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ABSTRACT When traditional proportional integral and differential controllers are applied to speed control
in permanent magnet synchronous motors (PMSM), their coefficients are basically determined based on
experience, which inevitably leads to unsatisfactory results when using this parameter to control the speed
stability of permanent magnet synchronous motors. Therefore, this paper proposes an improved quantum
genetic algorithm using quantum states as the basic unit. Utilizing quantum properties for global optimization
to optimize the coefficients of proportional integral and differential control, improving the rotation angle
of quantum state particles through the idea of velocity changes in particle swarm optimization (PSO),
introducing adaptive weight changes, using Hadamard gates to replace traditional algorithm mutation
strategies, and incorporating disaster mechanisms. In addition, this paper uses four test functions to find
the minimum value, thereby verifying that our algorithm has better performance in optimization iteration
compared to other algorithms, providing the initial basis for the next step of application in PID parameter
optimization. Prove that this method can solve the problem of traditional genetic algorithms falling into
local optima due to improper selection, crossover, and mutation methods, which cannot effectively control
the stability of motor speed. Finally, this paper uses Matlab2018a simulation to compare with the other four
algorithms, and the results show that this algorithm can find better PID parameter values to achieve better
results in motor oscillation, overshoot, and faster target speed.

INDEX TERMS Particle swarm optimization (PSO), permanent magnet synchronous motor (PMSM),
proportional integral and differential (PID), quantum genetic algorithm (QGA).

I. INTRODUCTION
PMSM is widely used in electric vehicles [1], aerospace [2],
industry [3], and other fields. Therefore, scholars at home and
abroad have a strong interest in the stability control [4], [5]
method of permanent magnet synchronous motor, such as
using Sliding mode control to make the speed more sta-
ble. In [6], an improved Sliding mode control strategy for
time-varying disturbance observer is proposed. The results
show that comparedwith the traditional Slidingmode control,
the overshoot is smaller, the transient response is faster, the
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control accuracy is higher, and the robustness is stronger. The
model predictive current controller is a popular and effective
technology that enables motors to respond faster to sudden
changes, making motor current more stable [7]. PMSM is
a typical nonlinear control system, traditional PI control is
difficult to obtain satisfactory control performance. There-
fore, some new control methods such as model predictive
control (MPC) are proposed and applied to PMSM. MPC
has faster dynamic performance than FOC but its steady-state
performance is poor due to the lack of modulation units.
However, many scholars have improved it. In [8], the ampli-
tude of voltage vector is adjusted by adding zero vector;
in [9], the phase and amplitude are adjusted by adding virtual
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vector on the basis of [8]. In addition, these options are
outlined [10]. Use Kalman filtering algorithm to improve
the anti-interference ability of PMSM or adaptively change
motor parameters [11], [12].

In the speed control of PMSM, the use of a PID controller is
a very common control method. PID is popular in other indus-
trial control fields due to its simple structure, simple princi-
ple, and many other advantages. However, the determination
of the three parameters of PID: proportional (Kp), integral
(Ki), and differential (Kd) can generally only be determined
by empirical trial and error. The selected parameters may
not be the optimal solution, which will inevitably lead to
problems such as poor stability and slow response speed in the
control method. With the continuous development of control
technology and computer technology, researchers are also
deepening their research on PID parameter-setting methods.
Although optimizing algorithms may increase the burden on
computers, it is still worthwhile compared to spending more
time accumulating experience and trial and error. In [13], they
proposed a variable coefficient that is appropriately defined
and optimized through parameter relationships, and a simpli-
fied fractional order PID (FOPID) controller to optimize the
variable coefficient. The use of classical fuzzy control PID
in [14] and [15] achieved good results.

Among various PID optimization algorithms, the use of
population optimization algorithms is also receiving more
and more attention. Most population optimization algorithms
do not rely on whether the optimization system has accu-
rate system equations, and various population algorithms
become more accurate over time, constantly updating vari-
ous parameters, and achieving satisfactory results in various
fields. An ant lion optimizer (ALO) was used in [16] and
its effectiveness was verified through simulation experiments
However, ALO is also prone to falling into local optima and
has a slower convergence speed. The genetic algorithm and
particle swarm optimization algorithm are equally prominent.
After years of use and improvement by scholars, these two
algorithms are still applied in various time-varying systems
and linear continuous systems [17], [18].

