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ABSTRACT Promoters are an important regulatory element in the genome that control gene expression,
and their abnormalities have been linked to various diseases. Therefore, accurately promoter identification
is essential for biological research as we as drug development. But the identification of the promoter
using laboratory approaches is highly costly. In order to address this issue, we proposed a computational
model called iPro-TCN to predict promoter and their strength using temporal convolutional network (TCN)
with a word2vec feature representation. This model includes a feature descriptor known as Word2Vec and
achieved high performance to predict promoters, including strong and weak promoters. The iPro-TCN
model obtained accuracy of 91.86% to predict promoter in the first layer for, and an accuracy of 84.63%
to predict strong and week promoter in the second layer using cross validation test. On benchmark datasets,
the proposed iPro-TCN model produced better performance than previous computational models in term of
all performance metrics.

INDEX TERMS Deep learning, promoters, temporal convolution network, natural language processing,
DNA, word2vec.

I. INTRODUCTION
Promoter is a region of DNA where RNA polymerase
begins to transcribe a gene. Gene expression regulation in
prokaryotes is generally simpler than in eukaryotes because
prokaryotes have a smaller and more compact genome, and
their transcription and translation machinery is less com-
plex [1]. The promoter sequence contains specific DNA
motifs that bind transcription factors and determine the level
of gene expression. Promoters are usually located imme-
diately upstream of the gene, and they typically contain
a ribosome binding site, a start codon, and a promoter
sequence. The activity of promoters can be regulated by a
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variety of factors, including DNA methylation, histone mod-
ification, and the binding of transcription factors [2], [3].
Dysregulation of gene expression due to changes in promoter
activity can have significant consequences, and understand-
ing the mechanisms that regulate promoter activity is an
active area of research in genetics and molecular biology.

Promoters are important in many biological processes,
including development, aging, and disease. Understanding
the role of promoters in gene expression can be important
for the diagnosis and treatment of diseases [4], and there
are many techniques that are used to study promoters and
their role in gene regulation, including DNA sequencing,
DNAmicroarrays, and RNA sequencing. Promoters are DNA
sequences that serve as binding sites for RNA polymerase,
the enzyme responsible for transcribing DNA into RNA.
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In bacteria, the promoter region typically consists of two hex-
americ sequences known as the ‘‘-35’’ and ‘‘-10’’ elements,
which are centered around 35 and 10 base pairs upstream
of the transcription initiation site, respectively [5], [6].
The -35 element consists of the sequence TTGACA, while
the -10 element consists of the sequence TATAAT [7]. These
elements serve as binding sites for specific transcription
factors that help to regulate transcription. Sigma factors
(σ −factors) are proteins that are part of the RNA polymerase
enzyme complex in bacteria [8]. They play a critical role
in the initiation of transcription, which is the process of
synthesizing RNA from a DNA template. When a bacterium
needs to transcribe a particular gene, the sigma factor helps
to recognize and bind to the promoter region of the DNA,
which is a specific sequence located upstream of the gene.
This binding helps to position the RNA polymerase enzyme
complex at the transcription initiation site, so that it can begin
synthesizing RNA. There are several different sigma factors
in bacteria, each of which is specialized to recognize and bind
to specific promoter sequences. Different sigma factors are
responsible for transcribing different sets of genes, depending
on the promoter sequences they recognize. For example, the
σ70 sigma factor is responsible for transcribing the majority
of genes in Escherichia coli, while other sigma factors may
be specialized for transcribing genes under specific envi-
ronmental conditions or in response to particular signaling
pathways [9].

The identification of promoters is an important area in
genome research, as understanding the regulatory sequences
that control gene expression can provide insight into the
function of different genes and the regulation of biological
processes. DNA sequencing and bioinformatics analysis are
often used to identify and characterize promoters in bacte-
rial genomes. The PCSMmodel (position-correlation scoring
matrix) is a computational approach that was developed
by Li et al., for predicting σ70 promoters in the bacterial
species Escherichia coli K-12 [9]. The PCSM model uses
a scoring matrix approach to analyze DNA sequences and
identify promoter regions that are likely to be recognized
by the σ70 sigma factor. Similarly, vwZ-curve model was
developed by Song et al., for analyzing prokaryotic promot-
ers and predicting their transcriptional activity [10] used a
variable-window Z-curve method to extract general features
of prokaryotic promoters. The vwZ-curve model analyzes
DNA sequences by breaking them down into smaller window
sizes and applying a Z-curve analysis to each window. This
allows the model to identify patterns and features that are
characteristic of promoters, such as specific DNA sequence
motifs or structural features. likely, Silva et al., proposed a
computational approach called Stabilty for predicting pro-
moter regions in bacterial genomes [11]. The Stability model
based on NN algorithm that integrates DNA duplex stability
into its predictions. The iPro54-PseKNCmodel is a computa-
tional approach established by Lin et al. to identify sigma-54
promoters in prokaryotes [12]. The iPro54-PseKNC model is

