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ABSTRACT Alzheimer’s disease (AD) is a major public health priority. Hippocampus is one of the most
affected areas of the brain and is easily accessible as a biomarker using MRI images in machine learning
for diagnosing AD. In machine learning, using entire MRI image slices showed lower accuracy for AD
classification. We present the select slices method by landmarks on the hippocampus region in MRI images.
This study aims to see which views of MRI images have higher accuracy for AD classification. Then,
to get the value of three views and categories, we used multiclass classification with the publicly available
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset using Resnet50 and LeNet. The models were
used in a total dataset of 4,500 MRI slices in three views and categories. Our study demonstrated that the
selecting slices performed better than using entire slices in MRI images for AD classification. Our method
improves the accuracy of machine learning, and the coronal view showed higher accuracy. This method
played a significant role in improving the accuracy of machine learning performance. The results for the
coronal view were similar to the medical experts usually used to diagnose AD. We also found that LeNet
models became the potential model for AD classification.

INDEX TERMS Convolutional neural network, multiclass classification, axial view, coronal view, sagittal
View.

I. INTRODUCTION with AD globally, which may reach 131.5 million people by
Alzheimer’s disease (AD) is a major public health priority 2050 [2]. AD is a progressive, neurodegenerative disease that
[1]. Globally, around 44 million people have been diagnosed affects elderly people over 65 years old and impacts memory
and cognitive function [3]. Although there is no known cure
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studies have demonstrated that early AD diagnosis can make
a living with the disease easier [3].

In an early AD diagnosis, observing and exploring the
deterioration process in the brain regions is important before
the progression of the disease. Hippocampus is one of the
most affected areas of the brain and is easily accessible as
a biomarker of AD [5], [6]. For example, the degeneration of
cholinergic circuits in the hippocampus and reduced volume
changes in the hippocampus are related to memory loss [5].

In addition, a severe volume reduction of the hippocam-
pus can be easily detected using Magnetic Resonance Imag-
ing (MRI) images and is widely used for diagnosing AD [7].
MRI has become an excellent and valuable tool with a highly
effective imagery technique for diagnosing and analyzing
structural changes in the brain [8]. Moreover, structural MRI
image biomarkers are used in three categories: AD, Mild
Cognitive Impairment (MCI), and Normal Control (NC) [9]
Three categories of AD are used to understand subtle changes
in disease progression on an MRI image in the early stages of
AD [10].

Recently, machine learning models have been developed
to diagnose AD based on MRI images [11]. The advances
in machine learning have the potential to classify complex
patterns from MRI images, and the diagnosis can be finalized
in a brief time [12]. For example, a study by Kazemi and
Houghten used machine learning models to classify different
categories of AD [13]. Other studies showed that cancer
detection accuracy is comparable to manual detection. There-
fore, machine learning can reduce the time and is expected
to perform consistently in large amounts of data at any time.
In contrast, manual diagnosis results may be affected the time
to read the MRI images in diagnosing AD. Furthermore, with
the advantages, machine learning has become the preferred
method for medical image classification [14]. In terms of
classification tasks in different AD stages, first, use binary
classification between two categories to classify AD, such as
AD vs. NC, MCI vs. AD, and NC vs. MCI [15]. In com-
parison, some studies used the multiclass classification to
classify AD in three categories [16]. In addition, a study by
Kazemi and Houghten used machine learning to classify AD
in three categories (i.e., AD, MCI, and NC) [13]. The use of
multiclass classification can be beneficial in distinguishing
the results of three categories of AD because the binary
classification consists of only two categories, whereas the
multiclass classification consists of more than two categories.
Thus, the multiclass classification can help improve the clin-
ical decisions on whether someone will develop the disease
through the results of each category to diagnose AD.

In order to improve performance for AD classification,
several studies have proposed different methods to improve
the accuracy performance in machine learning using mag-
netic resonance imaging (MRI) images. For instance, the
improvement of the MRI image quality to reduce the noises
[17], the use of segmentation in a specific brain region [18],
classification techniques with AdaBoost [19], and slice-based
method [20]. In general, the entire slices of MRI images
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are composed of 100 to 250 slices [21], [22]. However,
Lopez et al. found that the results in classification improve
the accuracy with several slices than using the entire slices
[23]. In spite of accuracy improvement for AD classification,
there is no detailed information on how they select several
slices in MRI images within three views and three categories.
For example, in a study by Kang et al., they selected 11 slices
based on the highest classification accuracy in coronal view
between 1 to 145 slices [24]. Thus, there is no information
about selecting several slices regarding the early diagnosis of
AD in the hippocampus using MRI images.

