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ABSTRACT Federated Learning (FL) has emerged as a promising methodology for collaboratively training
machine learning models on decentralized devices. Notwithstanding, the effective synchronization and
consolidation of model updates originating from diverse devices, in conjunction with the appropriate
configuration of network topologies, persist as crucial obstacles. This paper provides a comprehensive
analysis of the current techniques and methodologies utilized in the synchronization, consolidation, and
network topologies of Federated Learning. The present study explores diverse synchronization strategies
utilized for the purpose of coordinatingmodel updates from geographically distributed cross-silo edge nodes.
The study takes into account several factors, including communication efficiency and privacy preservation.
This study delves into the intricacies of model consolidation techniques, such as weighted and personalized
aggregation methods, to evaluate their efficacy in consolidation of local model updates into a global model,
while taking into consideration statistical heterogeneity and resource constraints. In addition, an examination
is conducted on the importance of network topologies in Federated Learning (FL), taking into account their
influence on communication efficacy, confidentiality, expandability, resilience, and resource allocation. The
survey assesses and contrasts the efficacies and constraints of extant methodologies, discerns deficiencies in
present investigations, and provides insights for future progressions. The objective of this survey is to provide
a thorough examination of FL synchronization, consolidation, and network topologies, with the intention
of offering a valuable reference for individuals engaged in Federated Learning, including researchers,
practitioners, and stakeholders. This survey aims to support the advancement of more effective and resilient
FL systems.

INDEX TERMS Federated learning, synchronous, asynchronous, semi asynchronous weight aggregation,
network topology.

I. INTRODUCTION
The proliferation of Internet of Things (IoT) devices has
resulted in a substantial volume of data being produced by
the corresponding physical IoT networks. Various kinds of
devices, including wearable devices, smartphones, and smart
home IoT systems, produce enormous amount of data [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Daniel Augusto Ribeiro Chaves .

The conventional approach involves the transfer of data
obtained from these devices to a centralized cloud for the
purpose of training machine learning models, which are uti-
lized to extract valuable insights from the data and facilitate
decision-making [2]. Nonetheless, the transmission of data
to a centralized cloud or server raises concerns regarding the
privacy of data sharing [3]. To address the privacy concern
at hand, it is recommended to maintain the confidentiality
of data through decentralization and to conduct collaborative
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training of machine learning models through distribution,
as suggested in reference [4]. FL is a novel approach that
was initially proposed by Google to facilitate the training of
a machine learning model on distributed data while ensuring
data privacy [5]. FL aims to facilitate the training of a global
model across numerous devices while safeguarding the con-
fidentiality of the personal data of each device, as stated in
reference [6]. FL involves training a local model on individual
devices and exchanging their knowledge through weights
or gradients during each communication round. This facili-
tates local model aggregation, which ultimately leads to the
development of a generalized global model [7]. Numerous
limitations arise while performing FL on devices with lim-
ited resources [8]. The majority of these intelligent devices
exhibit limited computational capacity, thereby necessitating
a longer duration for training a local model. The FL system
is faced with several challenges, namely unreliable het-
erogeneous devices, data heterogeneity, and heterogeneous
computing resources, as noted in a scholarly source [9]. Due
to device heterogeneity, the central server awaits the update
of the local model, as some devices exhibit a shorter duration
for training a local model, while others require a longer
duration [10].

In order to establish effective communication between
local devices and a central server, it is necessary to devise an
efficient and robust synchronization method that can enhance
communication efficiency and minimize the waiting time of
the central server, as suggested by [11]. The presence of sta-
tistical heterogeneity among clients can impact collaborative
training.

Various synchronization techniques have been employed
in scholarly works to facilitate communication between the
central server and the local client [12]. [13], [14] This paper
will examine in detail the synchronization strategies in FL
techniques employed in facilitating communication between
clients and servers. Specifically, this method involves the
server awaiting the arrival of all clients prior to executing
the aggregation process. One limitation of the synchronous
approach is the presence of a straggler or a worker with slow
performance, which causes the server to wait for the com-
pletion of the parameter aggregation process for all models.
The asynchronous synchronization technique, wherein the
server does not wait for all clients, is discussed in the works
of [15] and [16]. In this method, the client finishes the local
training and sends a wait signal to the server. This approach
enables concurrent execution of communication and com-
putation. Nevertheless, the substantial update of the global
model results in increased consistency with respect to the
local minima, however at the cost of decreased convergence
speed. The semi-synchronous approach is utilized, which
effectively addresses the limitations of both synchronous and
asynchronous methods while simultaneously providing the
benefits of both [17], [18].

In FL, an additional challenge to overcome, is the uneven
distribution of data among clients. Some clients may have
non-IID (non-independent and identically distributed) data,

which can adversely affect the effectiveness of the global
model. The significance of network topology in federated
learning cannot be ignored. In this context, the present survey
also provides a comprehensive examination of the aggre-
gation techniques and network topologies that are currently
being utilized.