based on pseudo k-tuple nucleotide composition (PseKNC).
In the iPro54-PseKNC model, PseKNC extract features from
DNA sequences that are relevant for identifying sigma-54
promoters. Then, incremental feature selection procedurewas
employed to select the relevant features. Finally, used SVM
for classification. Similarly, the iPromoter-2L method [8]
was established by Liu et al., to predict promoters and their
types using random forest for classification. The iPromoter-
2L model based on multi-window-based PseKNC method.
In iPromoter-2Lmodel, the PseKNCwas employed to extract
hidden feature from promoters sequences and multi-window
approach was used to divided the promoters sequences into
smaller windows and the PseKNC features are extracted from
each window. This allows the model to identify patterns
and features that are characteristic of promoters, such as
specific DNA sequence motifs or structural elements. Like-
wise, Patiyal et al., established a computational model called:
Sigma70Pred for the identification of sigma70 promoters.
This model used various feature extraction such as timer
count, dimer count, nucleotide composition and so on to
extract hidden feature from promoter sequences and various
classifier namely KNN, SVM and so for classification [13].
Similarly, Shujaat et al., developed a model namely: iProm-
phage for prediction of phage promtoers. This used one-hot
encoding schemes, and convolution layers to extraction hid-
den feature from promoter sequences [14]. In the same way,
iPSW(2L)-PseKNC approach was established by Xiao et al.
for promoters and their strength prediction [15]. The model
based on hybrid features, which are a combination of struc-
tural and sequence-based features, and PseKNC to extract
hidden featrue from promoters sequences and for classifica-
tion used SVM classifier.

The existing computational methods such as PCSM
model [9], vwZ-curve model [10], Stability model [11],
iPro54-PseKNC model [12], and iPromoter-2L model [8]
were mostly based on machine learning (ML) approaches.
These methods rely on extracting various features from
DNA sequences, and using these features as input to train a
model. These models based on machine learning approaches
obtained good performance and solutions for the promoter
sequences data, but they were strongly dependent on hand-
crafted engineering featuremap and required field knowledge
to extract hidden features and pattern in promoter sequences
data. In this regard, we propose a model called iPro-TCN
based on deep learning approaches for prediction of pro-
moters and their strength. The iPro-TCN model include
two phases, in first phase we employed the most popular
natural language processing (NLP) methods, it split the pro-
moter sequence into words i.e., 3-mer, 4-mer, 5-mer, and
6-mer and each word is then mapped to its corresponding
feature. In second phase, we employed the deep learning
algorithm temporal convolutional network (TCN) to predict
promoter and their strengths. Overall, our model is a pow-
erful tool for promoter prediction with high accuracy and
performance.
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II. MATERIALS AND METHODS
A rigorous experimental process in order to obtain reliable
and valid results. This process typically involves carefully
planning and designing the study, selecting appropriate mate-
rials and methods, conducting the experiments, analyzing the
data, and interpreting and reporting the results. A flow chart
can be used to illustrate the overall process of the proposed
model, including the selection of materials and methods is
presented in Figure 2.

A. BENCHMARK DATASETS
The benchmark datasets that have been widely used to
evaluate the performance of deep learning models for pro-
moter identification. These datasets typically consist of DNA
sequences labeled as promoters or non-promoters, and they
are used to train and evaluate deep learning models such
as neural networks. In this paper, we selected benchmark
datasets from Xiao et al. [15], the Xiao et al. collected these
datasets of experimentally confirmed promoter sequences
from a database called RegulonDB [16]. These datasets were
used to build a classifier for predicting promoters in DNA
sequences. The benchmark dataset contained 3382 promoter
sequences and 3382 non-promoter sequences, and further
split the promoter sequences into two types, 1591 strong
promoters and 1791 weak promoters based on different kinds
of transcriptional activation and expression [15], [17]. The
promoter strength often relies on both the condition of the
cell and the DNA sample. Particularly, the data was processed
using CD-HIT to remove any sequences with a similarity
above 80% [18], [19]. This is often done to ensure that
the dataset contains a diverse set of sequences and to avoid
biasing the results by including highly similar sequences.