Furthermore, getting the information on the biomarker for
early AD diagnosis (i.e., hippocampus) in MRI images to
select several slices requires medical experts’ knowledge and
experiences [25], [26]. The medical experts’ information can
be used as the ground truth in three views and three categories
for AD classification. Still, the three views of MRI images are
commonly known as axial, coronal, and sagittal [27]. Using
three views of MRI images may offer complementary fea-
tures useful for AD classification. Even though MRI images
can provide the landmark of the hippocampus region in three
views, medical experts usually require one view, which will
be beneficial for diagnosing AD. Thus, the selecting slices
method in MRI images can be used for AD diagnosis and pro-
vide more computational simplicity than using entire slices in
three views and three categories (i.e., AD, MCI, and NC).

Finally, the selecting slices method focuses on the land-
marks in the hippocampus region in MRI images and is used
for AD classification. In addition, working on the hippocam-
pus region on MRI images can involve more advantages to
improve the performances of AD classification. Therefore,
we hypothesized that the selecting slices method of MRI
images using landmarks in the hippocampus region might
improve performance in classifying AD. In order to validate
our proposed method, we compare the classification result
with the use of entire slices in MRI images. With the pro-
posed method, this study aims to see which views (i.e., axial,
coronal, and sagittal) of MRI images are higher accuracy for
AD classification in machine learning. Then, we used multi-
class classification on MRI images to get the result in three
categories (i.e., AD, MCI, and NC) for AD classification.

Il. MATERIAL AND METHODS

A. DATASET ACQUISITION

Data used in this study were obtained from the pub-
licly available Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database (https://adni.loni.usc.edu/) in the first
phase (ADNII1). Following the previous studies, ADNII
is one of the most commonly used databases to diag-
nose AD [28], [29]. We used the baseline ADNI1 dataset
from a 1.5T Tesla scanner, pre-processed with Magneti-
zation Prepared Rapid Gradient Echo (MP-RAGE) with
a resolution of 256 x 256 x 170 voxels. Further detailed
information can be found on the ADNI website. The
dataset includes 300 subjects in three categories, includ-
ing 100 AD, 100 MCI, and 100 NC. It is similar to
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other studies that used more than 100 subjects to diag-
nose AD using machine learning [30], [31]. However,
considering the small dataset can reduce the parameters
and computation cost, which still performs better for AD
diagnosis [32].

B. METHOD PROCEDURE

We conducted the four steps to classify AD in three views.
The first step is collecting the data from the ADNI database;
the second step is extracting the images; the third step is
selecting slices; and the fourth step is using a machine learn-
ing algorithm and multiclass classification. The flowchart for
classification AD is shown in Figure 1.

31 step: Selecting slices

ges Machine learming
W Select e L » Result
| slices v
: Multiclass
S —

classification

FIGURE 1. The flowchart illustrated the four steps for Alzheimer’'s
disease (AD) classification.

In the first step, we retrieved the data from the ADNI
database. The dataset (ADNI1) originally downloaded from
the website was available in the Neuroimaging Informatics
Technology Initiative (NifTI) format 3-dimensional (3D).
In the second step, we extracted 3D NifTI (.nii extension) to
the 2-dimensional (2D) images (.png extension) since train-
ing in 3D utilizing NifTT files requires a long time and is
relatively costly [33]. The output from these extractions is
divided into three categories (i.e., AD, MCI, and NC) for each
view (i.e., axial, coronal, and sagittal). Then, we provided
the selecting slices method from the entire slices of the MRI
image. Then, selecting the slices method requires the medical
experts to get the detailed information regarding landmarks
in the hippocampus region to select 5 slices in MRI images.
We used two models for classifying AD: Resnet50 and LeNet.
The final step of this process was to get the multiclass classi-
fication result to see the value of three categories (AD, MCI,
and NC).

