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ABSTRACT Constrained optimization problems have appeared in a wide variety of challenging real-
world problems, where constraints often capture the physics of the underlying system. Classic methods
for solving these problems relied on iterative algorithms that explored the feasible domain in the search for
the best solution. These iterative methods often became the computational bottleneck in decision-making
and adversely impacted time-sensitive applications. Recently, neural approximators have shown promise as
a replacement for the iterative solvers that can output the optimal solution in a single feed-forward providing
rapid solutions to optimization problems. However, enforcing constraints through neural networks remains
an open challenge. In this paper, we have developed a neural approximator that maps the inputs to an
optimization problem with hard linear constraints to a feasible solution that is nearly optimal. Our proposed
approach consists of five main steps: 1) reducing the original problem to optimization on a set of independent
variables, 2) finding a gauge function that maps the ℓ∞-norm unit ball to the feasible set of the reduced
problem, 3) learning a neural approximator that maps the optimization’s inputs to a virtual optimal point in
the ℓ∞-norm unit ball, and 4) gauge mapping to project the virtual optimal point in the ℓ∞-norm unit ball
onto the feasible space, then 5) finding the values of the dependent variables from the independent variable
to recover the solution to the original problem. We can guarantee hard feasibility through this sequence
of steps. Unlike the current learning-assisted solutions, our method is free of parameter-tuning (compared
to penalty-based methods) and removes iterations altogether. We have demonstrated the performance of
our proposed method in quadratic programming in the context of optimal power dispatch (critical to the
resiliency of our electric grid) and constrained non-convex optimization in the context of image registration
problems. Our results have supported our theoretical findings and demonstrate superior performance in terms
of computational time, optimality, and the feasibility of the solution compared to existing approaches.

INDEX TERMS Learning to optimize, hard constraints, machine learning, optimal power flow, image
registration.

I. INTRODUCTION
A. MOTIVATION
Constrained optimization problems have been prevalent in
computer sciences and engineering, appearing in various
applications. Today’s optimization solvers employ itera-
tive solvers that primarily leverage first- and second-order
techniques (such as (sub)gradient ascent/descent, conjugate
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gradients, and simplex basis updating methods) to find the
optimal solution. These algorithms often provide theoretical
convergence guarantees, which is desirable. However, the
iterative nature of these solutions increases calculation time
and limits their applicability in time-sensitive applications.
Many practical setups require solving instances of the same
problem repeatedly. Another drawback of existing solutions
is that their performance does not improve regardless of how
often they deal with the same or similar problems. Further-
more, the availability of algorithms to handle constrained
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optimization problems is highly dependent on problem struc-
ture, which ranges from problems that can be solved quickly,
i.e., linear programming, to problems that have yet to be
solved efficiently, e.g., non-convex problems.

The recent interest in using machine learning to improve
the efficiency of optimization procedures is fueled by the
potential to overcome the discussed shortcomings. Leverag-
ing neural networks can speed up the search process and
reduce the number of iterations required to find optimal
solutions. The performance of neural approximators can also
continually improve as they face more optimization prob-
lems. Such neural approximators could enjoy from recent
advances in deep learning, including transfer learning, con-
tinuous learning and meta learning, etc.

B. RELATED WORKS
1) LEVERAGING DEEP LEARNING TO IMPROVE THE
OPTIMIZATION PROCESS OF UNCONSTRAINED PROBLEMS
One of the classical applications of machine learning in
optimization has been predicting hyper-parameters, e.g.,
learning rate [1], momentum decay [2], Lagrangian multipli-
ers [3], etc., to enhance the optimization process. Learning-
to-Optimize (L2O) approaches went further by automating
the design of optimizers by data-driven approaches [4]. The
L2O approach unrolled iterative optimization algorithms and
parameterized them [5], [6]. While L2O approaches con-
siderably reduced the total number of iterations required to
solve an optimization process, they fell short of eliminating
iterations altogether.

