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ABSTRACT Although it is well-known that the two-stage approach outperforms the one-stage approach
in general object detection, they have similarly performed in parking slot detection so far. We consider
this is because the two-stage approach has not yet been adequately specialized for parking slot detection.
Thus, this paper proposes a highly specialized two-stage parking slot detector that uses region-specific multi-
scale feature extraction. In the first stage, the proposed method finds the entrance of the parking slot as a
region proposal by estimating its center, length, and orientation. The second stage of this method designates
specific regions that most contain the desired information and extracts features from them. That is, features
for the location and orientation are separately extracted from only the specific regions that most contain the
locational and orientational information. In addition, multi-resolution feature maps are utilized to increase
both positioning and classification accuracies. A high-resolution feature map is used to extract detailed
information (location and orientation), while another low-resolution feature map is used to extract semantic
information (type and occupancy). In experiments, the proposed method was quantitatively evaluated with
two large-scale public parking slot detection datasets: SNU and PS2.0 datasets. In SNU dataset, the proposed
method achieved state-of-the-art performance with 95.75% recall and 95.78% precision.

INDEX TERMS Parking slot detection, deep learning, convolutional neural network (CNN), two-stage
detector, around view monitor (AVM), automatic parking system.

I. INTRODUCTION
As a result of the growing interest in autonomous driv-
ing, autonomous parking systems have gained more atten-
tion. Such systems have proven their role by providing
drivers convenience and reducing vehicle damage [1], [2], [3].
In autonomous parking, the first step is to precisely detect
an available parking space. Recently, a soaring number of
vehicles are equipped with vision systems that enhance the
drivers’ awareness of their surroundings. Some clear exam-
ples are the rearview camera and around viewmonitor (AVM)
system, which eliminates the rear blind spot and provides
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360 degrees observation around the vehicle, respectively.
This tendency has led to the significant development of
vision-based parking slot detection.

The initial methods for the vision-based parking slot
detection are based on hand-crafted features. These methods
extract line or corner features from images and combine them
using geometric rules to find parking slots. Although they
have shown noticeable performances, the inconvenience of
designing adequate geometric rules and the fragility of those
rules to various environmental conditions have been revealed
as their significant drawbacks. In recent years, with the
rise of deep learning, convolutional neural network (CNN)
has made considerable breakthroughs in numerous object
detection tasks. CNN-based general object detection methods
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FIGURE 1. Terminologies for parking slot markings.

can be categorized into two main approaches: two-stage and
one-stage. The two-stage approach consists of one step to
generate region proposals and the other step to classify the
objects inside those regions and refine their bounding boxes.
Region-based CNN (RCNN) [4], Fast RCNN [5], Faster
RCNN [6], RFCN [7], and Mask-RCNN [8] are represen-
tative methods for this approach. On the other hand, the
one-stage approach directly acquires bounding boxes for the
objects along with their classes without generating region
proposals. You only look once (YOLO) [9], YOLOv2 [10],
YOLOv3 [11], YOLOv4 [12], single shot multibox detec-
tor (SSD) [13], and RetinaNet [14] are representative meth-
ods for this approach. Through various applications, the
two-stage approach has shown a high detection performance
with a slow processing speed, while the one-stage approach
has shown a moderate detection performance with a fast pro-
cessing speed. Witnessing the success of CNN-based object
detection, many research works have been conducted to uti-
lize it for parking slot detection tasks.

Similar to general object detection, CNN-based park-
ing slot detection methods can be categorized into two
approaches: two (or multi)-stage and one-stage. In multi-
stage parking slot detection methods, the first stage gener-
ates region proposals by finding two or four corners of the
parking slots [15], [16] or by combining parts of the parking
slots found by CNNs using geometrics rules [17], [18], [19],
[20], [21]. Then, the following stages refine the positions or
classify types and occupancies of the parking slots by extract-
ing features of the region proposals from the corresponding
regions of the feature map or input image. On the other hand,
one-stage parking slot detection methods directly acquire all
information of the parking slot such as location, orientation,
type, and occupancy in a single step without generating
region proposals [22], [23]. Even though the two-stage detec-
tion approach has been known to outperform the one-stage
detection approach in general object detection tasks, their
performances have been reported to be similar in parking
slot detection tasks. The state-of-the-art one-stage parking
slot detector has shown a slightly better performance than the
two-stage parking slot detectors [22], [23].We consider this is
because the two-stage approach has not yet been adequately
specialized for parking slot detection tasks.

Therefore, this paper proposes a highly specialized
two-stage parking slot detector that uses region-specific

multi-scale feature extraction. In the first stage, the pro-
posed method finds the entrance of the parking slot as a
region proposal by predicting its location, orientation, and
length. It is unlike the previous methods that adopt an upright
rectangle [15] or four corners of the parking slot [16] as
a region proposal. In the second stage, this method uses a
region-specific feature extraction method that extracts fea-
tures only from the specific regions of the feature map that
most contain the desired information. For instance, features
for predicting the location and orientation of the parking slot
are separately extracted from only the specific regions that
most contain the corresponding information. This is possi-
ble because the parking slot is a planar rigid object on the
ground plane and captured in an AVM image after removing
perspective distortion. It is unlike the previous methods that
extract the features of the entire region proposal from the
feature map [16] or crop the whole area of the region proposal
from the input image [15]. In addition, the proposed method
utilizes multi-resolution feature maps to increase both posi-
tioning and classification accuracies. It uses a high-resolution
feature map for extracting detailed information (location and
orientation) and a low-resolution feature map for extracting
semantic information (type and occupancy). Finally, from the
extracted features, the proposed method refines the locations
and orientations of the parking slots and classifies their types
and occupancies. In experiments, the proposed method was
quantitatively evaluated with two large-scale public parking
slot detection datasets and outperformed previous methods,
including both one-stage and two-stage approaches. The con-
tributions of this paper can be summarized as follows:

• It suggests an effective way to apply the two-stage gen-
eral object detection to the parking slot detection tasks.