Numerous surveys have been conducted to examine and
evaluate the contemporary techniques of synchronization,
network topology, and aggregation method. However, there
exist certain limitations. The study referenced by [19] cen-
ters solely on the asynchronous method and incorporates a
limited number of parameters for the purpose of analyzing
said method. The study referenced by [20] does not place
emphasis on the synchronization technique, but rather delves
into the topic of privacy preservation in the context of FL.
The cited source exclusively presents a general outline of the
concept of federated learning within the context of health-
care. The cited source solely presents a broad introduction
to the concept of FL within the context of edge comput-
ing. The authors of a separate survey publication [21] have
directed their attention towards an alternative viewpoint of
FL, with the aim of offering a resolution for Non-Independent
and Identically Distributed (Non-IID) data. However, the
network topology, aggregation, and synchronization method
were not discussed. The cited source solely presents informa-
tion regarding the network topology, without delving into the
synchronization and aggregation technique.

The contribution of this survey paper is listed below:

• Provides a comprehensive in-depth overview of a net-
work topology.

• Discussed the existing Synchronous, Asynchronous, and
Semi Asynchronous FL schemes

• Discussed the existing basic and personalized weighted
aggregation methods

• Discussed the current challenges of FL and provided the
future direction

The taxonomy of a survey paper is presented in Figure 1.
In the next section, we provide an overview of existing
surveys and their limitations.

II. RELATED WORK
Numerous surveys have been conducted in the scholarly
literature regarding the topology, aggregation, and synchro-
nization techniques employed in FL, as outlined in Table 1.

III. BACKGROUND OF FEDERATED LEARNING
The concept of FL is initially introduced byGoogle’s research
team in 2016/2017. The primary objective of this novel
paradigm is to facilitate machine learning model training
using data from mobile devices. The underlying rationale
for this concept is to uphold the confidentiality of the
user’s private information through engagement in a cooper-
ative learning and training. Conducting on-device training of
machine learning models is preferable from a data security
standpoint, as opposed to transferring data to a centralized
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FIGURE 1. Taxonomy of a survey paper.

location. An FL System enables multiple participants to
engage in collaborative model training. Within a FL context,
there exist two primary stakeholders: the first a participating
device who trains a model utilizing its local data, and the
second a central server to which each participant transmits
their local model updates. The process involves the training
of a machine learning model on local data by each participant
device, followed by the computation of weights or gradients,
and ultimately transferring the local model parameters to the
central server. The server received weights from individual
clients, conducted weighted aggregation, and subsequently
transmitted the aggregated weights back to each respective
client. The architectural design of FL is depicted in Figure 2.
The Figure depicts the existence of clients who possess data
locally and are responsible for conducting model training.
These clients subsequently transmit the trained model to a
central server.

The central server or recipient device executes the process
of model aggregation and subsequently transmits the aggre-
gatedmodel to a device. Various aggregation techniques exist,
with Fed-Avg being a prevalent method employed for model
aggregation.

The FedAVG method refers to a weight aggregation tech-
nique that involves computing the average of the weights
of all participants. The process of training a global machine
learning model involves multiple rounds of communication
between the participant and server. The objective of this
collaborative learning approach is to acquire a comprehensive
model that reduces a global loss function while simultane-
ously enhancing the accuracy of predictions. The process
of aggregating FL is illustrated in Figure 3. As depicted
in Figure 3, it can be observed that three clients transmit a
model to a server, which subsequently conducts the weight
aggregation process.

FL is typically categorized into three distinct classi-
fications based on particular scenarios. The subsequent
segment delves into the intricacies of various forms
of FL.

FIGURE 2. Representation of a federated learning architecture with three
local clients and central server.

A. TYPES OF FEDERATED LEARNING
The FL system offers the capability to leverage existing
data across various domains and systems. The presence
of heterogeneous environments may result in varying data
distributions across devices that are situated at different loca-
tions [31]. Prior to constructing the FL system, it is imperative
to comprehend the distribution of the data. The three primary
categories of FL systems are Horizontal Federated Learning
(HFL), Vertical Federated Learning (VFL), and Federated
Transfer Learning (FTL).

1) HORIZONTAL FL
In this type of system, the data from multiple devices may
have different instances but have the same number of feature
sets. In HFL, each participant device may have data from a
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TABLE 1. Detail of existing Surveys.

homogenous environment [32]. Each worker trains a machine
learning model and subsequently transfers it to a server. The
concept of HFL entails the possibility of varying numbers of
instances across devices, whereby the device with a higher
number of instancesmay require a longer computational time,
leading to the server waiting for a model. HFL is particu-
larly well-suited for collaborative learning in cases where the
distribution of data is similar to eq1. In an initial investiga-
tion of FL, a proposed approach involved utilizing mobile
devices as clients to facilitate collaborative training among
them [5]. A previous scholarly investigation [33] introduced
a HFL framework aimed at improving the performance of the
gradient boosting method.

The two primary architectures of HFL are peer2peer and
client-server, as documented in reference [34]. The archi-
tecture of client-server relies on a centralized computing
model, where each client transmits a model to a central
server. The aggregation of individual client weights is exe-
cuted by the central server, which subsequently disseminates

FIGURE 3. Representation of aggregation process of federated learning
with three local clients and central server.

the aggregated weight to all clients. The architecture that
follows the client-server model presents a challenge in terms
of a single point of failure. In the event of a central server
failure, all clients relying on it will experience a disruption
in service [35]. The peer-to-peer architecture is characterized
by a lack of a central server and a reliance on decentralized
computing. This architectural approach allows for dynamic
client selection for aggregation and enables the establishment
of a neighborhood topology to facilitate communication and
aggregation [36].