Many recent works have focused on replacing the opti-
mization algorithm with a parametric function that directly
maps the optimization’s input data to the optimal parame-
ters [7]. For instance, the Learning to Optimize the Opti-
mization Process (LOOP)method proposed by [8] showcased
promising results by removing iterations and optimizing the
optimization process over time and through different prob-
lems. While these iteration-free methods could handle a wide
range of unconstrained optimization problems, they often
struggled with constrained problems. Put differently, today’s
neural approximators (such as the method proposed by [8])
are effective in finding high-quality (near-optimal) solutions
but have limited capabilities in finding feasible solutions.

2) USING PENALTY TERMS TO HANDLE CONSTRAINED
OPTIMIZATION PROBLEMS
Incorporating a penalty term to constrain the output of
neural approximators is an intuitive strategy. Often the
ℓ2-norm term enforces equality constraints while penal-
izing square-of-maximum violation deals with inequality
constraints [8], [9], [10], [11]. Alternative penalty terms
include (i) the difference between the output and its projec-
tion on the constraint set [12], (ii) the discrepancy between
the output and its projection on a ball centered at the
optimal solution [13], (iii) the status deviation of inequal-
ity constraints (whether the optimal solution satisfies the

inequality constraints) [14], [15], and (iv) the violation of
Karush-Kuhn-Tucker (KKT) conditions [16], [17].

One of the main drawbacks of enforcing constraints
through penalty terms is the need for parameter tuning. The
weights of penalty terms are usually determined heuristically,
and the performance of these methods is highly sensitive to
these parameters. To address this challenge, [9] presented a
design method for proper penalty parameter selection, con-
sidering the scalability of the problem. References [18], [19],
and [20] combined the Lagrangian dual approaches and
deep learning to solve the optimal power flow problems
with constraints. Compared to methods with user-selected
penalty parameters, the Lagrangian dual approach automat-
ically modifies penalty settings during training and produces
more reliable results.

3) DEEP LEARNING FOR OPTIMIZATION
WITH HARD BOUNDARIES
Penalty approaches provide a soft boundary on the output
because infeasibility is merely punished rather than elimi-
nated. These methods require a trade-off between optimal-
ity and feasibility, with the worst-case scenario being that
neither is fulfilled. Approximating solutions to optimization
problems with hard restrictions were also explored in sev-
eral recent works. Some works adopted the ‘‘projected out-
put’’ [21] to ensure feasibility. Reference [13] have devel-
oped an iterative strategy for modifying the objective func-
tion to match model predictions more closely. They use
an external solver to maintain feasibility. However, [22]
showed that projection-based methods might not provide
enough information to find the optimal solution since only
a limited number of points on the boundary are accessible
(due to projection).

Other methods restructure neural networks to ensure
feasibility. For example, the double description approach
was employed to cope with linear inequality constraints
in [22]. The algorithm constructed a polyhedron-like fea-
sible set iteratively, then optimized over this constructed
feasible set. Reference [23] developed a solver for similar
equation-constrained problems based on the homotopy con-
tinuationmethod. Reference [24] utilized a correction process
to solve the feasible problem using gradient descent in each
step. Reference [25] proposed to use alternating projection
methods to approximate projections. While these methods
satisfy hard-inequality constraints, they require an iterative
process for training and testing, which goes against the goal of
using deep learning models to replace iterative optimization
progress.

References [9] and [24] employed the notion of variable
elimination to impose equality constraints when only a subset
of the variables is generated in the procedures. The remaining
variables can be inferred using the equality constraints. The
variable eliminationmethod is iteration free; hence, it directly
produces a feasible solution with respect to equality con-
straints each time an action is executed.
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C. CHALLENGES
This paper focuses on addressing the following shortcomings;

• Inefficiency of traditional solvers: Traditional solvers
are known to be time-consuming and lack the abil-
ity to improve with repeated problem-solving attempts.
Additionally, the availability of efficient algorithms for
addressing constrained optimization problems, espe-
cially non-convex ones, remains a concern.

• Dealing with constrained problems: Neural approxi-
mators have demonstrated promising performance in
handling unconstrained problems; however, they still
struggle to ensure solution feasibility for constrained
problems.

• Limitations of penalty terms: The widely-used penalty-
based methods merely offer soft boundaries for con-
straints, and their performance is highly sensitive to the
fine-tuning of parameters.

• Iterative nature of hard boundary methods: In existing
works, ensuring feasibility with hard boundaries often
necessitates iterative processes, which contradicts the
goal of developing an iteration-free solution through
deep learning models.