• It proposes a region-specific multi-scale feature extrac-
tion that increases both detection performance and posi-
tioning accuracy by effectively extracting the precise
information of the parking slot from the region proposal.

• It presents quantitative evaluation results using two
large-scale public datasets and shows that the proposed
method gives a state-of-the-art performance.

II. RELATED WORKS
Previous vision-based parking slot detection methods can
be categorized into hand-crafted feature-based and deep
learning-based (or CNN-based). Since these methods exploit
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parking slot markings on the ground, terminologies for the
parking slot markings are briefly introduced in Fig. 1. In this
figure, the guiding line segregates the parking slots from the
roadway, and separating lines divide individual parking slots.
Junctions are the intersections of the guiding line and sepa-
rating lines, and the entrance of a parking slot is the segment
between two adjacent junctions. A parking slot is formed by
the entrance and a pair of separating lines connecting to it.

Hand-crafted feature-based methods detect parking slots
by extracting manually designed features of the parking slot
and combining them using traditional rule-based techniques.
Since this paper concentrates mainly on the deep learning-
based methods, the hand-crafted feature-based methods are
briefly introduced. Based on the type of extracted features,
the hand-crafted feature-based methods can be categorized
into line-based and junction-based. The line-based methods
first find the guiding lines and separating lines and then
group them to generate parking slots. Various techniques have
been employed for detecting and combining line features.
For line detection, Hough transform [24], [25], Radon trans-
form [26], [27], or random sample consensus (RANSAC)
algorithm [28], [29], [30], [31] have been utilized. For
line combination, K-means clustering [26], grouping based
on predetermined distances and parallel and perpendicular
properties [25], [31], [32], [33] have been used. Different
from the line-based methods, the junction-based methods
first find junctions of the parking slots and then pair them
to generate parking slot candidates. For junction detection,
Harris corner detector [34], [35], [36] and Viola-Jones detec-
tor [37] have been applied. The detected junctions are paired
by various geometric rules based on their types, locations,
and orientations. Once parking slots are detected by the
line-based or junction-based methods, their occupancies are
then classified. To this end, difference-of-Gaussians-based
histogram with linear discriminant analysis (LDA) classi-
fier [38], Canny edges with naïve Bayes classifier [32], color
histogramwith support vectormachine (SVM) classifier [27],
ultrasonic sensor-based occupancy grid [33], [36] have been
exploited.

As CNN-based object detection has shown significant
results in recent years, various research works have been done
to apply this technique to the parking slot detection task.
CNN-based parking slot detection methods can be catego-
rized into two approaches: multi-stage and one-stage. The
first multi-stage parking slot detection method applying deep
learning technique was proposed by Zhang et al. [17]. The
first stage of this method finds junctions using YOLOv2 and
its second stage generates parking slot candidates by com-
bining the junctions using geometric rules. Finally, a CNN-
based classifier verifies the candidates whose orientations
are determined by a template matching technique in the
last stage. Similarly, Huang et al. [18] customized a CNN
to find locations, orientations, and types of junctions and
then grouped them using geometric rules to generate park-
ing slot candidates. The method proposed by Li et al. [15]

detects junctions and entrances using YOLOv3 with upright
bounding boxes and finds parking slots by means of geo-
metric rules and relation between the detected junctions
and entrances in the first stage. Its second stage separately
crops the regions of the parking slots from the input image
and forwards them to an additional CNN for occupancy
classification. From a different approach, Jang and Sun-
woo [19] and Jiang et al. [20] proposed methods that extract
the marking lines and junctions of parking slots using seman-
tic segmentation techniques in the first stage. They gener-
ate parking slots using extracted lines and junctions along
with geometric rules and classify their occupancies based
on the semantic segmentation results in the second stage.
All aforementioned methods have shown the potential of
deep learning techniques in parking slot detection tasks.
However, they cannot be trained end-to-end due to the man-
ual selection of geometric rules and associated parameters,
which is inconvenient and complicated to set. To overcome
this limitation and benefit the training process, end-to-end
trainable methods have been proposed. Zinelli et al. [16] pre-
sented the first end-to-end trainable parking slot detection
method utilizing anchor-free faster R-CNN [39]. The first
stage of this method roughly estimates four corners of the
parking slot as a region proposal. RoIAlign [8] is then used
to extract features from the proposed region for location
refinement and occupancy classification in the second stage.
Trying to apply a general object detection to the parking slot
detection task, this method, however, shows clear limitations
of detection performance and positioning accuracy because
it uses the general object detector without sufficient modifi-
cation. Another end-to-end trainable two-stage parking slot
detection method was proposed by Do and Choi [40]. In the
first stage of this method, the context recognizer predicts the
common type and orientation of all parking slots in the input
image. Then, the parking slot detector estimates the exact
positions of the parking slots using rotated anchor boxes in the
second stage. Although this method can obtain all informa-
tion of the parking slots, including location, orientation, type,
and occupancy, it handles only the cases where all parking
slots in the input images have the same type and orientation
and requires a high computational cost due to the use of
two separate backbone networks. Min et al. [21] proposed a
three-stage parking slot detection method. It finds junctions
and extracts their features in the first stage and aggregates
the junctions to generate parking slot candidates using an
attentional graph neural network in the second stage. Finally,
those candidates are verified based on amultilayer perceptron
in the last stage. Thismethod is limited in dealingwith slanted
parking slots due to the absence of orientation information
extraction.

Since multi-stage parking slot detection methods, in gen-
eral, are mediocre in terms of inference speed, one-stage
parking slot detection methods have also been suggested.
Li et al. [22] introduced a one-stage parking slot detection
method focusing on locating the entrance of the parking slot.
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FIGURE 2. Overall architecture of the two-stage method utilizing region-specific multi-scale feature extraction.