2) VERTICAL FL
VFL involves devices that share the same data distribu-
tion space while exhibiting distinct feature spaces [15].
The training process in VFL incorporates a mechanism for
feature-based learning, which is necessitated by the pres-
ence of diverse feature spaces. The identity space remains
constant in VFL, while the feature space varies. The VFL
environment enables multiple entities to collaboratively train
a unified global model utilizing distinct feature spaces while
maintaining data privacy. Prior to commencing collaborative
training, data alignment is conducted. This data alignment
method finds the common sample IDs. In VFL, each device
only exchanges the intermediate results and keeps the data
and model private. In VFL, each device has its own model
when collaborated training is completed. Vertical Federated
Learning consists of two types of architecture such as the
third-party coordinator and without third-party coordinator
architecture [37].

a: ARCHITECTURE WITH THIRD-PARTY COORDINATOR
In the context of collaborative training for a global model,
it is common to have two distinct nodes, namely N1 and
N2, which undertake the task of training a model on their
respective local data-sets. The given scenarios entail that
N1 possesses labeled data which is imperative for the purpose
of training. It is assumed that Nodes N1 and N2 are engaged
in a training process characterized by honesty, albeit with a
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sense of curiosity towards each other. A third-party entity
with the designation ofN3 has been registered as a third-party
coordinator with the purpose of ensuring the confidentiality
of data. The underlying premise is that N3 possesses a level
of integrity akin to that of a trustworthy governing body.

• The first step is ID alignment. VFL system uses
encryption-based ID alignment mechanisms to ensure
the common IDSwithout compromising the data privacy
of N1 and N2. The model is trained on these common
instances.

• The third-party node generates the encrypted key pair
and shares this key with nodes N1 and N2.

• The node N1 and N2 perform encryption of intermediate
results.

• N1 and N2 compute the encrypted gradients and add a
mask. Both nodes send these encrypted results to N3.

• N3 performs the decryption of the gradient and sends it
to nodesN1 andN2. Both nodes unmask the gradient and
update the model.

b: ARCHITECTURE WITHOUT THIRD-PARTY COORDINATOR
This type of architecture has no central coordinator between
the clients. The nodes N1 and N2 are honest, but they are curi-
ous about data privacy. Protecting the data in VFL consists of
these main steps.

• The first step is ID alignment. VFL system uses
encryption-based ID alignment mechanisms to ensure
the common IDSwithout compromising the data privacy
of N1 and N2.

• N1 generates an encrypted key and sends the key to N2.
• Both node N1 and N2 initialize their model
• N1 and N2 node compute partial linear predictors and
N2 send its result to N1.

• Node N1 computes the residual (local gradients) and
sends the encrypted to N2.

• NodeN2 computes the encrypted gradient and shares the
masked gradient with N1.

• NodeN1 performs the decryption of the masked gradient
and shares it with N2.

3) FEDERATED TRANSFER LEARNING
Multiple devices are located at different locations, but they
have a small intersection with each other [38]. Consequently,
a model trained on comparable types of data can be uti-
lized in other environments by transferring the pre-training
knowledge. Clients have distinct IDs and feature spaces in
the real world. The devices are dispersed across numer-
ous geographic locations. However, interaction between
the devices is minimal. The global model is trained on
comparable data from other environments, and its knowl-
edge is then transferred to another environment. The FTL
methodology encompasses two distinct approaches, namely
feature-based FTL and parameter-based FTL, as outlined in
reference [39]. The objective of Feature-based Faster Than
Light (FTL) is to acquire a proficient feature representation

and reduce the disparity between domains for the intended
domain. The approach of parameter-based FTL prioritizes the
hyper-parameters prior to the distribution and utilization of
shared parameters between the source and target domains.
The architecture of a FTL is depicted in Figure 4.
Some other emerging paradigms share common standard

features with FL. The particulars of the various emerging
paradigms are presented in Table 2. Split Learning is a dis-
tributed machine learning methodology that involves central
training of the model on a server while maintaining the
privacy of client device data to ensure its confidentiality.
Distributed Machine Learning is a paradigm that employs
either data parallelism ormodel parallelism to train amachine
learning model across multiple devices. The Model Paral-
lelism technique involves partitioning a given model, such as
a Neural Network model, into K segments and distributing
them across k devices. Data Parallelism is a technique that
involves distributing the data across multiple devices. Mobile
Edge Computing (MEC) is an architectural framework for
distributed computing that aims to bring computing resources
in close proximity to end-user devices. The computing
resources encompass storage, networking, and processing
capabilities. Privacy-preserving machine learning refers to
a methodology aimed at mitigating the risk of data leakage
in machine learning. This approach involves the collective
training of a model by several participants through the utiliza-
tion of encryption techniques. The utilization of encryption
techniques facilitates the safeguarding of data during com-
munication with a centralized cloud by the device.

IV. NETWORK TOPOLOGIES
The network topology in a FL system determines the inter-
connectivity of participant devices within the FL network.
The selection of network topology is a crucial aspect to be
taken into account while deploying FL, as it can consid-
erably influence the efficiency and efficacy of the training
procedure. The selection of network topology for federated
learning is contingent upon the distinct demands of the
application, encompassing the magnitude and intricacy of
the network, the quantity and character of the data being
analyzed, and the communication and computation resources
that are at disposal. The network topologies that are utilized
to establish the FL networks are depicted in Figure 5, which
represents the current cutting-edge approaches in this field.
Various network topologies are applicable for FL, such as:

• Centralized: In this topology, all participating devices
or clients connect directly to a central server, which
coordinates the training process and aggregates the
client’s model updates. This simple and straightforward
approach can be vulnerable to single points of failure and
may not scale well with many clients.