D. CONTRIBUTIONS
This paper has developed a trainable parametric function that
directly maps problem’s input to a high-quality feasible solu-
tion of linearly constrained optimization problems. In what
follows, we outline our key contributions:

• Rather than solving the original linearly-constrained
optimization problem directly, we reformulate and relax
it to an equivalent optimization problem in the ℓ∞-norm
unit ball and train a neural network to find an optimal
solution in the ℓ∞-norm unit ball space.

• Inspired by [26], we construct a one-to-one mapping to
transfer the optimal solution from the ℓ∞-norm unit ball
to the feasible space of the original constraint set.

• The proposed method outputs near-optimal solutions
with feasibility guarantees for equality and inequality
constraints of the original linearly-constrained problem.

• We replace iterative optimizers for linear-constrained
problemswith an iteration-free single-shot neural solver.

• The proposed method fundamentally differs from exist-
ing learning-based approaches, such as penalizing con-
straint violations and employing restoration techniques
to obtain feasible solutions. Unlike these methods, the
proposed approach does not require a separate restora-
tion process.

II. PROBLEM FORMULATION
In this section, we introduce the notations and problem for-
mulations. Let us consider the following linear-constraint
optimization problem:

min f(u, x) (1a)

s.t. Aequ + Beqx + beq = 0 (1b)

Ainequ + Bineqx + bineq ≤ 0 (1c)

Here, u ∈ RNopt denotes the vector of optimization vari-
ables, whereas x ∈ RNinp represents the input vector.
Also, Nopt and Ninp represent dimensions of optimization
variables and input vectors. Aeq ∈ RNeq×Nopt , Beq ∈

RNeq×Ninp , and beq ∈ RNeq are parameters for equal-
ity constraints, whereas Aineq ∈ RNineq×Nopt , Bineq ∈

RNineq×Ninp , and bineq ∈ RNineq define inequality con-
straints. Also, Nineq and Neq refer to dimensions of inequal-
ity and equality constraints. Furthermore, equations (1b)
and (1c) establish element-wise equality and inequality rela-
tions with a zero vector (i.e., 0). Moreover, f(u, x) refers to
any convex or non-convex objective function. We assume
that problem (1) is an under-determined problem, i.e.,
rank(Aeq) = Neq < Nopt. To simplify the notation, we will
refer to the optimal solution and constraint set of problem (1)
as u∗ and S, respectively. S is non-empty. Given that u is
bounded in most practical settings, S is considered a bounded
set. Therefore problem (1) can be presented by the following
abstract form,

min f(u, x) s.t. u ∈ S(x) (2)

Similar to the framework proposed by [8], we replace
the classic iterative solvers with a trainable parametric func-
tion ξθ that directly maps the input of the optimization
problem to the optimal parameters in a single feed-forward.
By bypassing the traditional iterative solutions, the method
overcomes one of the significant optimization bottlenecks
enabling near real-time optimization in a wide range of criti-
cal applications.

Note, problem (1) is a constrained optimization problem.
Hence, the feasibility of ξθ ’s output should be ensured.
It is straightforward to use activation functions to guarantee
feasibility when S constitutes an ℓ∞-norm ball. However,
it is challenging to utilize neural approximators to solve (2)
where S includes coupled constraints and variables. This
paper extends the prior works (e.g., [5], [8]) for solving
unconstrained problems to solve linearly constrained opti-
mization problems (referred to as LOOP − LC, Learning
to Optimize the Optimization Process with Linear Con-
straints). In what follows, we will first introduce the basics of
LOOP − LC method and provide theoretical guarantees to
justify the feasibility of the resulting solution. Later, We will
showcase the performance of LOOP − LC in quadratic pro-
gramming in the context of the optimal power dispatch (crit-
ical to the resiliency of our electric grid) and a constrained
non-convex optimization in the context of image registration
problems.

III. PROPOSED METHOD
A. PROPOSED ARCHITECTURE
The rest of this subsection is dedicated to presenting an
abstract overview of our proposed framework,LOOP − LC.