Then, we compared the accuracy of selecting slices method
with using entire slices to ensure that our proposed method
showed better performance. According to the performance
of our proposed method, we can determine which view was
more suitable to classify AD. Likewise, the performance of
the two models with the proposed method will determine
which model performs the best for the AD classification task.
In addition, we can provide the value of each category in three
views for the performance in the multiclass classification.
The implementation of the model has been done using Win-
dows 10 using Python 3.7.6 on a machine with the following
specifications: Core i7-11700 CPU, 32 GB RAM, and an
NVIDIA GeForce RTX 3090 GPU with 24 GB of GDDR6X
memory.
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C. SELECTING SLICES
The selecting slices method is conducted with the medical
experts from China Medical University Hospital, senior expe-
rience in the Neurology field. The process of selecting slices
consists of four steps. In the first step, medical experts check
the MRI images in three views, three categories, to identify
the biomarker in the brain region that is affected by AD.
In similar studies by Dickerson et al., medical experts check
the brain region before making any decisions [34]. Medical
experts consider the hippocampus region as was identified to
become one of the brain regions affected by AD. Similarly,
Rao et al. used the hippocampus region to diagnose AD [5].
In the second step, selecting slices method in MRI images
using landmarks in the hippocampus region in three views.
In the axial, a sign from the midbrain inferior (" mickey mouse
sign’) to the upper part (‘apple sign’), from the coronal in
the anterior brainstem part to the whole brainstem could be
seen, and from the sagittal in the ventricles lateral. Then,
we marked MRI slices in three views and categories. In the
third step, the medical expert confirmed the dataset to ensure
the landmark in the hippocampus region of the MRI image
slice was correct. The process for selecting slices method
of MRI images using the landmarks on the hippocampus
region in three views and three categories is shown in Figure
2. In the fourth step, we recruited 300 subjects from the
ADNI database. There were three categories (AD, MCI, and
NCO), each containing 100 subjects. The MRI images category
was extracted into three views (axial, coronal, and sagittal).
There are approximately 16,500 images in each view of MRI
images. Therefore, each subject of MRI slices has 160 to 170
slices. Thus, the number of entire slices for our subjects is
149,805 MRI slices in three views and three categories.
Moreover, five slices were selected from 160 to 170
MRI slices for each view and category. Accordingly, there
are 500 MRI slices for each view of 100 subjects. Finally,
the dataset was divided 80:20, with 80% (3600 MRI slices)
of the data used for training and 20% (900 MRI slices) used
for validation. Therefore, the detailed information of our
balanced dataset in each view and category for training and
validation is summarized in Table 1. Then, we applied the
dataset in machine learning to improve performance for AD
classification. The process of selecting 5 slices from entire
slices on the MRI images is shown in Figure 3.

D. CONVOLUTIONAL NEURAL NETWORK

Recent advances in machine learning, such as convolutional
neural networks (CNN), have achieved better classification
results for AD classification [35] Two models, Resnet50 and
LeNet, were used for AD classification. These two models
are widely used for classifying AD [36], [37].

1) ResNet50

ResNet was proposed by Chinese scientists from the former
Microsoft Research Institute, and deep Resnet is a milestone
event in the history of CNN images [38]. ResNet50 is one of
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TABLE 1. The balanced dataset in each view and category for training
and validation.

MRI Entire Selecting slices

Categories . . Training Validation
view slices (80%) (20%)
AD (100
people)
Axial ~16,500* 400 100
Coronal ~16,500* 400 100
Sagittal ~16,500% 400 100
MCI (100
people)
Axial ~16,500* 400 100
Coronal ~16,500* 400 100
Sagittal ~16,500* 400 100
NC (100
people)
Axial ~16,500* 400 100
Coronal ~16,500* 400 100
Sagittal ~16,500* 400 100
Summary 149,805 3600 900

Note: * the number of the entire slices in the MRI image for each subject
ranges from 160 to 170; Five slices from 160 to 170 MRI slices were selected
for each view of each person; AD (Alzheimer's Disease), MCI (Mild Cognitive
Impairment), and NC (Normal Controls).

the deep learning models proven to be very efficient in AD
classification [39]. Resnet50 architecture contains 50 layers
with four stages. Increasing convolutional layers with resid-
ual blocks stacked in each stage do not reduce the model’s
performance. As shown in Figure 4, the 48 convolutional
layers are arranged into four residual stages along with 1 Max
Pooling and 1 Average Pooling layer. The activation function
is called ReLU after the convolutional layer, which passes
the positive outputs, suppresses the negative outputs in the
feature map, and turns them to zero. Two pooling layers,
one of average type and the other of max type, are used to
reduce the dimensionality of the inner feature map. The fully
connected layer receives the feature map as a flat vector and
passes it to the SoftMax activation function, resulting in three
classes for classifying AD. Moreover, several studies have
used pretrained models to classify AD [40].

