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ABSTRACT With the increasing complexity of mechanical equipment, the control effectiveness of tradi-
tional intelligent control systems can no longer meet the needs of modern industrial production. In order to
reduce errors in intelligent control systems while ensuring system performance, this study proposes a new
Particle Swarm Optimization (PSO) optimization scheme. The study simplified the PSO algorithm from
three aspects: algorithm parameters, speed, and position formula, and corrected the formulas for individual
optimal values and global optimal values. Research will name the optimized algorithm Modified PSO
(MPSO). On the basis of the MPSO algorithm, neural network intelligent control has been innovatively
improved. In the experimental results, theMPSO optimized controller controlled the error within 0.01 within
0.02 seconds. At this time, the Whale Optimization Algorithm (WOA) optimized error was 0.072, and the
PSO optimized error was 0.478. Compared to PSO and WOA, the control error of MPSO has decreased by
98.95% and 93.06%, respectively. In addition, the proposed method not only has the best control effect, but
also has the shortest system response time, with an average time of 1.294 seconds. Compared to PSO and
WOA optimization, it reduces by 61.48% and 43.07%, respectively.The results verified that the proposed
method in this study can effectively improve the accuracy of intelligent control and control the error within
the target range within 0.02 seconds. The research not only simplifies the calculation of the PSO algorithm,
but also effectively reduces the error of the algorithm, providing a reference for research in the field of
intelligent control.

INDEX TERMS Intelligent control, nonlinear problems, neural network, particle swarm optimization (PSO).

I. INTRODUCTION
In recent years, with the continuous development of indus-
trial technology, the requirements for control systems have
become increasingly high. However, traditional control meth-
ods are difficult to meet complex control requirements, and
neural network control technology has been widely used in
the control field due to its advantages of simplicity and strong
robustness. Researchers have used neural network technol-
ogy to design a new type of controller, which has achieved
significant results in the field of control [1]. Neural network
intelligent control technology can predict future behavior
and results by learning and analyzing historical data of the
system, and reduce control errors while ensuring system
performance. Neural network technology can automatically
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adjust the network structure based on the current input data
to achieve the optimal control effect [2].However, as the
level of science and technology continues to improve and
the complexity of control systems increases significantly, the
existing neural network intelligent control technology can
no longer meet the needs of modern industrial control sys-
tems [3]. Especially in industrial production, most of the con-
trolled objects are multi-input and multi-output multivariable
systems, which are extremely difficult to control. Moreover,
due to the influence on individual inputs, the components of
the control system form a coupled control system. Coupling
is now widely seen in the control of engine speed, turbine
temperature and so on. Severe coupling can lead not only
to equipment damage, but also to serious production safety
accidents. For this reason, the study of multivariable control
systems has become the focus of research in the field of
control at this stage. Meanwhile, the PSO algorithm, as a
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population intelligence algorithm, has been improved by a
large number of experts and scholars in recent years, resulting
in a variety of improved algorithms based on PSO.Adnan
R M et al. proposed a new model combining PSO with the
gray wolf algorithm for improving the accuracy of runoff
prediction in reservoir operation [4].Yang et al. on the basis
of the traditional wavelet neural network method developed a
particle swarm optimization algorithm to solve the problems
such as slow convergence speed of the traditional method in
determining gear cracks in gearboxes [5].Although there has
been a large amount of research on PSO optimization algo-
rithms and certain achievements have been made, there is still
relatively little research on the application of PSO algorithms
to intelligent control systems. Therefore, a new PSO improve-
ment scheme is proposed and innovatively applied to intelli-
gent control systems.In order to reduce the lengthy learning
time and the computational effort and error in the intelligent
control system of neural networks, this study optimized the
multivariate controller based on the standard Particle Swarm
Optimization (PSO) algorithm. To address the problems of
insufficient performance of the PSO algorithm in seeking and
slow convergence of the algorithm, the study optimizes the
PSO and proposes the MPSO algorithm. The study simplifies
the PSO algorithm in terms of three aspects: algorithm param-
eters, velocity, and position equation. Based on the simplified
PSO algorithm, the individual optimal position and the global
optimal position in the position update formula are corrected
using a linear combination of the individual optimal value and
the global optimal value. In addition, the study innovatively
proposes an inertia weight based on the cosine function and
introduces a dynamic adjustment strategy obeying the Beta
Distribution (BD) to enhance the population diversity and
improve the exploration ability of the algorithm. The study
optimizes thePIDNN network of Proportion Integration Dif-
ferentiation (PID) combined with Artificial Neural Network
(ANN) through the improved MPSO algorithm to solve the
problem of weight correction in PIDNN.The research aims to
optimize neural network intelligent control systems through
MPSO, shorten the processing time of intelligent control
systems and improve control effectiveness, provide solutions
for solving complex system control problems, and indirectly
improve the efficiency and safety of industrial production and
management.In addition, the optimization approach adopted
in the study provides a unique ideological guidance for the
optimization method of PSO algorithm.