1) OPTIMIZATION REFORMULATION
We will adopt a variable elimination technique [24] to refor-
mulate (1) as a reduced-dimension optimization problem
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FIGURE 1. Structure of the proposed LOOP − LC model.

with only inequalities. This approach first decomposes the
set of optimization variables u to independent (uIndep) and
dependent (uDep) parts. Then uses equality constraints to
find relationships between uIndep and uDep, i.e., uDep =

F(uIndep, x). The reformulated problem will be referred
to as,

min fRef(uIndep, x) s.t. uIndep ∈ SRef(x) (3)

where fRef and SRef are reformulation of f and S that only
depends on uIndep, respectively.

2) UTILIZING NEURAL NETWORK TO OPTIMIZE (3)
Instead of solving the original problem directly, we train a
neural network to find the optimal solution v in the ℓ∞-norm
unit ball, B.

min fRef(T(v, x), x) s.t. v ∈ B (4)

Layers of the neural network will ensure that the result-
ing v⋆ will stay within B. Later we will provide a one-to-
onemapping to transfer the resulting solutions from ℓ∞-norm
unit ball to the feasible space of constraint set SRef. This
mapping will be denoted as uIndep = T(v, x).

3) ENSURING FEASIBILITY BY FINDING T
We use the gauge map [26] to build a one-to-one mapping
between B (i.e., ℓ∞-norm unit ball) and SRef (i.e., feasible
domain of the reformulated problem) spaces. The gauge map
requires the destination space to encompass the origin as an
interior point [27]. Thus, rather than directly mapping the
ℓ∞-norm unit ball into the desired feasible domain SRef,
we first shift the desired domain by one of its interior points
uo to construct an ‘‘intermediate domain’’ S̄Ref. The inter-
mediate domain shares the same geometric properties with
SRef but contains the origin as an interior point. In a nutshell,
this process enables leveraging the gauge function to map the
ℓ∞-norm unit ball into an ‘‘intermediate domain’’ and then
shift the intermediate domain to the desired domain, SRef.

4) EQUALITY COMPLETION
The previous step tackles the reduced-dimension optimiza-
tion problem (i.e., formulation (3)), hence, it finds optimal
values for a subset of optimization variables (i.e., uIndep⋆).
The remaining variables uDep⋆, will be determined by using
the algebraic relationship F between optimization variables
that are given by equality constraints of (2).

FIGURE 2. The LOOP − LC framework is composed of interior point
finder, optimization, and feasibility modules.

The forthcoming subsections present the details of the
steps presented in this subsection. The modular architecture
of LOOP − LC, depicted in Figure 2, ensures achieving a
high-quality (near-optimal) feasible solution.

B. OPTIMIZATION MODULE
As stated in section III-A, we incorporate a neural network
to learn a high-quality solution to problem (4). Note that the
gauge map sub-module (that will be introduced later) takes
in the interior point uo(∈ SRef), hence the inputs of the
optimality module include both uo and x. Let θ denote the
weights of the neural network. The output of the optimality
module is prediction v that lies in the ℓ∞-norm unit ball
(i.e., v⋆):

v⋆
= ξθ (x,uo) (5)

Choosing the proper activation functions, e.g., the
hyperbolic tangent function, ensures that the resulting
v stays in the feasible range of ℓ∞-norm unit ball,
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i.e., [−1, 1]. Later, v⋆ will pass through the feasibility module
to generate u⋆.
The optimality module uses two training approaches,

as illustrated in Figure 3: 1) with a solver in the loop,
and 2) without a solver in the loop, i.e., directly minimiz-
ing the objective function. Assume there are N input data
points indexed as x(i), the respective output denoted as u(i).
The loss function with a solver in the loop is a discrep-
ancy/distance function d : RNopt × RNopt → R+ defined
in RNopt and compares the difference between the output of
the LOOP − LC model and the optimal solution calculated
using commercial solvers, i.e. L =

∑N
i=1 d(u

(i),u(i)∗). With-
out a solver, the loss function is just the expected value of the
objective function, i.e., L =

∑N
i=1 f(u

(i), x(i)).

FIGURE 3. Two training approaches of LOOP − LC model.

C. FEASIBILITY MODULE
While the optimality module subsection provides a high-
quality solution, it does not necessarily produce a feasi-
ble solution. To this end, the feasibility module will first
map v⋆ onto the desired feasible domain and then compute
a full-dimensional output u⋆. In this subsection, we will
present how this module enforces feasibility through equality
completion and inequality satisfaction.