• Decentralized: In this topology, the participating devices
or clients are organized into a peer-to-peer network, with
each device communicating directly with its neighbours.
This can be more resilient to failures and more scalable
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FIGURE 4. Representation of federated transfer learning architecture with four local clients and central server.

than a centralized topology, but it can also be more com-
plex to implement andmay requiremore communication
between devices.

• Hybrid: A hybrid topology combines elements of both
centralized and decentralized approaches. For example,
a central server may be used to coordinate the training
process while the participating devices communicate
with each other directly to exchangemodel updates. This
can offer both approaches benefit while mitigating some
drawbacks.

• Tree-based (Hierarchical Structure): In this topology, the
devices or nodes in the network are organized in a tree
structure, with some nodes serving as parent nodes and
others as child nodes. The parent nodes communicate
with their child nodes, and the child nodes communi-
cate with their parent nodes, forming a hierarchy of
communication. This topology can be efficient for large
networks and can reduce communication overhead com-
pared to a peer-to-peer topology.

A. CENTRALIZED (START TOPOLOGY)
It is a centralized fL paradigm [43] that collaboratively trains
a learning model on each client with the presence of a
central entity called a server.It is commonly assumed that
all clients are truthful and that the central server is both
secure and inquisitive about the model of each client. FL is
a privacy-preserving approach that involves the exchange of
model parameters or gradients between clients and a central

server to facilitate collaborative training. The present collab-
orative training program comprises of the subsequent stages.

• The central server initializes the model’s parameters and
shares them with all clients.

• The clients that receive an initial parameter from the
server start the training on their local data,

• After completing the local training, each client sends
their local model to a central server.

• The server receives the model from clients and performs
the aggregation of each client’s parameter.

• The server sends an updated global model to all clients,
and the clients start training on a received global model.

Within the context of FL, it is customary for clients
and servers to exchange two distinct categories of param-
eters, namely gradients, and weights. The client situated
in the immediate vicinity undertakes the training process
locally and calculates the weights locally. The weights of
a model, which have been computed by the client, are
transmitted to a server for the purpose of aggregation.
The server is responsible for performing the aggregation
of the weights and subsequently transmitting them back to
the client. One of the benefits of utilizing this approach
is its reduced communication expenses. Nonetheless, the
absence of convergence assurance is a characteristic of this
particular method of weight sharing at the local level. A dis-
tinct parameter-sharing paradigm involves a scenario where
a model is trained by a local client, which subsequently
transmits the gradient to a server for gradient aggregation.

68036 VOLUME 11, 2023



Q. W. Khan et al.: Decentralized Machine Learning Training

TABLE 2. Existing collaborative learning paradigm comparison with federated learning.

FIGURE 5. Representation of centralized, decentralized, hierarchical and hybrid network topology for federated learning.

The server then returns the global gradient model to the
client. Gradient sharing offers the benefit of ensuring con-
vergence. However, it incurs additional expenses in terms of
communication.

B. PEER-TO-PEER TOPOLOGY (DECENTRALIZED)
The Peer to Peer (P2P) model is a type of decentralized FL
paradigm, as referenced in source [44]. Unlike the traditional
client-server architecture, P2P does not rely on a central

VOLUME 11, 2023 68037



Q. W. Khan et al.: Decentralized Machine Learning Training

FIGURE 6. Representation of sequential model transfer strategy of ring
topology.

server. In P2P FL each client trains a model on its data and
shares themodel according to network topology. The network
topology may take the form of a ring or a mesh. In a ring
topology, clients engage in a process of training a model on
their respective local data and subsequently transmitting it to
the next node in the network. In a mesh network topology,
each node is interconnected with other nodes, allowing for
the exchange of data and information between clients. The
security of this architecture surpasses that of the client-server
model due to the absence of a central server and a single point
of failure.

1) RING TOPOLOGY
The Ring Topology is characterized by the interconnection
of participant devices with two adjacent devices, namely the
previous and next device. The apparatus conducts on-site
training and transmits a model to a subsequent interconnected
node. Two strategies are typically considered for transferring
models to other nodes in order to share them. The two tech-
niques under consideration are sequential model transfer and
probability-based node selection.

a: SEQUENTIAL MODEL TRANSFER STRATEGY
The Sequential Model Transfer protocol is a method of
organizing a client in a sequential manner to establish con-
nections between each node and its subsequent node. The
initial client denoted as N1 in a given sequence executes the
process of local training and subsequently transmits a model
to the succeeding client,N2. TheN2 client executes parameter
aggregation utilizing its local parameter and subsequently
receives the parameter that is transmitted to the subsequent
client, N3, in a circular fashion. This process continues until
the termination condition is met. The process of transferring
a sequential model is depicted in Figure 6.

b: DYNAMIC PROBABILITY BASED NODE SELECTION
The Dynamic Node Selection Protocol is designed to dynam-
ically select a node based on probabilistic considerations. Ni,

a client operating within a specific locality, trains a model
and subsequently employs a node selection process based
on probability. As an illustration, a given node denoted as
Ni performs a computation of a parameter that is local in
nature and subsequently chooses another node,Nj, based on a
probability criterion. The parameter aggregation is performed
by the client Nj, who subsequently selects a node Nk through
a probabilistic approach. The collaborative training persists
until the specified termination condition is met. The crite-
rion for termination may encompass a global communication
round, global threshold loss, or accuracy. The process of
selecting a node based on probability is depicted in Figure 7.
This figure shows that in a ith iteration all interconnected
devices send a model to a Node5. In a i+ 1 iteration Node4 is
selected to receive amodel. All Nodes send amodel toNode4.