A genetic algorithm was used in [19] and [20] to obtain a
set of PID parameters, ensuring the stability and robustness
of the closed-loop system. However, traditional GA algo-
rithms cannot perform global optimization well. In [21],
they combined genetic algorithm and particle swarm opti-
mization algorithm to optimize PID parameters and achieved
satisfactory results. In [22], the particle swarm optimization
algorithm was improved to adaptively change the weight
of the algorithm to maintain system stability as much as
possible. However, the improvement of the algorithm was
too simple, and although the stability speed became faster,
it was still difficult to jump out if trapped in local optima.
In [23], adaptive weight changes were introduced while
allowing the global optimal solution to mutate in a small
range, reducing the dependence of all particles on the opti-
mal particle, and achieving satisfactory indicators in all
aspects.

The quantum genetic algorithm was first proposed in [24],
which combines quantum computing with genetic algorithm
and can express population diversity with a smaller number
of populations. However, although the initial quantum genetic
algorithm achieved satisfactory results in global optimization,
and its rotation angle was fixed, it often missed the optimal
value in the local optimization process, thereby missing the
global optimal. Through comparative experiments in [25],
it was demonstrated that the QGA algorithm has better devel-
opment prospects compared to the GA algorithm. The com-
bination of quantum algorithm and pigeon swarm algorithm
in [26] proves the feasibility of combining quantum algorithm
with other algorithms. The application of the QGA algorithm
in various fields in [27], [28], and [29] has proven that the
adaptability of the QGA algorithm is strong enough. In [30],
the update method of the rotation angle of the quantum
genetic algorithm was improved to change according to the
maximum and minimum fitness values, and its superiority
was verified by finding the minimum value of the binary
function.

In summary, in order to ensure that genetic algorithm does
not fall into local optima and can approach the global optimal
solution as closely as possible, and improve the iteration
efficiency of the algorithm, this paper introduces quantum
optimization algorithm and combines the idea of PSO speed
update to propose an Improved Quantum Genetic Algorithm
(IQGA) to optimize PID control, and conducts comparative
simulation experiments with other optimization algorithms in
other papers.

II. MODEL OF PMSM SYSTEM
At present, the common methods of traditional vector con-
trol are id = 0 control and maximum torque current ratio
control. The former is mainly suitable for surface-mounted
three-phase PMSM, while the latter is mainly used for inte-
rior three-phase PMSM [31], [32], [33]. This paper selects
surface-mounted three-phase PMSM, and the control block
diagram is shown in Figure 1.

FIGURE 1. Block diagram of surface-mounted three-phase PMSM vector
control.
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The mathematical model of the three-phase PMSM
selected in this paper is established on the synchronous
rotating coordinate axis d-q [34], [35] and the stator voltage
equation in the d-q coordinate system is (1): α

ud = Rid + Ls
d
dt
id − ωeLsiq

uq = Riq +
d
dt
iq + ωe(Lsid + ψf )

(1)

where ud , uq, id , iq are the stator d-axis voltage, q-axis volt-
age, d-axis current, and q-axis current in the d-q coordinate
of the synchronous rotation axis. R is the stator resistance,
ωe is the electrical angular velocity, ψf is the permanent
magnet flux, and Ls is the inductance. Since this paper uses
a surface-mounted PMSM, the d-axis and q-axis inductance
components of the motor are equal, i.e.: Ld = Lq = Ls [36].
To facilitate the parameter tuning of the speed-loop PID

regulator, the motor motion equation of the three-phase
PMSM is rewritten as:

J
dωm
dt

= Te − TL − Bωm (2)

Te =
3
2
Pniq[id (Ld − Lq) + ψf ] (3)

In (2) and (3), ωm is the mechanical angular velocity; J is
the moment of inertia; B is the damping coefficient; TL is
the load torque; Te is the electromagnetic torque; Pn is the
pole pair. reference [37] proposed the concept of ‘‘active
damping’’ to design the parameters of the speed-loop PID
controller. He defined active damping as (4):

iq = iιq − Baωm (4)

This paper adopts a control strategy of i∗q = 0 and assumes
that the motor starts in an unloaded state, i.e. TL = 0. From
(2) to (4), (5) can be obtained:

dωm
dt

=
1.5pnψf

J
(iιq − Baωm) −

B
J
ωm (5)