B. DNA REPRESENTATION WITH MODEL
DNA is a molecule that carries the genetic information of an
organism. It is made up of a chain of nucleotides, which are
the basic units of genetic information. The nucleotides are
arranged in a specific sequence that determines the genetic
information carried by the DNA molecule [15], [19]. A lan-
guage model is a type of ML method that can predict the
likelihood of a sequence of words or characters in a lan-
guage [16]. Language models are often used in NLP tasks
including text generation, speech recognition, and,language
translation,. It is possible to represent DNA sequences as
a language model by treating each nucleotide as a ‘‘word’’
in the language. For example, a DNA sequence could be
represented as a sequence of characters ‘‘ACGTGCA. . . ’’,
with the language model predicting the likelihood of each
nucleotide based on the context of the previous nucleotides in
the sequence. To train a language model on DNA sequences,
you would need a dataset of DNA sequences and their corre-
sponding labels (if the task involves predicting labels).

C. TEMPORAL CONVOLUTIONAL NETWORK
TCN is a prominent deep learning architectures with casual
convolution layers and dilations used for one dimensional

data and specifically designed to process sequential data.
They are called ‘‘causal’’ because the output of the model
at any time step is only dependent on the past inputs, and
not on future inputs [20], [21]. This makes them suitable for
tasks such as predicting the next value in a time series or
generating a translation of a sentence, where the output at
each time step depends only on the input up to that point.
TCNs use dilated causal convolutions, which allow the model
to have a large receptive field while using less memory or
more parameters required to store the model. They also use
residual blocks, which enable the model to learn changes to
the identity mapping rather than the entire transformation,
which helps the model learn more efficiently. A TCN model
consists of a series of convolutional layers, each of which
operates on a different portion of the input sequence. The
output of each layer is fed into the next layer, allowing the
model to build up a representation of the entire input sequence
over time.

D. THE PROPOSED PREDICTOR MODEL
1) OVERVIEW OF iPro-TCN MODEL
Here, we proposed a deep learning-based approch namely:
iPro-TCN to predict promoters and their types. The iPro-TCN
takes a DNA sequence as input and converts into a feature
matrix using the word2vec method. This involves dividing
the sequence into overlapping k-mers (short subsequences
of fixed length) and converting each k-mer into a vector
representation using the word2vec algorithm. The resulting
feature matrix is then input into a temporal convolutional
network (TCN) consisting of convolutional, causal convolu-
tions, Padding and activation function, which are designed
to extract meaningful features from the data. The output of
the TCN is then transfer to fully connected layer and sigmoid
layer, which is used to classify the input as either promoters
or non-promoters. Figure 2 display the architecture of the
proposed iPro-TCN method.

2) FEATURE EXTRACTION TERMINOLOGY
The genetic data are represented as sequences, it is recog-
nized as a language by the neurons and cells that transmits
information. Furthermore, the Natural Language Processing
(NLP) methods namely: word2vec are used. The word2vec is
a method for converting words (or in this case, k-mers) into
numerical vector representations that capture the meaning of
the words. It can be used to generate these representations
using skip-gram model or continuous bag-of-words (CBOW)
methods [15]. Based on the context of the adjacent words, the
CBOW method predicts the target word. This word is repre-
sented by vector). On the other hand, the skip-gram model
makes predictions regarding the surrounding words based
on the target word. The skip-gram model is generally better
for infrequent words, as it is able to generate high-quality
vector representations for words that appear less frequently
in the training data. The genome is divide according to their
23 chromosomes (Chr1 to Chr23). Additionally it is divided

VOLUME 11, 2023 66115



A. Raza et al.: iPro-TCN: Prediction of DNA Promoters Recognition and Their Strength Using TCN

TABLE 1. List of training parameters for Word2Vec.

into 100nt length of sentences. Further, employed 3-mer,
4-mer and etc on each sentence [22]. In our model iPro-TCN,
the skip-gram model is being used to generate vector repre-
sentations for k-mers, which are then used as a preliminary
feature matrix for the model. This allows the model to capture
the meaning of the k-mers in the DNA sequence and use
this information to classify the sequence as a Promoters or
non-promoters.