2) MESH TOPOLOGY
The Mesh Topology refers to a network architecture in which
edge devices are interconnected with each other without
the presence of a central server. Within a Mesh network
comprised of edge devices, each individual device conducts
localized training and disseminates a model to all other edge
devices present within the network. In a network, every edge
device is bestowed with a model from all other devices
present within the network, which is then combined with
its own local model. The Mesh Topology exhibits various
advantages in comparison to alternative network topologies.

• Mesh Topology is Robust and Fault Tolerance. Because
in a Mesh, each device receives a model from all other
devices in a network, and if some device goes down,
it not affect the overall communication of a network.

• Another benefit of aMesh Topology is that it reduces the
dependency of edge devices on a central server, making
the FL system more efficient and Scalable.

However, Mesh topology has more communication over-
head and required more communication between the devices
in collaborative training.

3) HYBRID NETWORK TOPOLOGY
In the literature, researchers present many combinations of
network topologies to achieve better communication effi-
ciency and fast convergence. The hybrid network topologies
combine at least two topologies to form an efficient FL
network.

a: COMBINATION OF RING AND START TOPOLOGY
In this type of topology, the edge devices within a cluster
are connected to central cluster heads. Each device trains a
model and sends it to a cluster head.Multiple cluster heads are
connected to each other in a ring. Each cluster head performed
the weight aggregation and sent it to the next cluster heads.
The other topology is also formed in a vice versa. In the Same
cluster, each device is interconnected to the next and previous
node. After each communication round initial node in a ring
send a model to a central server.

68038 VOLUME 11, 2023



Q. W. Khan et al.: Decentralized Machine Learning Training

FIGURE 7. Representation of dynamic probability based node selection of ring topology.

TABLE 3. Comparison of centralized, decentralized and semi
decentralized learning.

4) HIERARCHICAL TOPOLOGY
Hierarchical Topology provides a more organized structure
in FL. In this network there are multiple layers of edge node
between the server and bottom layer edge devices. The edge
devices that are at a bottom layers they performed the local
training and send a model to bottom layer node. The bottom
layer receive a model and performed the aggregation of a
weights and send to a central server. Some Benefits of a
hierarchical topology are listed below:

• Enhanced Privacy: Hierarchical Topology enhanced the
privacy of the FL network by aggregating the local
updates of a model at a higher level before sending it
to a central server. It reduces the data transmission and
helps to protect the sensitive data.

• Scalability: Hierarchical Topology provides the benefit
of Scalability. It is a more structured approach to orga-
nize the edge devices in an FL network as the number of
devices increases.

• Enhanced Communication Efficiency: It reduces the
communication overhead by enabling a local aggrega-

tion of a model at a higher level before sending a model
to a central server.

C. COMPARISON OF CENTRALIZED, DECENTRALIZED
AND SEMI-CENTRALIZED LEARNING SYSTEM
Centralized models like vanilla FL and variants mainly rely
on a central entity and are vulnerable to faults, stragglers,
attacks and prone to scalability issues [13], [45], [46], [47].
The swarm learning algorithm dynamically selects a leader
to be aggregated in each communication round, the all-
reduce-based strategies are vulnerable to attacks and trust
issues. [48], [49]. Table 3 shows the comparative analysis of
centralized, decentralized, and semi-decentralized.

V. CHALLENGES RELATED TO COMMUNICATION ISSUES
AND OVERVIEW OF EXISTING SYNCHRONIZATION
METHODS
This section discussed the existing challenges of FL related
to communication, and it also discussed the detail of existing
synchronization methods.

A. CHALLENGES RELATED TO COMMUNICATION
In FL, multiple participants participate in collaborative train-
ing. Each participant may have heterogeneity in computing
resources, network bandwidth, and data distribution. In the
next sections, we discussed the detail of these challenges.

1) HETEROGENEITY IN COMPUTING AND NETWORK
BANDWIDTH RESOURCES
Communication is performed multiple times between the
local client devices and the server. A real-world environ-
ment needs fast communication between the server and
clients [38]. Unfortunately, communication is affected due
to the heterogeneity of device computation capacity and
network bandwidth [57]. The devices that participate in col-
laborative learning require high computational power and
internet bandwidth [58]. Smart Edge devices have fewer
computational resources and storage resources [59]. Training
of the Machine Learning model depends on an edge device
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computing capability. These devices have fewer CPUs [60].
The local training time of each device varies due to the
resource’s heterogeneity. Besides the computational issues,
the client device required a high network bandwidth to upload
and download the model from a server [61]. The device with
less network bandwidth and computational resources than
other devices causes a straggler problem at a server [62]. Due
to a heterogeneous environment, the ideal network bandwidth
and resources are not possible to perform fast communica-
tion [63].