This method predicts the location, orientation, and type of
the parking slot entrance using a customized CNN. Although
it shows a fast inference speed with an adequate detection
performance, it provides no occupancy information and
unsatisfactory orientation accuracy due to the predefined ori-
entations for slanted parking slots. Suhr and Jung [23] sug-
gested another one-stage parking slot detection method. This
method simultaneously extracts global information (rough
location, type, and occupancy of the parking slot) and local
information (precise location and orientation of junctions)
and combines them to provide final parking slots. This
method achieves a high detection performance requiring only
a low computational cost while providing all information of
the parking slot (location, orientation, type, and occupancy).

As a thorough literature review, it is observed that cur-
rently, for parking slot detection tasks, one-stage detection
methods slightly outperform multi-stage detection methods
in both aspects: detection performance and positioning accu-
racy. This is unlike general object detection tasks, where
the two-stage approach outperforms the one-stage approach.
We consider one of the main reasons is that the two-stage
approach has not yet been adequately specialized for parking
slot detection tasks. Therefore, this paper proposes a highly
specialized two-stage parking slot detector. In experiments,
it has been revealed that the adequately designed two-stage

parking slot detection method outperforms the one-stage
parking slot detection methods.

III. PROPOSED METHOD
A. OVERALL ARCHITECTURE
This paper proposes a novel two-stage parking slot detection
method using region-specific multi-scale feature extraction.
The proposed method roughly locates parking slot entrances
using the region proposal network (RPN) in the first stage
and precisely estimates positions and properties of parking
slots using the slot detection network (SDN) and slot classifi-
cation network (SCN) in the second stage. Fig. 2 illustrates
the overall architecture of the proposed method. An input
AVM image, as in Fig. 2(a), is inserted into the backbone
network for feature maps extraction. This paper tried several
backbone networks and selected DenseNet121 [41], whose
performance has been proven in various applications. After
acquiring the feature maps, the RPN with one convolutional
layer is applied to the low-resolution feature map to generate
rough positions of parking slot entrances as region proposals.
Fig. 2(b) shows the output of the RPN, where solid black
lines and arrows indicate the entrances and orientations of
the parking slots, respectively. Once region proposals are
generated, this paper applies the region-specific multi-scale
feature extraction to estimate the positions and properties
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of parking slots more accurately. Rather than utilizing fea-
tures of the entire parking slot, the region-specific approach
extracts features from only the regions that most contain the
desired information. Magenta and yellow squares in Fig. 2(c)
are the specific regions used to extract features for estimating
the locations and orientations of the parking slot, respec-
tively. These regions include junctions and separating lines,
thus containing rich locational and orientational information.
Purple squares in Fig. 2(d) are the specific regions used to
extract features for type and occupancy classification. These
regions include the center areas of parking slots that contain
overall shape and texture information. In addition, multi-
resolution feature maps are utilized to enhance positioning
and classification performances. The high-resolution feature
map, containing more detailed information, is used to extract
features for estimating the locations and orientations of park-
ing slots, while the low-resolution feature map, containing
more semantic information, is used to extract features for
classifying their types and occupancies. After obtaining the
features using the proposed region-specific multi-scale fea-
ture extraction, the SDN with a set of fully connected layers
is applied to estimate precise positions of the parking slots,
as marked with black lines in Fig. 2(e). Concurrently, the
SCNwith a set of fully connected layers is applied to estimate
types and occupancies of the parking slots. Fig. 2(f) shows
the output of the SCN where blue solid, red solid, and green
dashed rectangles indicate vacant slanted, vacant parallel,
and occupied perpendicular parking slots, respectively. The
proposed method determines the final parking slots by com-
bining their positions, types, and occupancies, as illustrated
in Fig. 2(g).

B. REGION PROPOSAL NETWORK
The proposed method generates the parking slot entrance
as a region proposal, unlike previous methods that capture
the whole parking slot using a parallelogram [15], quadri-
lateral [16], or rotated rectangle [40]. The reason for this
selection is that AVM images do not usually include the
whole parking slot, and the parking slot entrance itself
contains enough information for vehicles to start parking.
Additionally, the proposed method differs from the meth-
ods in [17], [18], and [20], which depend on hand-crafted
geometric rules to find parking slots. The proposed method
geometrically models a parking slot, but all parameters
used for the parking slot model are predicted by the net-
work. This allows the method to be end-to-end train-
able. To represent the parking slot entrance, this paper
considered two approaches suggested by Li et al. [22] and
Suhr and Jung [23]. The former uses the location and
orientation of the entrance center, and the latter uses the
locations of the junction pair. Based on the experimental
comparison, this paper modifies the approach suggested by
Li et al. [22] and represents the parking slot entrance by its
center location (x, y), orientation (cos θe, sin θe), length (l),
and the orientation of the parking slot (cos θs, sin θs) as shown
in Fig. 3.

FIGURE 3. Representation of the parking slot entrance using its center
location (x, y ), orientation (cos θe, sin θe), length (l ), and parking slot
orientation (cos θs, sin θs).

Fig. 4 gives a detailed description of the RPN. In the
RPN, one convolutional layer with eight 3 × 3 filters is
applied to the low-resolution feature map produced by the
backbone network, as illustrated at the top of Fig. 4. The
spatial dimension of the RPN output is h × w. This means
that the input image is divided into a grid of h × w cells.
Since one cell is responsible for at most one parking slot
entrance, the cell size should be set smaller than the minimum
size of the parking slots. In Fig. 4, the illustrations are
intentionally depicted with a grid of 6 × 6 cells for ease of
understanding. At the top of Fig. 4(a), the possibility that
a cell contains any entrance center is estimated using one
3×3 filter followed by the sigmoid function. At the bottom of
Fig. 4(a), green cells indicate the cells with high possibilities
to contain entrance centers of parking slots. At the top of
Fig. 4(b), the relative position from a cell center to an entrance
center is calculated using two 3 × 3 filters followed by the
sigmoid function. At the bottom of Fig. 4(b), blue arrows
indicate 2D vectors connecting the cell centers to the entrance
centers contained in corresponding cells. In this figure, only
the results obtained from the cells containing the entrance
centers are drawn. At the top of Fig. 4(c), orientations of the
entrances are obtained using two 3 × 3 filters followed by
the tanh function. Because the unit vector representing the
orientation consists of values in the range of [−1.0, 1.0] , the
tanh function is used. At the bottom of Fig. 4(c), magenta
arrows indicate 2D vectors that represent the orientations of
the entrances whose centers are contained in corresponding
cells. At the top of Fig. 4(d), lengths of the entrances are
estimated using one 3 × 3 filter followed by the sigmoid
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FIGURE 4. Region proposal network (RPN) and the detailed information obtained from it.