Assign the poles of (5) to the desired closed-loop band-
width β to obtain the transfer function of the rotational speed
relative to the q-axis current as follows [38], [39]:

ωm(s) =
1.5pnψf /J
s+ β

iιq(s) (6)

The coefficient Ba of active damping can be obtained from
(5) and (6) as follows:

Ba =
βJ − B
1.5pnψ f

(7)

In (7), β is the expected bandwidth of the speed-loop.
The traditional PID controller is as follows:

u(t) = Kpe(t) + Ki

∫ t

0
e(t)dt + Kd

de(t)
dt

(8)

The transfer function of the PID controller is as follows:

G(s) = K p + Ki
1
s

+ Kd s (9)

Therefore, the expression for the speed-loop controller of
traditional PID controllers is [40]:

i∗q = (K p + Ki
1
s

+ Kd s) × (ω∗
m − ωm) − Baωm (10)

The simulation model of the speed-loop PID regulator
constructed by (10) is as follows

FIGURE 2. Speed-loop PID control model.

III. IMPROVED QUANTUM GENETIC ALGORITHM
A. TRADITIONAL GENETIC ALGORITHM
GA mainly includes the following steps:

1) Population initialization represents the problem that
requires a solution as a chromosome or individual in the
genetic space through encoding. Common encoding methods
include real encoding, Grey encoding, multi-level parameter
encoding, and so on.

2) Set the fitness function, which is used to distinguish
the quality of evaluation chromosomes. This paper solves the
minimum value of the fitness function.

3) When selecting chromosomes, the better the fitness
value, the greater the probability that chromosomes will be
selected.

4) Cross operation, randomly selecting two chromosomes
from a population, and generating new chromosomes through
chromosome exchange and combination.

5) Mutation operation: In order to maintain population
diversity, a chromosome is randomly selected from the pop-
ulation and mutated at a certain point to generate a new
chromosome. The mutated chromosome may not be better
than the parent generation.

6) Iterative optimization: if the fitness value meets the
expected value or the number of iterations reaches the maxi-
mum value, it will end; otherwise, go to step (2).

The flowchart of the GA is shown in Figure 3.

B. IMPROVED QUANTUM GENETIC ALGORITHM
QGA is a probability evolution algorithm that combines
quantum computing with genetic algorithm. Traditional
genetic algorithms adhere to the principle of survival of the
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FIGURE 3. GA flowchart.

fittest in the biological world when dealing with optimization
problems to find the optimal individual. They are not affected
by the natural factors of the optimization problem and have
strong applicability. However, if the selection, crossover, and
mutation methods are not appropriate, GA needs to increase
the number of iterations and has a slow convergence speed,
which can easily fall into the local extremum.

QGA is a kind of GA based on the principle of quantum
computing. By replacing the original chromosome code with
the quantum state vector, one chromosome can represent the
superposition of multiple states and quantum logic gates are
used to update chromosomes [41].

A quantum bit is an information storage unit in a quantum
computer. It differs from a classical chromosome in that it can
be in the superposition state of two quantum states at the same
time, as shown in (11):

|ϕ⟩ = α|0⟩ + β|1⟩ (11)

In (12), (α, β) is referred to as the probability amplitude
and is two amplitude constants that satisfy:

|α2| + |β2| = 1 (12)

In (11), |0⟩ and |1⟩ represent the spin-down and spin-
up states, respectively, so a quantum bit can simultaneously
exhibit information in either the ‘‘0’’ or ‘‘1’’ state. That is
to say, genes encoded using quantum bits no longer contain
certain information but contain all possible information [42].

By manipulating the gene, QGA has better diversity fea-
tures compared to GA. Using quantum bit encoding can also
achieve good convergence. As |α2| approaches 0 and |β2|

approaches 1, the chromosomes encoded by quantum bits will
converge to a single state.

1) QUANTUM BIT ENCODING INITIALIZATION
Set ‘‘Sizepop’’ to represent the population size, ‘‘Lenchrom’’
to represent the binary length vector of each variable[
L1 L2 . . . Ld

]
, where d is the dimension of the optimized

problem. The initialized population ‘‘chrome’’ is a matrix of
the [2 ∗ Sizepop, sum(Lenchrom)]-dimension.