The probability of observing the context words given a tar-
get word. This is done by learning a set of word vectors such
that the dot product between the vectors for the target word
and the context words is large when the words co-occur fre-
quently in the training data, and small otherwise.The Figure 1
display the architecture of a CBOW model. Mathematically,
the objective of the skip-gram model can be expressed as
follows:

Maximize
∑

(i = 1)n
∑

(j ∈ context(i))m log p (xi | xi)

where n is the number of words in the training data, m is the
size of the context for each word (i.e., the number of words
considered as context for each target word), context(i) is the
set of context words for the target word xi, and p(xj | xi)
is the probability of observing context word xj given target
word xi. By maximizing this objective, the skip-gram model
learns a set of word vectors that capture the relationships
betweenwords in the training data and can be used for various
NLP tasks.

FIGURE 1. Shows the distribution of Promoters and their Strength.

3) TCN BUILDING BLOCK
In this paper, the proposed model: iPro-TCN consist of
word2vec algorithm and a temporal convolutional network to
predict promoters and their types. The word2vec converting
words (k-mers) into numerical vector representations that
capture the meaning of the words. It is commonly used in

natural language processing and has been shown to be effec-
tive for a variety of tasks. The TCN is similar to a standard
CNN, but is designed to handle input data with a temporal
dimension (e.g., a sequence of words or time points). The
TCN applies convolutional filters to the input data in a way
that preserves the temporal relationships between the input
elements. The iPro-TCN model is able to extract meaningful
features from the DNA sequence and used them to predict the
sequences as promoters and non-promoters along with strong
and weak promoters. The TCN is particularly well-suited for
this task, as it is able to capture the temporal relationships
between the k-mers in the DNA sequence and use this infor-
mation to make more accurate predictions.

III. PERFORMANCE EVALUATION
The following four metrics have been widely used in litera-
ture to determine the rate of success of this type of prediction
model. They are accuracy (Acc), sensitivity (Sn), Mathew’s
correlation coefficient (MCC) and specificity (Sp) as given
below [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39]:

ACC =
TN + TP

TP+ FN + TN + FP
(1)

SN =
TP

TP+ FN
(2)

SP =
TN

FP+ TN
(3)

MCC =
TP× TN-FP× FN

√
(TN + FP)(TN + FN )(TP+ FP)(TP+ FN )

(4)

where TP, TN, FP, FN represents true positive, true
negative, false positive, false negative, respectively). The
receiver operating characteristic (ROC) curve was cre-
ated by plotting the TF rate (1-SN) against the FP rate
(1-SP) [40], [41], [42], [43], [44], [45]. On the ROC Figure 5,
the AUC (area under the ROC curve) was also calculated
and provided as an effective performance parameter. In this
study, we employed the cross-validation approach and split
the data into training, validation and testing. The Precision-
Recall (PR) curves as well as the ROC curve, were used
to provide an accessible method of measuring the model’s
prediction performance. The ROC curve compares the TP
rate (TPR; 1-specificity) with the FP rate (FPR; 1-specificity)
at different thresholds, whereas the precision-recall curve
calculates the precision (the proportion of real positives out of
all predicted positives) versus recall (sensitivity) at different
thresholds, respectively. Moreover, the AUC serves as an
objective measure of the quality of the prediction model.
Which is a function of the number of observations. The AUC
is in the range of 0.5-1, which is acceptable. The AUC indi-
cates how accurate a predictor is [46] and [47]. The higher the
AUC, the better the predictor. Finally, the confusion matrix,
which serves as a visual representation of performance, is
displayed.
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FIGURE 2. Illustration of the proposed model architecture.

IV. RESULTS AND DISCUSSION
A. COMPARISON OF DIFFERENT ENCODING SCHEMES
Here, we present the performance of our iPro-TCN model on
3-mer, 4-mer and so on. In first layer our model obtained
accuracy of 89.65%, sensitivity of 86.81%, specificity of
83.47%, and MMC 0.79 on 3-mer encoding scheme. Sim-
ilarly, on 4-mer the model produced 90.76% of accuracy,
90.26% of sensitivity, 91.21% of specificity and 0.81 of
MCC. Likewise, on 5-mer the model produced 90.09% of
accuracy, 90.81% of sensitivity, 89.38% of specificity and
0.80 of MCC. Finally, on 6-mer the model produced 91.86%
of accuracy, 92.74% of sensitivity, 91.00% of specificity and
0.83 ofMCC. The 6-mer produced better outcome the other 3,
4 and 5-mers shown in Table 2. Similarly, the prediction
performance for the second layer of our proposed model is
presented in the Table 3.