FIGURE 5. (a) Parallelogram-based ROI designation; (b)-(d) Region-specific ROI designation, (b) shows location regions, (c) shows
orientation regions, (d) shows type and occupancy region.

function. At the bottom of Fig. 4(d), purple lines indicate the
estimated lengths of the entrances. At the top of Fig. 4(e),
orientations of the parking slot are calculated using two
3 × 3 filters followed by the tanh function. At the bottom
of Fig. 4(e), yellow arrows indicate 2D vectors that represent
the orientations of the parking slots whose entrance centers
are contained in corresponding cells. Fig. 4(f) illustrates the
output of the RPN obtained by combining all the information
shown in Fig. 4(a)-(e). Solid red lines and arrows indicate
the generated parking slot entrances and the orientations of
the parking slots, respectively. Because the RPN can find
multiple entrances for a single parking slot, non-maximum
suppression (NMS) is utilized to remove duplicate detections
based on the fact that two parking slots cannot overlap. Two
entrances are considered as duplicates if their centers are
closely located.

C. REGION-SPECIFIC MULTI-SCALE FEATURE EXTRACTION
After generating the parking slot entrance as a region pro-
posal, the proposed method extracts features from the region
of interest (ROI) specified by the generated region pro-
posal. General object detection methods use upright rect-
angles as ROIs for feature extraction [42], [43]. Still,
upright rectangles are inappropriate for parking slot detection
because parking slots can appear with arbitrary orientations
in AVM images. To tackle this problem, previous parking slot
detection methods suggested other ways to designate ROIs
for feature extraction, such as using parallelograms [15] or
quadrilaterals [16]. Fig. 5(a) shows a parallelogram-based
ROI designation. In this figure, a blue parallelogram, inferred
from the parking slot entrance, indicates the ROI for feature
extraction. Since this ROI contains the whole parking slot,
the features extracted from this region can predict all the
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FIGURE 6. Slot detection network (SDN) and slot classification network (SCN), and the detailed information obtained from them.

information, including location, orientation, type, and occu-
pancy. However, this approach is not optimal to designate the
ROI for feature extraction in parking slot detection because
specific regions of the parking slot contain features for spe-
cific information. For instance, features including locational
and orientational information are mostly found in regions
around junctions and separating lines, respectively. Because
of this characteristic, if features are extracted from the whole
parking slot region, the network can have difficulty find-
ing where to focus on. Our experiment has revealed that
the approach using the whole region degrades the detection
performance.

Therefore, to overcome the disadvantage coming from
using features of the whole parking slot and enhance the
detection performance, this paper proposes a region-specific
ROI designation using multi-scale feature maps, called
region-specific multi-scale feature extraction. The region-
specific ROI designation is illustrated in Fig. 5(b)-(d). The
proposed method defines only the specific regions that most
contain the desired information as ROIs for feature extrac-
tion. This is possible because the parking slot is a planar
rigid object on the ground plane and captured in an AVM
image after removing perspective distortion, so its compo-
nents, such as junctions and separating lines, can roughly be

localized based on the parking slot entrance generated by the
RPN. Magenta squares in Fig. 5(b) are the designated ROIs
to extract features for precise location prediction. Regions
around two junctions are chosen as ROIs because they contain
most of the locational information. In this figure, a red line
and arrow indicate the parking slot entrance generated by the
RPN, and both ends of the red line are rough locations of two
junctions. Yellow squares in Fig. 5(c) are the designated ROIs
to extract features for precise orientation prediction. Regions
around two separating lines are chosen as ROIs because they
containmost of the orientational information. A purple square
in Fig. 5(d) is the designated ROI to extract features for type
and occupancy classification. The central region of the park-
ing slot is used for this ROI because it contains information
about the overall properties of the parking slot. The location
of the ROIs in Figs. 5(c) and (d) are determined by two
vectors, k⃗1 and k⃗2, whose directions are set to the orientation
of the parking slot (red arrow), and lengths are empirically
set to 50 and 32 pixels, respectively. ROIs generated by the
proposed method are all upright squares. Rotated rectangles
have been tried, but they did not improve the performance
while increasing computational cost. Furthermore, to reduce
the volume and computation of the network, this method does
not crop the regions from the input image but the regions
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from the feature maps. This means that both its first and
second stages share the backbone network, unlike some of the
previous methods that crop the regions from the input image
and use additional backbone networks to extract features for
the second stage [15], [17].

In addition to the region-specific ROI designation, this
paper suggests extracting features in different scales accord-
ing to types of information. The proposed method extracts
features for predicting the location and orientation from the
high-resolution feature map that keeps more detailed infor-
mation. On the other hand, features for predicting the type
and occupancy are extracted from the low-resolution feature
map that contains more semantic information. Experimental
results have shown that the use of the region-specific multi-
scale feature extraction remarkably increases the detection
performance as well as the positioning accuracy.