1) EQUALITY COMPLETION
This sub-module reconstructs the equality equations of prob-
lem (1). We first divide the elements in u into two groups:
(Nopt − Neq) independent parameters and Neq dependent
parameters. Dependent parameters uDep ∈ RNeq are defined
by all the equality constraints in problem (1), whereas inde-
pendent parameters uIndep ∈ R(Nopt−Neq).

a: CLAIM
Let us define function F as F : R(Nopt−Neq) → RNeq

s.t. uDep = F(uIndep, x) where Aeq[uIndep
T
,uDep

T
]
T

=

−Beqx − beq. Then, there exists such an F for a linear-
constraint set.

b: JUSTIFICATION
Let us select Neq linearly independent columns in Aeq and

group them into ADep
eq . The other columns form AIndep

eq .

Then we haveAIndep
eq uIndep+ADep

eq uDep+Beqx+beq = 0.
That is:

uDep = F(uIndep, x)

= −ADep−1

eq AIndep
eq uIndep − ADep−1

eq (Beqx + beq)

(6)

By incorporating reconstruction function F, problem (1)
changes to minimizing f([uIndep

T
, F(uIndep, x)T]

T
, x)

with merely inequality constraints Aineq[uIndep
T
,

F(uIndep, x)T]T + Bineqx + bineq ≤ 0.
We rewrite Aineq as

[
AIndep
ineq ADep

ineq

]
in accordance

with uIndep and uDep. Then, according to (6) and (1c),
the inequality constraints can be written as: (AIndep

ineq −

ADep
ineqA

Dep−1

eq AIndep
eq )uIndep−ADep

ineqA
Dep−1

eq (Beqx+beq)+
Bineqx + bineq ≤ 0. As the next step, let us rewrite
problem (1) as a reduced-dimension optimization problem

with only inequalities, as (3). This means thatA = AIndep
ineq −

ADep
ineqA

Dep−1

eq AIndep
eq , B = Bineq− ADep

ineqA
Dep−1

eq Beq, b =

bineq − ADep
ineqA

Dep−1

eq beq. That is:

SRef =
{
uIndep|AuIndep + Bx + b ≤ 0

}
(7)

fRef(uIndep, x) = f(
[

uIndep

F(uIndep, x)

]
, x) (8)

Thus, we can solve (3) and later reconstruct the remaining
parameters according to (6). Therefore, the reconstruction
sub-module takes in independent parameters uIndep and x
and outputs uDep. The existence of F guarantees that the
resulting optimization solution u⋆

= [uIndep⋆T
,uDep⋆T]

T

satisfy the equality constraints of (1b).

2) INEQUALITY COMPLETION
In order to enforce inequality constraints in (3), we incor-
porate the gauge map sub-module, which is based on the
Minkowski function defined below.
Definition 1 (Minkowski function): Given a convex and

compact set C ⊂ Rn, assume the origin belongs to the
algebraic interior of C and c ∈ C. The Minkowski function
associated with C is defined by ϕC(c) = inf {r > 0 : c ∈ rC} .

The space C is a polytope (encompassing the origin) and is
defined as C =

{
c ∈ Rn

|Hjc ≤ hj, j = 1 . . .m
}
. Here, Hj is a

1× n row vector. The Minkowski function associated with C
is defined as:

ϕC(c) = max
j

{
Hjc
hj

} (9)

The Minkowski function allows ‘‘translating’’ specific
geometric properties of a subset to a (particular) algebraic
property of another subset. The ‘‘translation’’ is enabled by
the gauge map.
Definition 2 (Gauge mapping function): Let us consider

two convex and compact sets C ⊂ Rn and C̄ ⊂ Rn. Let us
assume that the origin belongs to the algebraic interior of both
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FIGURE 4. The sub-level sets of a Minkowski function are achieved by
linearly scaling the set C. Specifically, any point c could be referred to by
the distance to the origin ϕC(c) and the direction c/ϕC(c).