Generally, the network structure between Resnet50 and
Pretrained Resnet50 is the same. The difference is during the
training process. The model learns the feature representation
of the training data from scratch. In this case, the model
does not build on the knowledge previously learned on a
massive dataset. For the purpose of training Resnet50 without
pretrained weights, all parameters or weights in the network
are randomly initialized. The Resnet50 architecture is shown
in Figure 4.

2) LeNet

The LeNet model was first designed in the study by LeCun et
al. [41] LeNet is one of the oldest and simplest models. The
LeNet is the most efficient model since it consumes a smaller
amount of computation time and is effectively used in various
image classifications [42]. Likewise, LeNet performs best for
classification in medical images [43]. For instance, classify
AD and achieve more than 92% accuracy [44]. However, the
LeNet model is suitable for classification tasks. Thus, this
study uses the LeNet model for AD classification, and the
architecture is shown in Figure 5.
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(A) Axial View
Image sign

Hippocampus region

(B) Coronal View
Image sign

i I

Hippocampus region

(C) Sagittal View
Image sign

a Y i -~ -~

Hippocampus region

FIGURE 2. The process for selecting slices method of MRI images using
the landmarks on the hippocampus region in three views and three
categories; (A) the top is imaging signs by marking the hippocampus from
the axial midbrain inferior part (‘mickey mouse sign’) to the upper part
(‘apple sign’), below is the hippocampus region landmark; (B) top is an
imaging sign from the brainstem anterior part to the whole brainstem
could be seen, below is the hippocampus region; (C) top is an imaging
sign from sagittal view in the ventricles lateral, below is hippocampus
region.

Ill. RESULT

All experiments were used in the same dataset. Two models
are trained for multiclass classification (i.e., AD, MCI, and
NC) in three views (i.e., axial, coronal, and sagittal) and two
models (e.g., Resnet50 and LeNet). The result of our studies
is listed in the section below.

A. EFFECT OF SELECT SLICES

The proposed selecting slices method accuracy is shown in
Table 2. Then, the result was compared using entire slices
on MRI images and the selecting slices method to evaluate
the effectiveness and performance in three views and three
categories. According to Table 2, the selecting slices method
showed higher accuracy in the range of 0.84 to 0.98 among
the two models than using the entire slices on MRI images.
The result for entire slices showed lower accuracy in the
range of 0.37 to 0.65 among the two models. The accuracy
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(A) Axial view

(B) Coronal view

(C) Sagittal view

FIGURE 3. The detailed workflow from the selecting slices method to
select 5 slices from entire slices on the MRI images; (A) Selecting slices in
axial view; (B) coronal view; (C) axial view.
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FIGURE 4. The Resnet50 architecture; Note: Alzheimer's Disease (AD);
Mild Cognitive Impairment (MCl); Normal Control (NC).

comparison between the entire slices and the selecting slices
method is shown in Table 2. The accuracy graph performance
in AD classification is shown in Figure 6.

B. COMPARISON OF THREE VIEWS

In addition, comparisons between the three views were used
to see which view shows the highest accuracy by selecting
slices by landmark on the hippocampus region. As shown
in Figure 6(B), the coronal view showed higher accuracy
among the two models. The accuracy shown in the coronal
view is (0.97), (0.95), and (0.98), respectively. While axial
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FIGURE 5. The LeNet architecture; Note: Alzheimer’s Disease (AD); Mild
Cognitive Impairment (MCI); Normal Control (NC).

TABLE 2. The accuracy comparison between the entire slices and the
selecting slices method.

Entire slices Selecting slices

Accuracy Axial ~ Coronal  Sagittal Axial ~ Coronal  Sagittal
Pretrained 0.52 0.45 0.65 0.98 0.97 0.95
Resnet50
Resnet50 0.45 0.37 0.55 0.84 0.95 0.94
LeNet 0.65 0.37 0.58 0.98 0.98 0.97
Average accuracy 0.54 0.39 0.59 0.93 0.96 0.95

view (0.98), (0.84), and (0.98); sagittal view (0.95), (0.94),
and (0.97) in the Pretrained Resnet50, Resnet50, and LeNet,
respectively. According to Table 1, the average accuracy in
the coronal view is also higher; the accuracy is 0.96.

C. COMPARISON OF TWO MODELS

The two models were compared to see which model per-
formed better in AD classification. According to Table 2,
it showed LeNet has the best comprehensive performance of
the three views. LeNet was the model that exhibited higher
accuracy gains among the three views than the other two
models. The accuracy of the LeNet models was 0.98 in the
axial, 0.98 in the coronal, and 0.97 in the sagittal view.