D. PARKING SLOT DETECTION AND CLASSIFICATION
NETWORKS
Utilizing the features obtained by the proposed region-
specific multi-scale feature extraction, the SDN detects the
precise locations and orientations of the parking slots while
the SCN classifies their types and occupancies. The top and
bottom parts of Fig. 6 give detailed descriptions of the SDN
and SCN, respectively. As illustrated in Fig. 6(a), for every
parking slot, the region-specific multi-scale feature extractor
extracts four 5 × 5 × 512 tensors from the high-resolution
feature map, in which two tensors are from the two junctions
(in magenta squares), and the other two are from the two
separating lines (in yellow squares). The SDN uses those
tensors as inputs after flattening them. Fig. 6(b) shows the
architecture of the SDN. Using the tensor from one magenta
square, the SDN predicts three values: one for the possibility
that this region contains a junction and two for the relative
location from the region center to the junction. For this, two
sets of fully connected layers followed by the sigmoid func-
tion are utilized. This process is separately applied to the ten-
sors from the two magenta squares. The SDN also predicts a
unit vector that describes the orientation of the separating line
using the tensor from a yellow square. For this, one set of fully
connected layers followed by the tanh function is utilized.
This process is separately applied to the tensors from the two
yellow squares. Fig. 6(c) gives a visual representation for the
output of the SDN, where the red dots and arrows indicate the
precisely predicted locations of the junctions and orientations
of the separating lines, respectively. Similarly, as shown in
Fig. 6(d), the SCN uses one 3 × 3 × 512 tensor extracted
from the purple square of the low-resolution feature map as
an input after flattening it. From this tensor, the SCN predicts
four values: one for occupancy (vacant or occupied) and three
for the parking slot type (perpendicular, parallel, or slanted).
For this, one set of fully connected layers followed by the
sigmoid function and another set of fully connected layers
followed by the softmax function are utilized, as presented
in Fig. 6(e). Fig. 6(f) gives a visual representation for the
output of the SCN,where the blue color and solid line indicate

slanted and vacant properties, respectively. The final parking
slot detection result is obtained by combining the outputs of
the SDN and SCD as shown in Fig. 6(g).

E. LOSSES
1) LOSSES FOR THE FIRST STAGE
The loss for the first stage (RPN), lossfirst is a weighted sum of
five losses corresponding to five information that represents
the parking slot entrance as

lossfirst = weplossep + wexylossexy + wel lossel
+weolosseo + wsolossso (1)

where wep, wexy, wel , weo, and wso are the weights for the five
losses and experimentally set. Each loss will be described in
detail one by one.

The loss for the possibility that a grid cell contains an
entrance center, lossep is calculated as

lossep =

h×w∑
i=1

[
I ie

(
epipred − epitrue

)2
+ λe

(
1 − I ie

) (
epipred − epitrue

)2]
(2)

where epitrue is the ground truth for the possibility that the i-
th cell includes any parking slot entrance center. This value is
1 if it includes or 0 if it does not. The input image is assumed
to be divided into a grid of h×w cells. epipred is the prediction
of the network for epitrue. I

i
e indicates whether the i-th cell

includes any entrance center and is set to 1 if it includes or
0 if it does not. Because the number of cells that contain the
entrance center is much smaller than the number of cells that
do not, λe is multiplied to compensate for this imbalance. It is
set based on the ratio of those numbers in the training dataset.

The loss for the relative location from the cell center to the
entrance center included in that cell, lossexy is calculated as

lossexy =

h×w∑
i=1

I ie

[{(
ex ipred − 0.5

)
−
ex itrue
Wcell

}2

+

{(
eyipred − 0.5

)
−
eyitrue
Hcell

}2]
(3)

where
(
ex itrue, ey

i
true

)
is the ground truth for the relative loca-

tion from the center of the i-th cell to the entrance center
included in it. These values are divided by Wcell and Hcell
to be normalized to the range of [−0.5, 0.5]. Wcell and Hcell
are the width and height of the region corresponding to a
single cell of the low-resolution feature map in the original
image, respectively. They are 32 pixels because the backbone
network includes four 2 × 2 pooling layers whose strides
are 2.

(
ex ipred , ey

i
pred

)
is the prediction of the network for(

ex itrue, ey
i
true

)
. Because of the sigmoid function, the predicted

values are in the range of [0, 1], so we subtract 0.5 from them
to match their ranges with the ground truth values.
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The loss for the entrance length, lossel is calculated as

lossel =

h×w∑
i=1

I ie

[
el ipred −

el itrue
Lmax

]2
(4)

where el itrue is the ground truth for the entrance length. It is
divided by Lmax to be normalized to the range of [0, 1]. Lmax
is the maximum length of the parking slot entrance and is set
based on the training dataset. el ipred is the prediction of the
network for el itrue.
The loss for the orientation of the parking slot entrance,

losseo is calculated as

losseo =

h×w∑
i=1

I ie

[(
eox ipred − eox itrue

)2
+

(
eoyipred − eoyitrue

)2]
(5)

where
(
eox itrue, eoy

i
true

)
is a unit vector representing the

ground truth for the orientation of the entrance whose center
is included in the i-th cell.

(
eox ipred , eoy

i
pred

)
is the prediction

of the network for
(
eox itrue, eoy

i
true

)
. These values are in the

range of [−1, 1] because of the tanh activation function.
The loss for the orientation of the parking slot, lossso is

calculated as

lossso =

h×w∑
i=1

I ie

[(
sox ipred − sox itrue

)2
+

(
soyipred − soyitrue

)2]
(6)

where
(
sox itrue, soy

i
true

)
is a unit vector representing the

ground truth for the orientation of the parking slot whose
entrance center is included in the i-th cell.

(
sox ipred , soy

i
pred

)
is the prediction of the network for

(
sox itrue, soy

i
true

)
. These

values are in the range of [−1, 1] because of the tanh activa-
tion function.

2) LOSSES FOR THE SECOND STAGE
The loss for the second stage, losssecond is the sum of the loss
for the SDN (lossSDN ) and the loss for the SCN (lossSCN ) as

losssecond = lossSDN + lossSCN (7)

The loss for the SDN is a weighted sum of three losses cor-
responding to three information that represents the junction of
the parking slot as

lossSDN = wjplossjp + wjxylossjxy + wjolossjo (8)

where wjp, wjxy, and wjo are the weights for the three losses
and experimentally set.