The probability amplitude encoding of the population is
shown in (13):

Pi =

[
cos(θi1) cos(θi2) . . . cos(θin)
sin(θi1) sin(θi2) . . . sin(θin)

]
(13)

where θij = 2 ∗ π ∗ rand , i = 1, 2, 3, . . .m, m is the total
number of chromosomes, θ is the rotation angle, rand is a
random constant between 0 and 1, and n is the dimension of
the solution space, n = sum(Lenchrom).

From this, we can express the probability amplitude in (14)
as follows: {

α = cos(θ )
β = sin(θ )

(14)

2) QUANTUM BIT ENCODING CONVERSION
Set the random number ‘‘rand’’ in QGA, and set the position
where rand is greater than cos2(θ2∗i−1,j) to 1⟩, and the posi-
tion where rand is less than cos2(θ2∗i−1,j) to 0⟩, so that we can
get a group of binary codes containing quantum information.
(15) is the formula for converting the binary code into decimal
variables:

X = Xmin +
De

2Ll−1 × (Xmax − Xmin) (15)

where Xmin is the lower limit of the variable, Xmax is the upper
limit of the variable, De is the decimal number converted
from binary encoding to decimal, and X is the d-dimensional
variable. l = 1, 2, . . . d .

3) STATUS UPDATE
The rotation angle in QGA is generally updated through
Table 1 [43]:

In Table 1, χi is the i-th position of the current chromo-
some; besti is the i-th position of the current optimal chromo-
some; f (χ ) is the fitness function;1θi is the updated rotation
angle size. The update strategy of the rotation angle is to
compare the fitness of the current measurement value with the
fitness of the optimal chromosome. If f (χ ) > f (best), adjust
the quantum bits at the corresponding positions in the current
measurement value, so that the probability amplitude (αi, βi)
evolves in the direction of favorable ‘χi’.On the contrary,
it evolves in the direction of ‘besti’.
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TABLE 1. QGA rotation angle update strategy.

4) ROTATION ANGLE UPDATE IMPROVEMENT
However, in the update strategy of the rotation angle men-
tioned above, the updated value of the rotation angle is fixed,
and excessive fixed values may occur during the operation
process, leading to the algorithmmissing the optimal solution
and constantly taking values around the optimal solution.
A fixed value that is too small can lead to slow algorithm
convergence and the possibility of falling into local optima.

This paper is based on the idea of velocity update in
PSO [44], and adaptively updates the rotation angle. The
speed update in PSO is shown in (16):

vt+1
id = ϖvtid + c1r1(ptid − x tid ) + c2r2(ptgd − x tid ) (16)

In (16), d is the dimension of the optimization problem; t
is the current number of iterations;ϖ is the weight, c1, c2 is a
constant coefficient, r1, r2 is a random number within 0∼1; pi
is the individual optimal value; pg is the global optimal value.
Based on the idea of (16), this paper modifies the formula

for updating the rotation angle increment to (17):
1θij(t + 1) = |ϖ1θij(t) + c1r1(1θb) + c2r2(1θg)|
1θb = θb − θij

1θg = θg − θij

(17)

In (17), θb is the optimal rotation angle of the individual
at the quantum state position that the chromosome has pre-
viously searched for. θg is the global optimal rotation angle
of the globally optimal chromosome at the quantum state
position. The direction of the rotation angle is (18):

1sij = sign(

∣∣∣∣αb αij
βb βij

∣∣∣∣) (18)

where 1sij is the direction of the j-th quantum on the i-th
chromosome, and (αb, βb)T is the global optimal probability
amplitude at that position.

The inertia weight ϖ directly affects the convergence
speed of the algorithm. A largerϖ is more advantageous for
the algorithm to perform a global search in the early stage and
discover more suitable regions. In the later stage, a relatively
smaller ϖ is needed for the algorithm to perform a local

search. This paper proposes a nonlinear adaptive weight ϖ ,
as shown in (19):

ϖ =


ϖmax − (

(ϖmax −ϖmin) × (fi − fav)
fmin − fav

fi > fav

ϖmax − (ϖmax −ϖmin) × (
t

MaxIert
)3 fi ≤ fav

(19)

In (19), fi is the fitness of the current chromosome,
fmin is the minimum fitness value of the current iteration,
fav is the average fitness value of the current iteration, ϖmax
is the maximum weight, ϖmin is the minimum weight, and
MaxIert is the maximum number of iterations. When fi > fav,
we expect the weight w to be adaptively adjusted to accelerate
convergence speed. When fi ≤ fav, we expect the weight
w to gradually reduce the search space with the number of
iterations, making it easier to find the optimal value nearby.
The variation pattern ofϖ when fi ≤ fav is shown in Figure 4:

FIGURE 4. The variation pattern ϖ of when fi ≤ fav .