2) HETEROGENEITY IN DATA SIZE
The FL environment has multiple nodes that perform their
local training, and the distribution of data varies between
each client [64]. Each device has only its local data, and each
client’s data collection environment may differ. Due to the
variation in data distribution, the local training time of each
device is different from others [31]. The device that has more
data samples takes more time to train. The server waits for a
client that takes longer time in local training and uploading
the model [51]. In the next section, we discussed the existing
synchronizations methods.

B. SYNCHRONIZATION METHODS
Distributing training is a collaborating learning mechanism
where multiple devices or nodes perform the training, and
that is controlled by a central entity [65]. To synchronize
the worker devices with the master central node, three main
types of methods are used to ensure consistency in col-
laborating learning, including Bulk Synchronous Parallel
(BSP), Asynchronous Parallel (ASP) and Stale Synchronous
Parallel (SSP) [66]. BSP [67] is a computation framework
for distributing learning that divides the computation into a
sequence of super steps. In FL, each device computes local
gradients or weights and sends them to a central server.
The server waits for all devices to be before the aggrega-
tion of weights. However, the convergence speed of BSP
is fast, but it has a straggler problem that slows down the
whole communication process. Asynchronous Parallel [68]
performs the communication between the client devices and
server asynchronously. The approach of ASP is opposite to
BSP, and it speeds up the communication process. In an ASP,
each client device computes the local gradients and weights
and transmits them to a server, and the server performs the
weight aggregation and sends a global model. However, the
lack of coordination with the other client device can pre-
vent the old version or state of the model from reducing
the performance of the global model. Stale Synchronous
Parallel (SSP) [69] combines ASP and BSP. This method
switches based on the policy Between ASP and BSP during
the collaborating training. The staleness parameter restricts
the iterations between the slow and fast worker and ensures
that it does not exceed a staleness threshold. Figure 8 shows
the block diagram of the synchronous, asynchronous, and
semi-asynchronous methods. This figure shows that when

devices are communicated with the server using synchronous
synchronization central server has to wait for all devices to
perform the aggregation. While on the other hand, in the case
of asynchronous, whenever a model training is computed it
sends a model to a central server, and the central server does
not wait for the other devices to perform the aggregation.
In a semi-asynchronous scheme, the central server caches
the received model and aggregates a received model after a
certain period.

In an existing study, the researcher proposed various syn-
chronization methods to synchronize the clients and server in
an FL environment [69]. There are commonly three types of
FL synchronizationmethods used in literature. These are syn-
chronous, asynchronous, and semi asynchronous. This survey
explored these methods and discussed some drawbacks of
these existing methods.

1) SYNCHRONOUS METHOD
Reference [70] design a novel partial synchronization parallel
method that reduces the traffic by transferring the gradi-
ent simultaneously at the relay node. This method breaks
the constraints of traditional transmission and exploits the
broadcast characteristic of relay nodes. A paper [71] pro-
posed a hierarchical clustering method that initially clusters
the available clients based on the computing resources of
devices. The devices perform the local training, and the local
model is transferred to a server, where the server aggregates
the weights simultaneously according to a cluster category.
Reference [72] proposed a probabilistic synchronous parallel
that ensures that only some workers participate in knowledge
aggregation. According to this method, the nodes that pass
the probabilistic sampling test will be allowed to partici-
pate in aggregation. Reference [73] proposed a synchronous
synchronization-based device selection method. A device
with minimum expected delay and expected contribution
towards a global model will be selected for aggregation.
It reduces the waiting time of the server. Table 4 shows the
comparative analysis of the existing synchronous synchro-
nization method.

2) ASYNCHRONOUS METHOD
Reference [74] proposed a buffered asynchronous method
that stores a client update in a buffer. A server performs the
aggregation when the number of arrived models equals the
size of the buffer. This buffer size is a tunable parameter that
can increase or decrease according to the waiting time of the
server and convergence rate. In a paper [75] asynchronous
method to scale the training in a distributed environment and
reduce the difference between the worker’s local model. They
found the client’s local and global models and introduced
an oscillating weight factor between the global and local
models as the degree of staleness. A paper [76] proposed a
synchronization method based on the asynchronous mecha-
nism; it performs online learning on live streaming data of
local clients and simultaneously passes the parameter to a
server after performing the local training. In a paper, [77]
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FIGURE 8. Representation of synchronous, asynchronous and semi synchronous federated learning synchronization method.

TABLE 4. Comparative analysis of synchronous synchronization method.

presents an FL synchronization method based on tiers for
non-IID data. The nodes are inserted into tiers based on
the latency. The intra-tier synchronous mechanism is used
asynchronous based communication performed in cross-tiers.
It reduces the effect of stragglers in an intra-tier. However,
performing the communication to a cross-tier node with more
latency affects the communication. Reference [78] proposed
a synchronization method that performs the aggregation of
nodes in a tree structure. First, aggregate the few nodes and
then aggregate the updated weights of a global model with
a new arrive model. Their method tackles the problem of
staleness in asynchronous synchronization. Table 5 describes
the comparative analysis of the existing asynchronous syn-
chronization method.

3) SEMI ASYNCHRONOUS METHOD
A paper [79] presents a semi-asynchronous method to
increase the round efficiency and convergence rate in a

scenario where clients are dropping most frequently. This
method categorizes the local model into three types, date,
deprecated and Tolerable. Semi-Asynchronous Protocol for
Fast Federated Learning (SAFA) only requires the up-to-
date and deprecated clients to synchronize with the server
synchronously, while the tolerable clients stay asynchronous
with the server training scheme. A study [80] proposed a
semi-synchronous method for fast convergence and reducing
the minimum waiting or idle time. They introduced a time
interval for weight aggregation, and the time interval is based
on the slow worker.