The loss for the possibility that the magenta ROIs in
Fig. 6(a) include junctions, lossjp is calculated as

lossjp =

R∑
i=1

[
jpipred − jpitrue

]2
(9)

where jpitrue is the ground truth for the possibility that the i-th
ROI contains a junction. R is the number of ROIs contained
in an input image. jpipred is the prediction of the network
for jpitrue. This value is in the range of [0, 1] because of the
sigmoid activation function.

The loss for the relative location from the center of the
magenta ROI in Fig. 6(a) to the junction included in that ROI,
lossjxy is calculated as

lossjxy =

R∑
i=1

I ij

[{(
jx ipred − 0.5

)
−

jx itrue
WROI

}2

+

{(
jyipred − 0.5

)
−
jyitrue
HROI

}2]
(10)

where
(
jx itrue, jy

i
true

)
is the ground truth for the relative loca-

tion from the center of the i-th ROI to the junction included
in it. These values are divided by WROI and HROI to be
normalized to the range of [−0.5, 0.5].WROI andHROI are the
width and height of the region corresponding to a 5 × 5 area
of the high-resolution feature map in the original image. They
are 80 pixels because the high-resolution feature map is taken
from the third pooling layer of the backbone network. I ij
indicates whether the i-th ROI contains any junction and is
set to 1 if it contains or 0 if it does not.

(
jx ipred , jy

i
pred

)
is

the prediction of the network for
(
jx itrue, jy

i
true

)
. Because of

the sigmoid function, the predicted values are in the range of
[0, 1], so we subtract 0.5 from them tomatch their ranges with
the ground truth values.

The loss for the orientation of the separating lines in the
yellow ROIs of Fig. 6(a), lossjo is calculated as

lossjo =

R∑
i=1

I ij

[(
jox ipred − jox itrue

)2
+

(
joyipred − joyitrue

)2]
(11)

where
(
jox itrue, joy

i
true

)
is a unit vector representing the

ground truth for the orientation of the separating line included
in the i-th ROI.

(
jox ipred , joy

i
pred

)
is the prediction of the

network for
(
jox itrue, joy

i
true

)
. These values are in the range

of [−1, 1] because of the tanh activation function.
The loss for the SCN is a weighted sum of two losses

corresponding to the type and occupancy of the parking slot
as

lossSCN = wst lossst + wsocclosssocc (12)

where wst , and wsocc are the weights for the two losses and
experimentally set.

The loss for the type of the parking slot that contains the
center of the purple ROI in Fig. 6(d), lossst is calculated based
on the categorical cross-entropy as

lossst =

R/2∑
i=1

I islot

[
−

3∑
c=1

{
λst,cst itrue,c log

(
st ipred,c

)}]
(13)
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where st itrue,c is the ground truth for the probability that
the type of the parking slot containing the center of the
i-th ROI is c. st itrue is represented in one-hot encoding and
c has a value of 1, 2, or 3. So

(
st itrue,1, st

i
true,2, st

i
true,3

)
for

the perpendicular, parallel, or slanted type is set to (1, 0, 0),
(0, 1, 0), or (0, 0, 1), respectively. The number of ROIs for the
SCN is R/2 when there are R ROIs for the SDN because one
region proposal contains one purple ROI and two magenta
and yellow ROIs. I islot indicates whether the i-th ROI is
included in a parking slot or not. Its value is set to 1 if included
or 0 if not. st ipred,c is the prediction of the network for st

i
true,c,

λst,c is the parameter that compensates for the imbalance of
the numbers of different types of parking slots and is set based
on the ratio of those numbers in the training dataset.
The loss for the occupancy of the parking slot that contains

the center of the purple ROI in Fig. 6(d), losssocc is calculated
as

losssocc =

R/2∑
i=1

[
I iocc

(
soccipred − soccitrue

)2
+ λvacI ivac

(
soccipred − soccitrue

)2]
(14)

where soccitrue is the ground truth for the occupancy of the
parking slot containing the center of the i-th ROI. This value
is 1 if occupied or 0 if vacant. soccipred is the prediction of the
network for soccitrue. I

i
occ indicates whether the center of the

i-th ROI is included in an occupied parking slot and is set to
1 if included or 0 if not. I ivac indicates whether the center of the
i-th ROI is included in a vacant parking slot and is set to 1 if
included or 0 if not. λvac is the parameter that compensates for
the imbalance of the numbers of occupied and vacant parking
slots. This value is set based on the ratio of those numbers in
the training dataset.

IV. EXPERIMENTS
A. DATASET
The proposed method was quantitatively evaluated using two
datasets: Seoul National University dataset [40] and Tongji
Parking Slot Dataset 2.0 [17]. This paper will call them
the SNU dataset and PS2.0 dataset, respectively. These two
datasets are the only publicly available large-scale datasets
currently. This is because creating a dataset specifically for
parking slot detection in AVM images is particularly chal-
lenging. It requires an AVM system with multiple fisheye
cameras installed on an actual vehicle to capture synchro-
nized images under various lighting conditions while driving.
Table 1 shows the summary of the two datasets. The SNU

dataset consists of half AVM images obtained by two fisheye
cameras attached to both side-view mirrors. This dataset
includes 22817 images (18299 for training and 4518 for test)
taken in 571 parking situations, and the image resolution is
768 × 256 pixels that correspond to 14.4 × 4.8 meters. Its
labels contain locations, orientations, types, and occupancies
of the parking slots. On the other hand, the PS2.0 dataset

TABLE 1. SUMMARY of PS2.0 and SNU datasets.