C and C̄. The gauge map G : C → C̄ is a bijection function
defined as c̄ = G(c, C, C̄) =

ϕC (c)
ϕC̄ (c)

c. Here, c ∈ C and c̄ ∈ C̄.
This propertymeans a feasible rangewith a simple geomet-

ric shape (such as ℓ∞-norm unit ball B) can be translated to a
complex feasible range (such as S̄Ref). Since the gauge map
function provides a one-to-one mapping, choosing a point
in B is equivalent to choosing a point in S̄Ref.
As shown in Figure 4, the gauge map function is based

on the concept of an absorbing set that can be deflated in
accordance with the origin. To apply the gauge map function,
however, we must temporarily ‘‘shift’’ the desired feasible
domain SRef by one of its interior points uo to make it a
set S̄Ref that contains the origin as an interior point. Thus,

S̄Ref = {ūIndep|(ūIndep + uo) ∈ SRef} (10)

The set S̄Ref serves as a bridge connecting the ℓ∞-norm
unit ball B and the desired feasible domain SRef. We use the
gauge map to translate v⋆ into a ūIndep

⋆
in S̄Ref and then

shift it to uIndep
⋆
in SRef. Put differently,

uIndep
⋆

= T(v⋆, x) = ūIndep
⋆

+ uo =
ϕB(v⋆)

ϕS̄Ref (v
⋆)
v⋆

+ uo

(11)

Therefore, the inputs of the gauge map sub-module are
x, v⋆ and an interior point uo. The output is independent
parameters uIndep⋆.
All in all, given any v⋆ in the ℓ∞-norm unit ball, the feasi-

bility module first produces a reduced-size solution uIndep⋆

and then expands it to a full-dimension solution u⋆. The
gauge map and reconstruction functions will enforce both the
equality constraints and inequality constraints.

D. INTERIOR POINT FINDER
As discussed in the optimization and feasibility modules,
we need to use an interior point in SRef to construct the inter-
mediate domain S̄Ref. The difficulty of finding interior points
stems from the fact that SRef varies as x changes. Therefore,
an interior point of SRef(x(i)) may not be an interior point
of SRef(x(j)), j ̸= i. We start by making an assumption that
given any x(i), i = 1 . . .m, ∃Sint ⊂ SRef(x(i)) ( [26]). Then
any point in Sint is an interior point. This assumption holds
when the input x (or SRef(x)) is under small disturbances.
In this subsection, we present an initial artificial problem
method to find out an interior point for more general cases.

Inspired by the implementation of the interior-point
method [28], we first define the following problem using the
pseudo-variable ua ∈ R,

minMua (12a)

s.t. AuIndep + Bx + b − 1ua ≤ 0 (12b)

Here, M is a large coefficient. 1 is an all-one column
vector. The solution to problem (12) is an interior point
to SRef.

Let us note
[
uIndep♦T, u♦

a
]T

as the solution to prob-
lem (12). The interior point of SRef exists if and only if
u♦
a < 0. Thus, solving problem (12) yields an interior point
uIndep♦

∈ SRef if u♦
a < 0.

Note that problem (12) represents a linear programming
problem that can be efficiently solved using traditional
solvers. Although the development of an interior point finding
method is not the primary focus of this paper, we acknowl-
edge the critical role of securing an initial interior point
in our proposed method. Importantly, to obtain a feasi-
ble point through our neural approximator, we only need
to identify a negative u♦

a . Consequently, we can approach
problem (12) with a more flexible convergence criterion
or a relaxed convergence tolerance, thereby significantly
reducing the computational time required to find an interior
point.

The pseudo-code for LOOP − LC model training sum-
marizes the proposed method section.

Algorithm 1 LOOP − LCModel Training
Require: Neural network ξθ initialization (architecture,

weights, and bias), Hyperparameters (learning rate, num-
ber of epochs, batch size, etc.), Data points, Constrained-
optimization problem specification, Interior points

1: for epoch in 1 to max_epochs do
2: Forward propagation:

-predict virtual prediction v using current weights,
bias according to (5)
-compute independent variables uIndep according
to (11)
-produce a full-size prediction u according to (6)