Reference [81] present a semi-synchronous method to
improve scheduling efficiency. The local model arrived at the
server in an asynchronousmode, waiting for a certain window
size to perform the aggregation. The drawback of this method
is that there are many slow workers, and in that case, at a cer-
tain time may, some need nodes arrive there and perform the
aggregation. Reference [82] present a method that selects the
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TABLE 5. Comparative analysis of asynchronous synchronization method.

K nodes from the m nodes based on the priority of the node.
The priority of the node depends on the data distribution and
computing resources. It reduces the effect of stragglers. In a
study [83] presents a semi-asynchronous method in which
the central server aggregates the k number of local device’s
models according to their arrival order. The nodes that come
in a certain time T server aggregate the weights and do not
wait for other nodes. Reference [84] present a new method
to cluster the nodes based on their similarity. An intra-cluster
node communicates in a synchronousmode, and cross-cluster
communication can be performed in an asynchronous mode.
But if there is some node that is straggler, it will slow down
the whole communication process. Table 6 describes a com-
parative analysis of the semi-synchronous synchronization
method. In Table 7 we performed the performance compar-
ison of the existing synchronization method.

VI. CHALLENGES RELATED TO MODEL AGGREGATION
AND OVERVIEW OF EXISTING AGGREGATION METHODS
This section discusses the challenges of FL related to model
aggregation and describes the detail of existing aggregation
methods.

A. CHALLENGES RELATED TO MODEL AGGREGATION
In collaborative training, the data distribution of participant
clients may vary. The clients with low prediction performance
on local data may affect the performance of a global model.
In the next section, we discussed these challenges.

1) NON-INDEPENDENT IDENTICALLY DISTRIBUTED
(NON-IID )
Another problem is a non-independent identically distributed
data distribution. Non-IID data refers that the data instances
are Non-Independent and not Identically distributed which
means that the data instances are not drawn from the same
probability distribution. In Federated Learning the partici-
pant’s device data distribution varies. Regarding non-IID data
distribution FedAvg does not give a convergence guarantee
because of each device’s feature and class label heterogene-
ity [63]. In the case of non-iid data distribution, data is not
distributed equally amongst all the clients in terms of feature
space and the number of classes [85]. A client that trains
a local model on a high quantity of non-iid data may skew
the global model towards his direction rather than the client
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TABLE 6. Comparative analysis of the semi-synchronization method.

that has a low quantity of non-iid data. After the aggregation,
it affects the performance of other clients [86]. There is a
possibility that the distribution of class labels is not equally
represented by all clients. The client with a greater number
of instances in each class than the other client with a smaller
number of instances in each class requires more attention than
others in terms of weights [87]. However, when we have an
imbalanced class distribution of each client in this scenario
assigning weights based on data distribution and performance
to a model of each client is better while performing a model
aggregation [88].

2) CORRUPTED NODES
FL’s communication and aggregation mechanism needs to
be robust to malicious nodes [89]. The server performs the
aggregation of weights or gradients. However, the presence
of weights of a malicious node changes the direction and
decreases the performance of the global model [90]. FedAvg
takes the average of all client’s weights or gradients, and
these resulting average weights send back to all clients. How-
ever, whenever we have extremely large and extremely less
weights for some clients or all clients. The impact of one
device’s node is greater when performing an aggregation.

A single node can change the convergence trend of the global
opposite to opposite direction.

B. AGGREGATION METHODS
1) BASIC AVERAGE BASED AGGREGATION METHOD
A paper [91] presents an FL weight aggregation method that
takes the average of all clients’ weights in each server round.
These aggregate weights are sent back to each client. It is
the first method that was introduced for weight aggregation.
However, the drawback of this method is that it is not robust
to malicious or corrupted nodes’ weight. Another study [92]
presents a method for weight aggregation that is somehow
robust to the malicious node. Their method used a Geometric
median instead of a simple average to aggregate the weights
of all clients. This method deals better with the weights of a
malicious node by using the median instead of the average,
which reduces the impact of large or low weights. However,
the convergence speed of this method is slower than the
FedAvg weight aggregation method. [93] proposed a median-
based gradient, trimmed mean-based gradient method for
aggregation. They take the median of the gradients for aggre-
gation, and this method also uses a trimmed mean for
aggregation. In the trimmed mean method, they first remove
some gradient values and then take the mean of gradients.
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TABLE 7. Performance comparative analysis of synchronization methods.

TABLE 8. Comparative analysis of basic average based aggregation method.

A paper [94] proposed a method that is based on the
Byzantine-resilient aggregation algorithm, and their aggre-
gation rule protects the model from the attack. T means
the method removes some weights and, after removing the
weights, performs the aggregation. Table 8 describes the
comparative analysis of the basic average based aggregation
method.

2) WEIGHTED AND PERSONALIZED WEIGHTED
AGGREGATION METHOD
In a paper, [95] proposed a method that performs the
personalized layer wised aggregation. They assigned the

weights to each layer based on its importance. This method
is a better-personalized weight aggregation model to deal
with a heterogeneous client in collaborating training. But
this method has communication and computation overhead.
A study [96] presents a precision weighted average that takes
the variance of gradients while of a weighted average of
local parameters of clients. The author argues that using the
FedAvg in the presence of heterogeneous data distribution is
not better. While their Precision-weighted average method
leverages the heterogeneity of the data in the presence of
feature diversity.