TABLE 2. Hyperparameters used to calculate losses.

consists of full AVM images obtained by four fisheye cameras
of the AVM system. It includes 12165 images (9827 for
training and 2338 for test) taken in 166 parking situations,
and the image resolution is 600× 600 pixels that correspond
to 10.0×10.0meters. Its labels contain only locations and ori-
entations of the parking slots, sowemanually designated their
types and occupancies. The two datasets include three types
of parking slots (perpendicular, parallel, and slanted) taken
indoors and outdoors in daytime and nighttime under sunny
and rainy weather conditions. While the PS2.0 dataset is
commonly utilized in parking slot detection-related research,
it exhibits a possibility of overfitting due to the substan-
tial similarity between the parking situations included in its
training and test sets. To this end, the SNU dataset is more
challenging because it contains various parking situations,
and the images included in its training and test sets were taken
from different parking situations.

B. EXPERIMENTAL SETTING
The input images were resized to 576 × 192 pixels and
416 × 416 pixels for the SNU and PS2.0 datasets, respec-
tively. The backbone network was initialized by the weights
pre-trained on ImageNet, and the RPN, SDN, and SCN were
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TABLE 3. Detection performances of the proposed method with different
backbone networks on the SNU dataset.

TABLE 4. Comparison of parking slot detection performances on the SNU
dataset.

initialized by Xavier uniform initializer. The proposed net-
work was trained for 80 epochs with a batch size of 32.
In the first 60 epochs, the first stage (RPN) and the second
stage (SDN and SCN) were trained alternately for one epoch
each, and in the rest 20 epochs, both stages were trained
simultaneously. The proposed network was optimized by
Adam optimizer whose learning rate, β1, β2, and ϵ were set
to 10−4, 0.9, 0.999, and 10−8, respectively. Hyperparameters
used to calculate losses are presented in Table 2. All the
experiments were conducted using TensorFlow and Nvidia
GeForce RTX 3090 GPU.

For proper evaluation and comparison, this paper uti-
lizes the criteria suggested by Zhang et al. [17], which is
most widely used in previous parking slot detection papers.
According to the criteria, a detected parking slot is considered
as a true positive if the locations of its two junctions are
within M pixels from the ground truth and their orientations
are within N degrees from the ground truth. Otherwise, it is
considered a false positive. For M and N , Zhang et al. [17]
used 12 pixels and 10 degrees (loose criteria), but this paper
additionally uses 6 pixels and 5 degrees (tight criteria) for
more detailed comparisons. Recall and precision are calcu-
lated as

Recall =
#TruePositive
#GroundTruth

(15)

Precision =
#TruePositive

#TruePositive+ #FalsePositive
(16)

C. PERFORMANCE ON THE SNU DATASET
This paper has considered several backbone networks and
selected DenseNet121. Table 3 shows the detection per-
formance of the proposed method with three different
backbone networks: VGG16 [44], ResNet50 [45], and
DenseNet121 [41]. Since DenseNet121 outperforms the oth-
ers, we utilize it to obtain the experimental results of the
proposed method in the rest of this paper.

TABLE 5. Comparison of parking slot positioning errors on the SNU
dataset.

TABLE 6. Ablation experiment of the proposed method on the SNU
dataset.

Table 4 presents the detection performances of the pro-
posed method and two recently released methods. The two
previous methods are the one-stage method by Suhr and
Jung [23] and the two-stage method by Do and Choi [40].
They were selected for the comparison because they achieved
state-of-the-art performances on the PS2.0 and SNU dataset,
respectively. In Table 4, the one-stage method in [23] shows
a slightly higher performance than the two-stage method
in [40]. As mentioned in the introduction, it is mainly because
the two-stage approach has not yet been adequately spe-
cialized for parking slot detection. It can be noticed that
the proposed method, a highly specialized two-stage parking
slot detector, outperforms the others roughly by 3% to 5%
with the loose criteria and by 11% to 13% with the tight
criteria. This result signifies that the two-stage approach can
outperform the one-stage approach in parking slot detection
if it is well-specialized, the same as the case of general
object detection. In addition, when tightening the criteria,
the performance of the proposed method drops only about
12%, while those of the others dramatically drop about 20%.
This is primarily because the proposed method provides more
accurate positions of the parking slots compared to the others.
Table 5 gives the detailed positioning accuracies of the three
methods. These errors were calculated from the correctly
detected parking slots only. This table clearly shows that both
the location and orientation errors of the proposed method are
smaller than those of the others. In autonomous parking sys-
tems, positioning accuracy is significantly important because
vehicles should be controlled based on the detected position
of the parking slots.

Table 6 shows the result of the ablation experiment. Since
this paper proposes the region-specific multi-scale feature
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TABLE 7. Comparison of type and occupancy classification performances
on the SNU dataset.

TABLE 8. Comparison of inference time using Nvidia GeForce RTX
3090 on the SNU dataset.

TABLE 9. Comparison of model size.

extraction, this experiment was conducted focusing on the
region-specific ROIs and multi-scale feature maps. In this
table, from top to bottom, three cases present the detection
results of using none of the region-specific ROIs and multi-
scale feature maps, using only the region-specific ROIs with-
out the multi-scale feature maps, and using both, respectively.
In case I, the method designates the whole parking slot region
as an ROI using a parallelogram as shown in Fig. 5(a).
Compared to case I, with the tight criteria, case II reveals
that the region-specific ROIs dramatically increase the detec-
tion performance by roughly 12%, and case III shows that
the region-specific ROIs with the multi-scale feature maps
enhance the detection performance by roughly 14%. The
performances using the loose criteria have similar trends with
smaller gaps. This ablation experiment clearly indicates that
the proposed region-specific multi-scale feature extraction
improves the parking slot detection performance.