II. RELATED WORKS
With the endless research on optimization of various algo-
rithms, numerous scholars have studied about intelligent con-
trol. Qiao B et al. proposed an intelligent control algorithm for
tactile sharing in the field of automatic driving. Nash game is
used to help determine the degree of intervention and driver’s
attention assessment. The simulation experiment verifies that
the method proposed in this study can assist the driver in
decision-making and improve driving safety [6]. Zhang et al.
proposed a simplified pipeline intelligent control mode in

natural gas transportation engineering. The test results in
the actual pipeline operation data show that the optimized
intelligent control can effectively and reliably predict the
pipeline operation status [7]. Li et al. believed that the intel-
ligent control algorithm can reduce the noise in the signal
interference, so the research proposed an intelligent control
algorithm that can accurately predict the flow. The research
used Long Short Term Memory (LSTM) to predict the traffic
demand and feedback the control scheme according to the
results. This method achieved the balance between network
speed and energy consumption [8]. Zhai et al. proposed a
new intelligent control system based on knowledge transfer
learning, which can ensure the accurate control of massage
position and force when the massage robot is working. This
research combines particle swarm optimization with knowl-
edge transfer learning, and realizes personalized recognition
of skin parameters on this basis. The experimental results
indicate that the optimized control system can enable the
massage robot to have the ability to accurately locate and
control the force during operation [3]. Chen et al. proposed
a finite-time intelligent control algorithm for performance
regulation of cable parallel robot with output constraints. First
of all, the system’s dynamic model was established to ensure
the normal operation of cables. The proposed controller’s
effectiveness of was verified by simulation of the control
object [9]. Qassar et al. proposed a new control design to
address the dynamicmotion of aircraft caused bywing effects
and improve themaneuverability of the aircraft during ascent.
The method is based on super torsion Sliding mode control,
and Lyapunov stability analysis is carried out to ensure the
gradual convergence of the error. However, as the parameters
of this method directly affect the dynamic performance of
the controlled system, a modern technology based on whale
optimization algorithm is proposed to ensure the optimal per-
formance of the controller. The effectiveness of this method
was verified through numerical simulation in MATLAB
software [10].