The quantum bit probability amplitude update method uses
the quantum rotation gate strategy to update, as shown in (20):[
cos(θij(t + 1))
sin(θij(t + 1))

]
=

[
cos(1θij(t+1)) −sin(1θij(t+1))
sin(1θij(t+1)) cos(1θij(t+1))

]
×

[
cos(θij(t))
sin(θij(t))

]
=

[
cos(θij(t +1θij(t + 1))
sin(θij(t +1θij(t + 1))

]
(20)

The updated probability amplitude position is (21), as
shown at the bottom of the next page.

It can be seen from (20) and (21) that the quantum rotation
gate realizes the simultaneous movement of the two positions
of the quantum state by changing the quantum bit phase of the
chromosome. Therefore, if the population size of the problem
does not change, then the use of quantum bit coding can
expand the ergodicity of chromosome (or we can also call
it particle) optimization, and improve the global optimization
ability of the algorithm.

5) MUTATION AND CATASTROPHE
In order to ensure that QGA does not fall into local optima
as much as possible, mutation operators are introduced in
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evolution. Using Hadamard gates for mutation, as shown
in (22):

1
√
2

[
1 1
1 −1

]
×

[
cos(θij)
sin(θij)

]
=

 cos(
π

4
− θij)

sin(
π

4
− θij)

 (22)

[
0 1
1 0

]
×

[
cos(θij)
sin(θij)

]
=

 cos(
π

2
− θij)

sin(
π

2
− θij)

 (23)

Compared to the compilation method using the quantum
non-gate of (23), the possibility of quantum crossing the opti-
mal value due to mutation using the Hadamard gate of (22)
is smaller. The probability of variation is set to 0.01 in this
article.

Catastrophe is a step set to prevent the algorithm from
being locally optimal and unable to jump out. The catastrophe
strategy is relatively simple. When the optimal fitness value
of the algorithm is the same for three consecutive times,
start the catastrophe strategy according to the principle of
survival of the fittest, and reinitialize the worst chromosomes
in this iteration. Generally, the number is one-tenth of the total
population. This can prevent the optimal fitness from being
close to the global optimal but being erased, The population
diversity has been updated again.

The flowchart of the IQGA is shown in Figure 5:

IV. ALGORITHM TESTING EVALUATION
In order to test the optimization ability of the IQGA algorithm
in this paper to prove the feasibility of the improved algo-
rithm, The Ackley function, Rosenbrock function, Rastigin
function, and Schaffer function are selected for testing, and
compared with the basic particle swarm optimization algo-
rithm (BPSO), the algorithm in [23] (QGA), the algorithm
in [19] (hereinafter referred to as IPSO algorithm in this
paper) and the algorithm in [25] (hereinafter referred to as
AQGA algorithm in this paper), The number of experimental
iterations is 50, and the population size is 50. Each group of
experiments is conducted 50 times.

A. ACKLEY FUNCTION TESTING
The Ackley function formula is shown in (24):

f (x, y) = −A× exp(−B×

√√√√ 1
d

d∑
i=1

x2)

−exp(

√√√√ 1
d

d∑
i=1

cos(Cπ × y2)) + A+ exp(1)

(24)

This paper sets A=20, B=0.2, C=2. x = y ∈ (−10 : 10).

FIGURE 5. Flowchart of IQGA.

This function has a minimum value of f (0, 0) = 0; The
function image is shown in Figure 6:

Take a presentation with better fitness value in each itera-
tion, as shown in Figure 7:

B. RASTIGIN FUNCTION TESTING
The Rastigin function formula is shown in (25):

f (x, y) =

d∑
i=1

[x2i − A× cos(2π × yi) + B] (25)

Pt+1
i =

[
cos(θi1(t) +1θi1(t + 1)) . . . cos(θin(t) +1θin(t + 1))
sin(θi1(t) +1θi1(t + 1)) . . . sin(θin(t) +1θin(t + 1))

]
(21)
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FIGURE 6. Ackley function image.

FIGURE 7. A group of 5 algorithms that optimize Ackley functions better.