3: Compute loss function L
4: Backward propagation: compute gradients ∂L

∂θ
5: Update weights and bias
6: end for

IV. RESULTS
A. CONVEX PROBLEM: DC OPTIMAL POWER FLOW
The DC optimal power flow (DCOPF) problem [35] mini-
mizes the cost of procuring electricity in a power grid while
respecting the system’s limitations. The formulation of the
DCOPF problem is given below.

min f(PG) =

NG∑
g=1

fg(PgG) (13a)
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s.t.
NG∑
g=1

PgG =

ND∑
i=1

PiD, PG ≤ PG ≤ PG (13b)

DGPG − DDPD ≤ Pline (13c)

Where PG = [P1G . . .PgG . . .PNGG ]T refers to the vector of elec-
tric power generation, PD = [P1D . . .PiD . . .PNDD ]T denote the
vector of electric demands. The equality constraint enforces
the balance of supply and demand, while the inequality
constraint respects the physics of the electric system. Here,
Dg and DD (the so called power transfer distribution factor
matrix [29]) capture the physics of the electric network.

1) DATASET
We use the publicly available IEEE 200-bus system data set,
available via the MATPOWER [30], as the seed information
to generate 200 data points (with a train/test ratio of 1:1).
The IEEE 200-bus system is a 200 nodes graph representing
a realistic electric grid. This system consists of 200 load
nodes and 49 generation nodes. We consider a 10-percentage
fluctuation of each load node.

2) COMPARISON
We compare LOOP − LC against the three recent
learning-based optimization methods; (i) projection [21], (ii)
penalty [8], and (iii) DC3 [24] methods, as well as two
well-known commercial solvers (i.e., matpower 7.1 [30] and
CVXOPT [31]). The projection method projects the output of
the neural network onto the feasible range, while the penalty
method adds a ℓ2-norm term to the loss function. Moreover,
the DC3 method utilizes the ℓ2-norm penalty term in the
objective function to iteratively enforce the output of the
neural networks to satisfy optimization constraints. These
methods are illustratively compared in Figure 5.

3) PARAMETERS
We use a fixed neural network architecture for projection,
penalty, and DC3 methods: fully connected with one hidden
layer of size 16, including the rectified linear unit (ReLU)
activation. An extra Tanh activation is added to the out-
put layer for LOOP − LC model. Different hyperparame-
ters were tuned to maximize performance for each method
individually (see Table 1). Since the DC3 method is based
on an inner iteration, the performance improves over the
course of iterations. We let it run till a similar time limit as
LOOP − LC model to facilitate comparison.

4) INTERIOR POINT FINDER
SRef varies as the electric demand changes; there-
fore, we use the initial artificial problem method (dis-
cussed in Section III-D) to find interior points for the
LOOP − LC method.

5) RESULTS
Based on Table 2, the penalty method achieves the best
execution time. However, at its core, this method introduces a

FIGURE 5. We present an illustrative comparison between functionalities
of projection, penalty, and DC3 method for solving (1).

TABLE 1. Hyperparameters tested for different methods. The final
parameter values are identified in bold.

trade-off between optimality and feasibility. The convergence
speed-up comes at the cost of an increased feasibility gap.
The same trade-off manifests itself in the DC3method, mean-
ing that the feasibility gap decreases with more inner itera-
tions, which may adversely impact optimality and solution
time. The performance of both the penalty approach and the
DC3 method is sensitive to hyperparameters. Poor choices
of hyperparameters may lead to divergence of training or
testing (for example, the step size of 0.001 for DC3 results
in divergence).

Our results show that only the LOOP − LC and pro-
jection method satisfies hard feasibility constraints, while
LOOP − LC’s solution time performance surpasses the pro-
jection method by a large margin. Specifically, given the
interior point, the LOOP − LC method will be executed
three orders of magnitude faster than the projection method.

B. NONCONVEX PROBLEM: IMAGE REGISTRATION
Image registration is a fundamental image analysis problem
that aims to optimize the transform function that moves
the coordinate system of one image to another [32]. Let
X = [−1, 1]2 denote the domain of an image, and let
us denote I : X → [0, 1] as an image defined in this
domain. Also, we will refer to the source image as Is and
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TABLE 2. This table presents the results of using different methods to solve the DCOPF problem. The time is reported as the average per instance in

milliseconds. The Optimality gap is measured as 1
N

∑N
i=1

∥∥∥u(i )−u(i )∗
∥∥∥
1∥∥∥u(i )∗

∥∥∥
1

. The Feasibility gap is calculated using 1
N(∥∥∥max(Ainequ(i ) + Bineqx(i ) + bineq, 0)

∥∥∥
1

+

∥∥∥Aequ(i ) + Beqx(i ) + beq
∥∥∥

1

)
.