At the same time, improved particle swarm optimization
algorithms also emerge in endlessly. In industrial structure
design, Zakian et al. proposed a weight minimization opti-
mization design using heuristic improved particle swarm
optimization, and introduced stress ratio, drift and size con-
straints in the optimization process. The comparison of
simulation design experiments on pipe rack structure elab-
orated that the optimization method is more effective [11].
Priyadarshi et al. proposed a tracking algorithm built on PSO
to enhance the power point of the Internet of Things (IoT)
system. The study first optimized the converter and then used
it as an interface to the solar PV voltage and modulated
the converter using particle swarm algorithm to obtain more
power. The monitoring of PV voltage by the controller is
implemented on the basis of this method. The results show
that the algorithm is superior to the techniques such as ant
colony optimization and artificial bee colony optimization
which are widely used at this stage [12]. In the field of solar
power generation forecasting, Dash et al. designed a new
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hybrid forecasting method. This method optimized parame-
ters by particle swarm optimization of sine and cosine flight,
and used depth architecture instead of neural network to
process huge database. To test the prediction accuracy of
this method, the research selected the solar energy histor-
ical data of different seasons for testing, and verified the
effectiveness of this method [13]. Ammar et al. designed
a new multi-objective optimization PSO algorithm to deal
with conflicting objective functions. The method deals with
the decision variables of a multi-project capacity problem
by a new particle coding and decoding approach. It also
effectively improves the problem constraints by combining
the overall violation minimization and constraint handling
approach.The research used five performance indicators to
compare the effectiveness of the algorithm, and verified that
the efficiency of the algorithm is greater than other similar
algorithms [14]. Fakoor et al. proposed an algorithm based
on PSO in the research of satellite payload precise posi-
tioning. The optimal value of the controller variable and the
normalized integral square error was searched by improving
PSO. The simulation results demonstrated that the target
detection algorithm based on improved PSO has improved
in different degrees on the four indicators of error control.
This verified that the proposed method can accurately track
the time-varying payload of the satellite [15].Wang et al. also
proposed an improved particle swarm algorithm to solve the
problems that the particle swarm algorithm is prone to too fast
convergence and unbalanced local search and global search
when dealing with complex problems. This study introduced
an adaptive strategy to balance performance and accuracy
in the search process. And the improved particle swarm
algorithm was experimentally verified to have higher perfor-
mance compared to the existing algorithm [16]. Wang et al.
also proposed an improved particle swarm algorithm to solve
the problems that the particle swarm algorithm is prone to
too fast convergence and unbalanced local search and global
search when dealing with complex problems. This study
introduced an adaptive strategy to balance performance and
accuracy in the search process. And the improved particle
swarm algorithm was experimentally verified to have higher
performance compared to the existing algorithm [12].

In summary, in the field of intelligent control, scholars
have applied various optimization algorithms and conducted
extensive research on the problems existing in intelligent con-
trol. However, the current optimization objectives are mostly
limited to the application of control systems in different
fields, ignoring the problems of long response time and large
control errors inherent in intelligent control systems. At the
same time, particle swarm optimization (PSO) algorithm has
also demonstrated its unique advantages in solving com-
plex problems, so improvements to PSO algorithm have also
received a lot of attention. Based on the above research. This
study optimizes neural network intelligent control systems
based on particle swarm optimization, aiming to provide
more effective improvement solutions for intelligent control
systems.

III. NEURAL NETWORK INTELLIGENT CONTROL BASED
ON MPSO OPTIMIZATION
A. RESEARCH ON MPSO OPTIMIZATION ALGORITHM
In recent years, with the continuous growth of computing
power and data scale, the problems encountered in industrial
production have become increasingly complex. Traditional
optimization methods cannot meet the needs of modern
industry in terms of solution accuracy and convergence
speed when solving high-dimensional and complex prob-
lems. In order to break through the limitations of traditional
algorithms, natural heuristic optimization algorithms have
been widely applied and developed. A large number of prac-
tices and experiments have verified that swarm intelligence
algorithm has more efficient performance in solving complex
problems. At present, the widely used swarm intelligence
algorithms include Ant Colony Optimization (ACO), particle
swarm optimization (PSO) and Whale Optimization Algo-
rithm (WOA). Among them,PSO algorithm is evolved from
the theory of Complex Adaptive System (CAS), which orig-
inates from scholars’ research on bird swarm system. Each
bird in the flock is the subject of CAS, and each subject can
communicate with other subjects and the environment, thus
having adaptability. In communication, the subject changes
the existing knowledge structure and behavior through learn-
ing. In the PSO algorithm, each bird is a particle, and each
particle may be the optimal solution of the algorithm. The
definition of particles consists of position, speed and fitness
values [17]. Among them, the position of particles is random,
and the speed controls the flying distance and direction. The
fitness value reflects the quality of particles. There are also
individual optimal values and global optimal values in PSO
algorithm. The individual optimal value represents the best
position in the individual particle experience, and the global
optimal value is the best position in the group particle expe-
rience. In the search space of PSO algorithm, the expression
of particle speed and position is shown in equation (1) [18].{