In a paper, [97] proposed an aggregation method that
assigned the weights to each client based on the reputation
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TABLE 9. Comparative analysis of weighted and personalized weighted aggregation method.

score. The performance metrics of the local model are used
to compute the reputation score of the client in each commu-
nication round. The node with better performance contributes

more and is assigned a higher reputation score than the other
node with less reputation score. In a study, [98] proposed a
method to accelerate the global model convergence and make
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TABLE 10. Performance comparative analysis of aggregation methods.

them reliable for offline attacks and network instability. They
used a gaussian distribution to assign weight to clients based
on potential contribution. In a paper, [99] proposed a method
that adaptively assigned a weight to each client to accelerate
the global model in the presence of non-iid data. They assume
that a local client’s contribution depends on that client’s data
distribution. The contribution of the local client is computed
by computing the angle between the global and local gradi-
ent vectors. This method calculated the contribution in each
round and assigned a weight to clients.

In a paper, [100] proposed a method that assigned a weight
to a classification layer based on the class distribution of that
client. The aggregation of weight is performed by assigning a
weighted score to a classification layer based on the contribu-
tion. They assume that the existingmethod that aggregates the
weights without considering the contribution of the client’s
class distribution may decrease the performance of the model
after aggregation. A study [101] proposed an aggregation
algorithm that contribution-aware model aggregation rather
than average like a FedAvg. Each client downloads a model
from the server, computes the inference loss, and then sends
it back to a server with local updates. The server selects a
node based on an inference loss and performs the aggregation.
A paper [102] proposed a weighted aggregation method and
assigned a weight to each client based on the data size of the
client. They used the asynchronous synchronization method
and categorized the neural network layer into deep and shal-
low layers. In this method, the parameters of shallow layers
are updated more frequently than deep ones.

A paper [103] proposed a method that reduces the biased-
ness towards a specific client by optimizing a global model
towards the target distribution by forming a mixture of the
client distribution. In a paper, [104] proposed a method that
assigned a weight-based performance to the local client.
In this method, they calculated the dynamic weight of fair-
ness and assigned a weight to each client. The weighted
aggregation is performed based on the dynamic fair weight.
A study [105] proposed a method that is based on a
multi-branch neural network. In an aggregation process, their
method merges multiple branches. This method performs the
weighted average based on theweight of each branch. Table 9
shows the Comparative Analysis of Weighted and Personal-
ized Weighted Aggregation method. In Table 10 performed
the performance comparison of the existing synchronization
method.

VII. FUTURE DIRECTION
• When the computing resources of the devices have
extreme variation, in that case, there is a possibility that
some of the Hybrid synchronization methods (a combi-
nation of asynchronous and synchronous) may perform
better to mitigate the impact of the straggler node. How-
ever, there is a possibility that the node discarded in
each communication round may contribute more than
the other client devices. Therefore, there is a need for
adaptive synchronization, in which the straggler node
can contribute to the global model also it has a low
impact on server waiting time.
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• In client-server communication, the straggler problem
occurs due to device resources and network bandwidth.
Therefore, making a cluster of nodes based on their
locality or a similar data distribution and computing
resources may reduce the impact of a straggler node.

• In an aggregation phase, a malicious node’s presence
decreases a global model’s performance. FedAvg is
not robust to the malicious node. There is a need for
some cryptographic security methods, such as client-
server authentication, before starting the communication
between the server and client. Also, need some encoding
method that encodes the actual weights of the model
before transferring to a server.

• Network Topology plays an important role in commu-
nication efficiency and convergence. There is a need
for an adaptive topology of the network that adaptively
connects the edge devices based on the data distribution
and resource heterogeneity to reduce the communication
delay and enhance the convergence.

VIII. CONCLUSION
The objective of this survey is to present a comprehensive
analysis of contemporary techniques for synchronization,
network topology and aggregation in FL. FL represents a new
paradigm that requires further attention to optimize the per-
formance, communication efficiency and convergence speed
of the FL methodology. The present article provides a sum-
mary of the current approach to synchronization and aggre-
gation, while also examining the constraints associated with
these established techniques. The presence of heterogeneous
devices in a FL setting is a pertinent concern that has a notable
impact on both communication efficiency and convergence
performance. Based on a thorough examination of the rel-
evant literature, it can be inferred that semi-asynchronous
techniques are more suitable for the FL setting due to the
constraints posed by device resources and the heterogeneity
of data. Personalized weighted aggregation methods are a
suitable approach for addressing the challenges posed by
heterogeneous feature spaces and class distributions. How-
ever, further enhancements are necessary to attain optimal
performance levels in the context of the FL System for hetero-
geneous environments. The present survey aims to assist the
research community in providing guidance on a synchroniza-
tion and aggregation technique that is currently in use. The
scope of this survey is limited to the examination of aggrega-
tion and synchronization techniques. In subsequent discus-
sions, it is anticipated that issues pertaining to model sparsi-
fication, compression, and node selection will be addressed.
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[5] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, ‘‘Federated
optimization: Distributed machine learning for on-device intelligence,’’
2016, arXiv:1610.02527.
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