Table 7 shows the type and occupancy classification per-
formances of the three methods. Classification rates are also
calculated from the correctly detected parking slots only.
The type and occupancy classification rates of the proposed
method are all over 99%, and those of the other methods
are quite similar. Table 8 presents the inference times of
the three methods using Nvidia GeForce RTX 3090. The
proposed method is faster than the two-stage method in [40]
because its first and second stages share the same backbone

FIGURE 7. Parking slot detection results of the proposed method in
various parking scenarios in the test images of the SNU dataset. The first,
second, and third rows shows the detection results for perpendicular,
parallel, and slanted parking slots, respectively. Green, red, and blue lines
indicate perpendicular, parallel, and slanted parking slots, respectively;
solid and dashed lines indicate vacant and occupied parking slots,
respectively.

network while Do and Choi’s method uses two separate back-
bone networks. Compared to the one-stage method in [23],
the proposed method is slower. The inferior inference time
observed in the two-stage approach is an expected charac-
teristic. Compared to the one-stage approach, the two-stage
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FIGURE 8. Failure cases of the proposed method in the test images of the
SNU dataset. (a) and (b) show false positive cases, (c) shows an incorrect
occupancy classification, and (d) shows a false negative.

approach achieves higher detection performance with the
cost of slower processing time. Table 9 presents the model
description of the three methods. It can be observed from
the table that even though the proposed method has a slower
processing speed than the one-stage method in [23], it has
fewer FLOPs (floating-point operations) compared to the
latter. This situation can be explained by the approach used in
the region proposal network of the proposed method. Instead
of using ROIAlign, which comprises lots of computation,
the proposed method directly crops out the feature from the
designated location of the region proposal. Although this
approach still takes considerable time, it has significantly
reduced the number of FLOPs.

Fig. 7 illustrates the parking slot detection results in various
parking situations contained in the test images of the SNU
dataset. In this figure, green, red, and blue lines indicate per-
pendicular, parallel, and slanted parking slots, respectively,
and solid and dashed lines indicate vacant and occupied park-
ing slots, respectively. It is apparent that the proposed method
can successfully detect and classify parking slots under vari-
ous illumination conditions (indoor, outdoor, nighttime, day-
time, etc.), ground conditions (strong shadow, reflective floor,
brick, grass, etc.) as well as parking slot styles (different
colors, with marks, double separating line, etc.).

Fig. 8 presents failure cases of the proposed method in
the test images of the SNU dataset. Fig. 8(a)-(b) show false
positives. In Fig. 8(a), the lower junction of the detected
parking slot does not satisfy the location criterion due to the
reflective floor. In Fig. 8(b), the rear part of the parking slot
marking (rightmost blue line) is wrongly detected due to the
shape similarity. In Fig. 8(c), the parking slot occupied by a
pole is misclassified as vacant because the pole occupies only
a tiny area. Fig. 8(d) shows a false negative, where the upper
junction of the parking slot is heavily occluded by the parked
vehicle. Among these failure cases, cases (a) and (d) can be
solved by associating sequential information. Occluded or

FIGURE 9. Parking slot detection results of the proposed method in the
test images of the PS2.0 dataset. Green, red, and blue lines indicate
perpendicular, parallel, and slanted parking slots, respectively; solid and
dashed lines indicate vacant and occupied parking slots, respectively.

blurred junctions can be seen and correctly detected when
the vehicle moves to a different position. Case (b) can be
solved by adding post-processing to remove predictions at
the rear of another parking slot. And case (c) can be solved
by adding more training data for parking slots occupied by
small-size objects. These solutions are considered in our
future research directions because this paper focuses mainly
on properly improving the parking slot performance of the
two-stage detection scheme.

D. PERFORMANCE ON THE PS2.0 DATASET
Table 10 shows the comparison of the parking slot detection
performances on the PS2.0 dataset. For the PS2.0 dataset,
three more methods have been added for the comparison
because more papers shared their codes and detection results,
unlike the newly opened SNU dataset. In Table 10, the pro-
posed method shows a slightly higher parking slot detection
performance than the others. Note that the performance gaps
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FIGURE 10. Failure cases of the proposed method in the test images of
the PS2.0 dataset. (a) shows a false negative, (b) shows an incorrect
occupancy classification.

TABLE 10. Comparison of parking SLOT detection performances on the
PS2.0 dataset.

TABLE 11. Comparison of type and occupancy classification
performances on the PS2.0 dataset.

on the PS2.0 dataset are not as apparent as on the SNU dataset
because almost all methods have already reached very high
detection performances on this dataset. This is mainly due
to the similarity between the training and test images of the
PS2.0 dataset. This similarity makes it hard to be used to
compare the performances of different methods. Table 11
compares the type and occupancy classification performances
on the PS2.0 dataset. It also shows that the proposed method
gives a slightly higher parking slot classification performance
than the others. The previous methods with no ability for type
or occupancy classification are masked as N/A.

Fig. 9 illustrates the parking slot detection results in
various parking situations contained in the test images of
the PS2.0 dataset. It also shows that the proposed method
can properly handle the various situations included in the
PS2.0 dataset. Fig. 10 presents failure cases of the proposed
method on the PS2.0 dataset. Fig. 10(a) includes a false

negative where the lower parking slot is undetected because
one of its junctions is severely blurred. In Fig. 10(b), the
occupied parking slot is misclassified as vacant.

V. CONCLUSION
This paper proposes a novel highly specialized two-stage
parking slot detectionmethod using the region-specificmulti-
scale feature extraction. The proposed method finds park-
ing slot entrances as region proposals in the first stage
and extracts region-specific features from multi-scale feature
maps to precisely predict positions and properties of parking
slots in the second stage. This method was quantitatively
evaluated using two large-scale public parking slot detec-
tion datasets and outperformed previous methods in terms
of both detection performance and positioning accuracy. This
result revealed that the two-stage approach is superior to the
one-stage approach if it is adequately specialized, the same
as the case of general object detection. In the future, we are
planning to optimize the network using filter pruning and
weight quantization to implement it in real-time embedded
systems. In addition, we are trying to improve the perfor-
mance by integrating sequential detection results and adding
task-specific post-processing and rarer parking slot cases.
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