V t+1
i = V t

i + c1r1(pbest − X ti ) + c2r2(gbest − X ti )
X t+1
i = X ti + V t+1

i
(1)

In equation (1), V t
i denotes the velocity of the i th particle

when the number of iterations is; tX ti denotes the position
of the i th particle when the number of iterations is t; pbest
denotes the optimal position obtained by the i th particle,
i.e., the individual optimal value; gbest denotes the optimal
position obtained by the particle swarm as a whole, i.e., the
global optimal value; c1, c2 is the learning factor, c1 = c2 =

2; r1, r2 is two independent random numbers, r1, r2 ∈ [0, 1].
In order to coordinate the optimization capability of the PSO
algorithm, an inertia weight w has been introduced into the
PSO algorithm. The PSO speed formula after introducing the
inertia weight is shown in Equation (2) [19].

V t+1
i = wV t

i + c1r1(pbest − X ti ) + c2r2(gbest − X ti ) (2)

The introduction of inertia weights coordinates to a certain
extent the optimization-seeking ability of the PSO algorithm,
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increasing the global search ability in the early stage of the
algorithm search and the local search ability in the late stage
of the algorithm search. However, the reduction of particle
velocity in the late stage of algorithm search due to the
introduction of inertia weights may lead to the reduction
of population diversity, thus causing the algorithm to fall
into local optimum. In addition, the PSO algorithm suffers
from insufficient search performance and slow convergence
of the algorithm. To solve these problems, this study first
simplifies the PSO algorithm in terms of three aspects: algo-
rithm parameters, velocity, and position equation. Then the
individual optimal values and global optimal values in the
position equation of the algorithm are corrected. Finally, BD’s
are introduced to dynamically adjust the inertia weights. This
study names the improved PSO algorithm as MPSO. The
simplification of PSO in this study first removes the parti-
cle velocity term from the position update formula, and the
simplified PSO algorithm position update formula is shown
in equation (3) [20].

X t+1
i = wX ti + c1r1(pbest − X ti ) + c2r2(gbest − X ti ) (3)

As shown in equation (3), the simplified PSO algorithm
iterates with only the particle position term, thus turning the
second-order differential equation into a first-order differ-
ential equation [11]. In order to accelerate the convergence
speed of the PSO algorithm, the study introduces a linear
combination to optimize equation (3). The optimized position
update equation is shown in equation (4).

X t+1
i = wX ti + c1r1(

pbest + gbest
2

− X ti )

+ c2r2(
pbest − gbest

2
− X ti ) (4)

In equation (4), c1r1(
pbest+gbest

2 − X ti ) leads the particle to

move from the current position to the mean of the individual

optimum and the global optimum; c2r2(
pbest−gbest

2 −X ti ) leads
the particle to move from the current position to the negative
direction of the mean of the individual optimum and the
global optimum. After the linear combinatorial optimization,
the information of the particle itself and the global position is
applied more effectively, thus bringing the particle closer to
the optimal solution. BD is a continuous probability distribu-
tion in the interval (0, 1), and its probability density function
is shown inequation (5) [21].

f (x) =
xa−1(1 − x)b−1

B(a, b)
(5)

In equation (5), B represents the beta function, and a and
b are the parameters. When the parameters a, b take different
values, the probability density function can fit different func-
tion shapes. The expression of inertia weight after introducing
BD is shown in equation (6).

w0 = wmin + (wmax − wmin) × cos(π t/2Tmax)

