (d) are results for participant 3. (a), (c) are during the left-hand task; (b) and (d) are during the right-hand task.
(a) and (b) are sessions without feedback; (c) and (d) are sessions with feedback. The signals with three colors in the figure show their
respective channels corresponding to the upper left-brain map. The block above the waveform is the time schedule for the trial.

results do not imply that the model becomes more robust
when time segments other than motor imagery are included
(i.e., when other task time is included). Instead, the results
indicate that CNNs, which have been used by researchers
in recent years and are adept at capturing temporal
variation, exhibit lower accuracy when other time segments
are included.

Fig.8-12 strengthen the evidence that visual presentation
time and rest time have a significant impact on the perfor-
mance of the model. Therefore, improving the validity of

simplifying with performance comparisons between models
and the validity using motor imagery segment, which is
similar to the practical environment. In addition, the clas-
sification performance trained with the inclusion of these
temporal data may show excessive results (BCI Compe-
tition IV 2a: [9], [11], [13], [15], [17], [19], [21], [28],
[29], [30], BCI Competition IV 2b: [17], [18], [21], [28],
[30]). It was also suggested that any classifier using a
CNN could be less accurate when introduced to a practical
environment.
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FIGURE 10. Comparison of classification average accuracy of CSP-LDA,
1D-CNN, 2D-CNN when using visual presentation time (2–3 s), motor
imagery (3 –4 s), and rest time (6–7 s) as training data in BCI
Competition IV 2a. Dashed lines represent chance levels.

FIGURE 11. Comparison of classification average accuracy of CSP-LDA,
1D-CNN, 2D-CNN when using visual presentation time (3–4 s), motor
imagery (4–5 s), and rest time (7–8 s) as training data in BCI Competition
IV 2b. The dashed line represents chance levels.

However, in recent years, various classification models
have been proposed, and not all of them fit our results.
In BCI Competition IV 2a, Li et al. prepared training data for
multiple time windows, including visual presentation time,
imagery time, and rest time, of 0–4 s and 0.25–4.25 s after
visual presentation, and trained them. Although not compared
to training data only during motor imagery, the training data
in the 2.75–6.75 s segment showed the greatest improvement
in accuracy when the window width was 3 s. When the
window width was 4 s, the highest accuracy was observed in
the training data in the 3–7 s segment including rest periods,
and unlike our results, the accuracy was better when rest time
was included compared to when visual presentation was used.

However, in any model, the choice of time segment has a
significant impact on the model. Therefore, we propose that
the time segment used for training data are unified for pur-
poses such as facilitating performance comparisons between
models in competition data; this is applicable for the BCI
competition IV 2a and 2b, but not intended to be generalizable
to other datasets. However, learning information from other
datasets that may not be relevant tomotor imagery in the same
way may cause problems, such as difficulties in comparing
models and models that are too fitted to the experimental

FIGURE 12. Evaluation of motor imagery data (3–6 s) in data trained with
visual presentation information in BCI Competition IV 2a. In training data
of visual presentation information, we used a window with a width of 3 s
from 2–5 s to 2.9–5.9 s in 0.1 s increments.

environment. Thus, it is essential to exercise caution when
referring to the time schedule in the dataset, considering gaps
with the practical environment, and appropriately setting the
segments used for training.

VI. CONCLUSION
We demonstrated that varying time segments for training
data may significantly affect the model’s performance in BCI
Competition IV 2a and 2b. Using time segments other than
motor imagery creates a challenge, as models are too well
fitted to the experimental environment, making comparisons
between models difficult. Therefore, we recommend that
temporal information other than that during motor imagery
cannot be used as training data. For models using machine
learning and deep learning, for BCI Competition IV 2a and
2b, we indicated the possibility that visual presentation time
improves classification performance. It was suggested that
the models may be learning more visual information. In fact,
activation of the visual cortex was observed from spatial
topography during visual presentation. Related studies also
support the hypothesis that visual information can be catego-
rized. Moreover, training data that included areas other than
motor imagery did not improve the classification accuracy
of data that was similar to the practical environment. Sum-
marily, the model proposed in recent years may exhibit an
excessive classification performance. In other data sets, care
may be required to refer to the time schedule and consider
the gap between the dataset and the practical environment.
Time segments should be chosen with caution to ensure fair
competition and evaluation.
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