FIGURE 6. Optimality and feasibility results of image registration
problems. Optimality gap is measured as 1

N
∑N

i=1 f (u(i )
r ), while the

feasibility gap is calculated as 1
N

(∥∥max(Arur − ϵId , 0)
∥∥

1 +∥∥max(−Arur − ϵId , 0)
∥∥

1
)
.

target image It. Moreover, let fr be the registration field
that maps coordinates of Is to coordinates of It. Given
these definitions, the optimization problem can be written as,
argminfr

∫
X ∥Is(fr(x))−It (x)∥2dx. Often, fr is characterized

by a displacement vector field ur. This vector specifies the
vector offset for each voxel: fr = Id + ur, where Id is the
identity transform. Hence, the problem transforms to,

min f(ur) =

∫
X

∥Is(x + ur(x)) − It (x)∥2dx (14)

Problem (14) is highly non-convex and in many applica-
tions, e.g., medical image analysis, the displacement ur must
satisfy some regularization/smoothness conditions. Extensive
prior works have devised various penalty terms to enforce the
smoothness of the displacement fields. One such approach is
to penalize the gradients’ norms of the displacement along the
x-axis and y-axis. In this paper, we enforce upper and lower
bounds for gradients of ur, thus, the feasible range of problem
(14) can be defined as,

S = {−ϵId ≤ Arur ≤ ϵId } (15)

where Ar denotes the gradient operator along x&y axis.
We choose ϵ = 0.01 in the paper.

1) DATASET
We use 25000 pairs of images from the MNIST dataset [33]
for training.

2) COMPARISON
We compare LOOP − LC against the regularization
method [34] that utilizes mean squared error as the penalty
term.

3) PARAMETERS
We use a customized Residual Neural Network (ResNet)
[36] as the neural network architecture. The Tanh activation
is added to the output layer for LOOP − LC model. The
learning rate is set to 0.001.

4) INTERIOR POINT FINDER
SRef is fixed in the image registration problem. Therefore,
we use 0 as the interior point in LOOP − LC.

5) RESULTS
The average per-instance time (using GPU) for the reg-
ularization method is 1.5576 ∗ 10−5 seconds while

FIGURE 7. Examples of learning results of image registration problems.
The source image and target image are in columns 1-2, and the results
using LOOP − LC model in column 3. A well-tuned registration
function will produce Is(fr)(column 3) similar to images in column 2. Our
models perform well in various images while maintaining smooth
displacements.
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LOOP − LC outputs the results in 1.7699 ∗ 10−5 seconds.
Optimality and feasibility results are shown in Figure 6.
Although the regularization method slightly outperforms
the LOOP − LC in terms of speed, it yields a consid-
erable feasibility gap. The LOOP − LC model, free of
parameter tuning, achieves high-quality (close-to-optimal)
solutions while guaranteeing feasibility with respect to
hard constraints. Figure 7 illustrates training results using
LOOP − LC model.

V. CONCLUSION
This paper introduces the LOOP − LC model for solving
an optimization problem with hard linear constraints. At its
core, our method is a neural approximator that maps the
inputs to an optimization problemwith hard linear constraints
to a high-quality feasible solution (near optimal). In a nut-
shell, our proposed model learns a neural approximator that
maps the optimization’s inputs to an optimal point in the
ℓ∞-norm unit ball and then maps the ℓ∞-norm unit ball
to the feasible set of the original problem through a gauge
map. Unlike current learning-assisted solutions, our method
is free of parameter tuning and removes iterations altogether.
Our results on convex and non-convex optimization tasks
showcase that the LOOP − LC achieves close-to-optimal
feasible solutions (with respect to hard constraints) while
outperforming existing solutions in terms of solution time.
Our proposed method is especially applicable to complex
optimization problems with linear constraints where the inte-
rior points could be efficiently produced.
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