TABLE 2. Different encoding schemes comparison for promoter
identification in layer 1 using benchmark dataset.

B. PERFORMANCE COMPARISON OF iPro-TCN MODEL
WITH EXISTING MODELS
The performance comparison of iProTCN model and exist-
ing model were presented in Table 4. The results of our
proposed deep learning method iProTCN obtianed better per-
formance then existing methods, namely iPSW(2L)-PseKNC
[15], dPromoter-XGBoost [48], BERT-Promoter [49]. The
best results of our proposed model on 1st layer are accuracy
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TABLE 3. Different encoding schemes comparison for promoter strength
in layer 2 using benchmark dataset.

FIGURE 3. The proposed model’s confusion matrix for 1st Layer.

FIGURE 4. The proposed model’s confusion matrix for 2nd Layer.

91.86%, sensitivity 92.74%, specificity 91.0%, andMatthews
correlation coefficient (MCC) 0.83 values. Similarly, the 2nd
layer of the model also obtained high accuracy 84.63%,
specificity 87.04%, and sensitivity 81.98% values, as well as
a high MCC 0.69 value. The results in Figure 7, Figure 8
and Table 4 show that the proposed model performs better
than the iPSW(2L)-PseKNC [15], dPromoter-XGBoost [48],
and BERT-Promoter [49] models in terms of all performance
evaluation metrices, with better improvement.

FIGURE 5. The ROC curves of the iPro-TCN model at 2nd Layer.

FIGURE 6. The ROC curves of the iPro-TCN model at 1st Layer.

FIGURE 7. The iPro-TCN model comparison with existing method on first
layer.

The results indicate that the iPro-TCN model per-
forms better than the iPSW(2L)-PseKNC [15], dPromoter-
XGBoost [48], BERT-Promoter [49] model in terms of all
measures for first layer and second layer, with improvements
in accuracy 5.9% and 7.71%, sensitivity, 8.4% and 11.13%,
specificity, 2.82% and 5.41% of the model. Receiver oper-
ating characteristic (ROC) also presented in Figure 5, and
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FIGURE 8. The iPro-TCN model comparison with existing method on
second layer.

Figure 6 respectively, which provide additional visualizations
of the model’s performance. Figure 3 and 4 shows the Con-
fusion Matrix for both layers of the model.

TABLE 4. Performance evaluation of proposed method by benchmark
dataset with existing method.

According to [50], the development of web servers for
computational biology models is a promising direction that
can help push medical science into an ongoing revolution.
In future work, it is planned to establish a web server for the
iPro-TCN model in order to make it more widely accessible
to researchers and practitioners in the field. This will likely
involve hosting the model on a server and providing a user
interface that allows users to interact with the model and
obtain its predictions for specific input data. Web servers for
computational biology models can be useful for a variety
of purposes, such as testing the performance of the model
on different datasets, comparing the results of the model to
other models, and integrating the model into larger workflow
systems.

V. CONCLUSION
Identifying promoters in DNA sequences is significant step
towards understanding gene transcription regulation, as pro-
moters are responsible for initiating transcription of a gene.
In this research, a computational model namley: iPro-
TCN was proposed based on word embedding method and
a Temporal Convolutional Network to accurately predict

promoters and their strength in DNA sequences. In the first
layer the model predict the promoter and non-promoter and
second layer of the model prdict strong and week promoter.
The improved performance of the model is due to the use
of dilated causal convolution in the temporal convolutional
layer, which allows the model to consider the state of each
promoter identification modification feature for each state.
The Temporal convolutional network is effectively capture
the features generated by the word embedding process.
Ultimately our model has outperformed the current state-of-
the-art model in both layers, it clearly indicate that the model
is a significant improvement over previous methods and a
useful tool for predicting promoter identification and their
strength.

AVAILABILITY OF DATA AND MATERIALS
https://github.com/malikmtahir/iPro-TCN.git
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