D. PERFORMANCE OF MULTICLASS CLASSIFICATION

The performance result of multiclass classification was used
to get the value in three categories (i.e., AD, MCI, and NC).
According to Table 3, the result of a multiclass classification
for AD, MCI, and NC in coronal and sagittal achieve better
precision, recall, and F1 score in Pretrained Resnet 50 and
LeNet models in a range of 0.90 to 1.00. In contrast, MCI in
the axial view showed lower in a range of 0.81 to 0.88 for
Resnet50.

IV. DISCUSSION

This research demonstrated that the selecting slices method
could improve the performance in machine learning on AD
classification using MRI. The finding may provide evidence
supporting our hypothesis that the proposed selecting slices
method is better for AD classification than the entire slices
in MRI images. Furthermore, the selecting slices method
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FIGURE 6. The accuracy graph performance in AD classification; (A) Entire
slices; (B) Selecting slices method.

TABLE 3. The Precision, Recall, and F1 Score for multiclass classification.

Model performance
Model Class Precision Recall F1 score
axial coronal sagittal axial coronal sagittal axial coronal sagittal
Pretrained-Resnet50 AD 098 0.97 0.92 0.99 0.96 0.95 0.99 0.96 0.94
MCI  0.98 0.97 0.95 0.97 0.96 0.93 0.97 0.96 0.94
NC 0.99 0.97 0.99 0.99 0.99 0.98 0.99 0.98 0.98
Resnet50 AD  0.87 0.92 0.90 0.89 0.98 0.94 0.88 0.95 0.92
MCI  0.81 0.97 0.98 0.82 0.92 0.90 0.82 0.94 0.94
NC 082 0.97 0.95 0.80 0.96 0.99 0.81 0.96 0.97
LeNet AD  1.00 0.99 0.97 1.00 0.97 0.94 1.00 0.98 0.95
MCI  0.96 0.97 0.96 0.99 0.99 0.97 0.98 0.98 0.97
NC 0.99 1.00 0.98 0.96 1.00 1.00 0.97 1.00 0.99

Note: AD, Alzheimer's Disease; MCI, Mild Cognitive Impairment; and NC,

Normal Controls.

showed higher accuracy in the coronal view than in the axial
and sagittal views. However, we found the LeNet model
showed the best performance than Resnet50. Finally, from the
multiclass classification result, we can see the value of each
category in three views.

According to the results in Table 2, we found that the
selecting slices method using landmarks on the hippocampus
region showed higher accuracy than the use of entire slices
in MRI images. Similar efforts in the previous study, select
slices on a specific region in MRI images can increase the per-
formance for AD classification [45], [46]. In addition, we did
not use any other computational process on MRI images, and
we still achieved higher accuracy with the selecting slices
method. However, we may assume that the selecting slices
method may be affected the AD classification performance in
machine learning. Furthermore, our work for selecting slices
method might be useful as a guideline to get the informative
slices from entire slices on MRI images.
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In order to verify the performance of our proposed method
from the other works of literature, see Table 4. The study by
Valliani and Soni used pretrained Resnet with augmentation
in axial view and showed an accuracy of 0.56 [47]. While
Angkoso et al. used CNN with BET, the accuracy in axial was
0.86, coronal was 0.85, and sagittal was 0.85, respectively
[45]. In other studies, Altaf et al. used KNN, gray level
cooccurrence matrix, and segmented the region, namely grey
matter, white matter (WM), and cerebrospinal fluid (CSF),
showing (0.79) accuracies [48]. Shi et al. used Conv-LSTM
and showed the accuracy in axial (0.59), coronal (0.57), and
sagittal (0.52) [49]. Our selecting slices method only focused
on landmarks in the hippocampus region without any compu-
tational process. However, the proposed method still showed
higher accuracy than other studies among two models and
three views.

In order to verify the performance of our proposed method
from the other works of literature, see Table 4. The study
by Valliani et al. used pretrained Resnet with augmentation
in axial view and showed an accuracy of 0.56 [47]. While
Angkoso et al. used CNN with BET, the accuracy in axial was
0.86, coronal was 0.85, and sagittal was 0.85, respectively
[45]. In other studies, Altaf et al. used KNN, gray level
cooccurrence matrix, and segmented the region, namely grey
matter, white matter (WM), and cerebrospinal fluid (CSF),
showing (0.79) accuracies [48]. Shi et al. used Conv-LSTM
and showed the accuracy in axial (0.59), coronal (0.57), and
sagittal (0.52) [49]. Our selecting slices method only focused
on landmarks in the hippocampus region without any compu-
tational process. However, the proposed method still showed
higher accuracy than other studies among two models and
three views.