This paper sets A=10, B=10; x = y ∈ (−10 : 10), This
function has a minimum value of f (0, 0) = 0; The function
image is shown in Figure 8:

FIGURE 8. Rastigin function image.

Take a presentation with better fitness value in each itera-
tion, as shown in Figure 9:

C. ROSENBROCK FUNCTION TESTING
The Rosenbrock function formula is shown in (26):

f (x, y) = (1 − x)2 + A× (y− x2)2 (26)

FIGURE 9. A group of 5 algorithms that optimize Rastigin functions better.

This article sets A=1; x = y ∈ (−10 : 10), This function
has a minimum value of f (0, 0) = 0; The function image is
shown in Figure 10:

FIGURE 10. Rosenbrock function image.

Take a presentation with a better fitness value in each
iteration, as shown in Figure 11:

FIGURE 11. A group of 5 algorithms that optimize Rosenbrock functions
better.

D. SCHAFFER FUNCTION TESTING
The Schaffer function formula is shown in (27):

f (x, y) = 0.5 −
(sin

√
x2 + y2)2 − 0.5

[1 + 0.001 × (x2 + y2)]2
(27)
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This article assumes that x = y ∈ (−10 : 10); This
function has a minimum value of f (0, 0) = 0; The function
image is shown in Figure 12:

FIGURE 12. Schaffer function image.

Take a presentation with a better fitness value in each
iteration, as shown in Figure 13:

FIGURE 13. A group of 5 algorithms that optimize Schaffer functions
better.

E. TEST FUNCTION ANALYSIS
Five algorithms test four different functions, and the average
minimum fitness value of each group of 50 tests is shown
in Table 2:

TABLE 2. Average minimum fitness value of five algorithms.

FromTable 2, we can be seen that the IQGA algorithm used
in this article is the best in most cases. However, due to the
smooth surface of the Rosenbrock function and the structure
of the minimum being the center value, the PSO does not

fall into local optima and can better find the minimum value.
Therefore, when optimizing this function, the algorithm in
this article is slightly inferior to the IPSO algorithm but
still stronger than other algorithms. The Overall comparison
shows that the algorithm proposed in this paper has certain
advantages in terms of optimization and iteration.

V. SIMULATION ANALYSIS OF PMSM
In the simulation experiment, the population of the 5 algo-
rithms is set to 50, and the values of iterations are set to [0-
100]. The various parameters of PMSMduring simulation are
shown in Table 3:

TABLE 3. Various parameters of PMSM.

Figure 14 shows the IQGA optimized PID control block
diagram.

FIGURE 14. IQGA optimized PID control block diagram.

This paper selects ITAE as the error performance index to
evaluate the rapidity and accuracy of the system, as shown
in (28).

ITAE =

∫
∞

0
t|e(t)| (28)

Figure 14 shows ‘‘simout’’ as t|e(t)|, and the integration
operation is completed in the m file. From (7) and Table 3,
we can be determined that Ba = 0.02664.
This article considers PID optimization for the following

three scenarios
1) No load, with a fixed speed of 1200 (r/min).
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2) At 0 seconds, there is no load, and at 0.2 seconds, a load
of 10N · m is added, with a fixed speed of 1200 (r/min).
3) At 0 seconds, there is no load and the speed is

1200 (r/min). At 0.2 seconds, a load of 10N m is added, and
the speed increases to 1500 (r/min) at 0.25 seconds.

Compare with QGA [23], AQGA [25], IGA [15], and
IPSO [19]. The PID parameters obtained by each algorithm
are shown in Table 4:

TABLE 4. The final optimized parameters of Kp/Ki/Kd.

A. ANALYSIS OF THE 1(ST) SCENARIO
From Figure 15, we can be seen that although IPSO reached
the required speed at the fastest, there was an overshoot
of approximately 67r followed by a rebound of over 60r
at 0.137s, and the oscillation remained stable at 0.0185s;

FIGURE 15. Speed comparison under no-load condition.

FIGURE 16. Q-axis current under no-load conditions.

FIGURE 17. Torque under no-load conditions.

IGA has no overshoot or oscillation, stable at 0.0255 seconds;
AQGA has no overshoot or oscillation, and is stable within
0.024 seconds; QGA has no overshoot or oscillation, stable at
0.034s; IQGA has no overshoot or oscillation, and is stable at
0.014s. After stabilization, the errors of IQGA and IPSO are
both within 0.1r, AQGA is within 0.25r, and IGA and QGA
are around 0.5r.

From Figure 16, we can see that the overshoot current of
the five algorithms during motor startup is roughly the same,
while IPSO has the second fastest stabilization time, but
severe oscillations occur. IQGA has the fastest stabilization
time and no oscillations.

From Figure 17, we can see that the electromagnetic torque
of IQGA reaches stability the fastest, and IPSO has severe
oscillation. The oscillation amplitude after stabilization of the
five algorithms is roughly the same.

In summary, the algorithm proposed in this paper can
effectively control the motor to quickly maintain stability
under no load conditions.

B. ANALYSIS OF THE 2(ND) SCENARIO
From Figure 18, we can be seen that the five algorithms
did not show significant changes in the initial startup phase

FIGURE 18. The comparison of speed response under the fixed load
condition.
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compared to the unloaded state. After adding a load of 10N
m at 0.2s, the IPSO reached its lowest point of 1995.8r and
stabilized at 0.2016s. The lowest point of IGA downward was
1196.08r, which stabilized at 0.2072s; The lowest point of
AQGA downward was 1194.62r and stabilized at 0.207s; The
lowest point of QGA downward was 1196.33r and stabilized
at 0.2086s; The lowest point of IQGA downward was 1195.9r
and stabilized at 0.2042s.

FIGURE 19. Q-axis current under the fixed load condition.

From Figure 19, we can see that when the load is applied
in 0.2 seconds, IPSO has an overshoot current of about 7A,
and the current requires a longer stabilization time compared
to the other four algorithms. The difference between the other
four algorithms is not significant.

FIGURE 20. Torque under the fixed load condition.

FromFigure 20, we can see that after adding the load, IPSO
has a certain degree of overshoot, and IQGA is the first to
stabilize, but the advantage is not obvious.

In summary, the impact of the five algorithms on speed is
not significant after adding load, with IPSO being relatively
prominent in terms of recovery time, followed by IQGA,
indicating that PSO has stronger resistance to load. However,
the q-axis current overshoot and torque overshoot of IPSO is
more pronounced and the recovery time is longer compared
to other algorithms.

FIGURE 21. The comparison of speed response under the speed changes
condition.

FIGURE 22. Q-axis current under the speed changes condition.

FIGURE 23. Torque under the speed changes condition.

C. ANALYSIS OF THE 3(RD) SCENARIO
Figure 21 shows that there is no significant change in the five
algorithms compared to the previous two scenarios during
the initial startup stage, and there is no significant change
compared to the second scenario after adding a load. When
the speed rises to 1500r at 0.25s, the IPSO also exhibits signif-
icant oscillations and tends to stabilize in 0.264s; IGA has no
oscillation and tends to stabilize at 0.275 seconds; AQGA has
no oscillation and tends to stabilize at 0.272 seconds; QGA
has no oscillation and tends to stabilize at 0.284 seconds;
IQGA has no oscillation and tends to stabilize at 0.264s.
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From Figure 22, we can see that when the speed increases
from 0.25s to 1500r, IPSO has a slight oscillation, and the
time for IQGA to recover stability is almost the same as IPSO,
which is faster than the other three algorithms. The overshoot
of the five algorithms is almost equal.

From Figure 23, we can see that when the speed increases
to 1500r, the IPSO exhibits slight oscillation, which is
roughly the same as the stabilization time of IQGA. However,
IQGA does not experience oscillation, followed by IGA and
AQGA, and finally stabilizes.

In summary, IPSO and IQGA are relatively prominent
among the five algorithms, and IQGA does not experience
significant oscillations, which has a better performance in
extending the lifespan of the motor.

VI. CONCLUSION
This paper proves that IQGA proposed in this paper has better
performance in iterative and extremum-seeking processes by
searching for the minimum values of four different functions:
Ackley, Rastigin, Rosenbrock, and Schaffer. This provides a
basis for finding the optimal parameters in PID control and
applying them to PMSM to achieve faster speed and a stable
state

In the simulation, IQGA can achieve the required speed
faster than QGA, IGA, and AQGA, and there is no overshoot
or oscillation compared to IPSO, and the speed is more stable.
From the perspective of q-axis current and electromagnetic
torque, this algorithm still has certain advantages compared
to the other four algorithms.
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