According to Figure 6(b), we found that the LeNet model
in coronal view showed higher accuracy than the axial and
sagittal. It can be evident that the coronal view may contain
reliable information about the landmark in the hippocampus
region. A similar finding in a study by Raju et al., the hip-
pocampus region was the most discriminative in the coronal
view, showing clearly [50]. Thus, the coronal view on MRI
images may be more informative for early AD detection.
However, our finding showed higher accuracy in the coronal
view, the same as the medical expert usually uses to see the
hippocampus volume changes in MRI images when diagnos-
ing people with AD.

Table 2 also showed that LeNet models showed higher
accuracy in three views. It can be observed that the LeNet
can achieve the most convincing results, with an average of
0.98. Our results were similar to the other study by Hazarike
etal. [51]. For this reason, the LeNet model might train all the
layers on MRI images for the classification task. Additionally,
LeNet is well-known for its simple yet effective architecture
for classification problems and showed effective performance
[52]. The LeNet model is beneficial for classification tasks
using MRI images.

Moreover, using Pretrained Resnet50 showed an average
performance of 0.97. At the same time, the Resnet50 was
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TABLE 4. The comparison results with other studies.

Study Model Dataset Accuracy
(Method) Axial Coronal Sagittal
Pretrained Resnet - 0.56 - -
(Augmentation)

Valliani et al.[47]

Angkoso et al.[45] CNN ADNI 0.86 0.85 0.85
(BET)
Altaf et al.[48] KNN ADNI 0.79 -
(GLCM, Segmented
region)
Shi et al.[49] Conv-LSTM MNIST 0.59 0.57 0.52
Current Study Pretrained Resnet50 ADNI 0.98 0.97 0.95
Resnet50 0.84 0.95 0.94
LeNet 0.98 0.98 0.97

Note: CNN (Convolutional Neural Network); BET (Brain Extraction Tool);
KNN (K Nearest Neighbor); GLCM (gray-level cooccurrence matrix); LSTM
(Long Short Term Memory); MNIST (Modified National Institute of
Standards and Technology database).

lower than using Pretrained Resnet50 and LeNet, with an
average performance in three views of 0.93. For this reason,
Resnet50, when using a pretrained weight, the models are
already trained on a larger benchmark dataset like Imagenet
[53]. In contrast, pretrained model, Resnet50 starts the weight
initialization from learned weights from the imagenet. In a
previous study, the models that used pretrained weights were
good at detecting high-level features like edges and patterns
and could improve model performance [54]. The Pretrained
Resnet50 is more likely to understand certain basic feature
representations which can be used in our dataset. This con-
dition helps in quicker convergence when training with a
relatively smaller dataset.

Furthermore, even though we earned the result for each
category in the performance of multiclass classification
(AD, MCI, and NC), we found that MCI in axial view
with Resnet50 showed lower precision, recall, and F1 score
in a range of 0.81 to 0.82. For this reason, MCI has
a high probability of misdiagnosing AD, and the struc-
tural changes in MCI are relatively subtle [24], [55]. The
studies may get evidence that MCI is more challenging
for classification tasks than AD and NC in classification
tasks.

However, we still have limitations for this study. First, for
selecting slices, we manually selected one by one in three
views from the entire slice in MRI images. We have 300
subjects with 149,805 MRI slices in three views and three
categories. Then, in total, we manually selected 4,500 MRI
slices. However, it might be beneficial to use deep learning to
select the slices automatically. A similar effort in the previous
study used deep learning to predict the label of medical
images [56]. Future studies may label the MRI slices for
a fully automatic system to detect select slices containing
landmarks in the hippocampus region. Second, we did not use
data augmentation to train our performance model. A similar
effort in a study by Liu et al., using data augmentation,
can increase classification accuracy [57]. In future studies,
we could increase our accuracy and generate more training
data using data augmentation.
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V. CONCLUSION

This study supports our hypothesis that selecting slices can
improve machine learning performance, and selecting slices
in MRI images significantly improves the accuracy of AD
classification. Furthermore, we found that the coronal view
results have higher accuracy than the axial and sagittal views.
Additionally, we found that the LeNet model showed higher
performance on the AD classification. Then, the multiclass
classification result can be used to see the value of each
category for AD classification.
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