+ σ × betarnd(a, b) (6)

In equation (6), σ denotes the inertia adjustment factor;
betarnd(a, b) denotes the random number obeying BD. The
optimized inertia weights can control the range of taking val-
ues in the range of 0.4∼0.9, thus enhancing the search ability
of the algorithm. Moreover, the deviation degree of inertia
weights is controlled under the influence of BD, so that the
distribution of their values is more reasonably adjusted [22].
The inertia weights ofMPSO show a nonlinear variation over-
all and decreasing with the algorithm search. After adding the
adjustment factor of obeying BD, it produces larger adjusted
values of inertia weights to improve the particle population
diversity at the early stage of algorithm search, and larger
inertia weights to improve the search accuracy at the later
stage of algorithm search. the algorithm flow of PSO and
MPSO is shown in Figure 1.

B. APPLICATION OF MPSO OPTIMIZATION ALGORITHM
IN NEURAL NETWORK INTELLIGENT CONTROL
Intelligent control is an automation technology that allows
him to achieve control objectives by artificial intelligence
methods without the need for explicit mathematical models
and precise control rules [23]. Intelligent control can be
applied to many fields, such as industrial production, trans-
portation, medical, energy and so on. In intelligent control
systems, the controller can automatically adjust the control
parameters and algorithms according to the characteristics
and requirements of the controlled object, so as to achieve
the optimal control of the controlled object [24]. Compared
with traditional control algorithms, intelligent control sys-
tems have stronger robustness and self-adaptability, and can
achieve better control effects in complex and changing situ-
ations. The basic principle structure of the intelligent control
system, as shown in Figure 2.

Figure 2 shows the working principle of a representative
intelligent control system. Taking the intelligent robot control
system as an example, the broad object includes the robot
arm as well as the object being operated; sensors include
force sensors, tactile sensors, and visual sensors; sensory
information represents the raw data obtained by sensors;
cognitive systems are used for information reception, storage,
analysis, and decision making; communication interfaces
establish human-robot interaction and links between different
modules; planning and control systems can specific control
according to the task requirements and act on the control
object through actuators [25]. Neural network intelligent con-
trol is based on control theory and intelligence theory as
the basis for implementation, and intelligent operation as the
implementation step. In the field of neural network intelligent
control, Proportion Integration Differentiation (PID) control
is the most commonly used control law [12].The mainstream
way to intelligentize nonlinear PID control is to apply neu-
ral network control systems, transforming the control object
into an Artificial Neural Network (ANN) controller, thereby
achieving intelligent control. The principle of PID and the
basic structure of ANN nonlinearcontrol system is shown in
Figure 3.
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FIGURE 1. PSO and MPSO flow chart.

FIGURE 2. Improved MPSO algorithm running process.

As shown in Figure 3(a), there are three correction steps
in the traditional PID controller: proportional, integral and
differential. Among them, the proportion correction is carried
out in real time. As long as there is deviation, it will be
corrected immediately. Therefore, the response speed is fast,
but it is easy to overshoot. The integral correction is used

to reduce the overshoot and achieve no static error control.
The ANN in Figure 3(b) is a network system constructed by
simulating the human brain’s nervous system. Comparedwith
the traditional PID controller, the construction of ANN-based
controller has nothing to do with the mathematical model of
the controlled object, and the structure is easy to implement.
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FIGURE 3. PID principle and basic structure of ANN nonlinear control system.

However, with the continuous improvement of science and
technology, in the modern industrial intelligence control sys-
tem, not only the controlled object becomes more complex,
but also the system is affected by many control variables at
the same time. Such problems not only lead to poor stability
of the intelligence control system, but also lead to equip-
ment damage and safety accidents. For this reason, this study
combines a PID controller with an ANN control machine
to obtain a PIDNN multivariable nonlinear controller. And
based on this, MPSO algorithm is applied to optimize it.
When the sampling moment is k , the output of the input layer
neurons in the summarized PIDNN controller is shown in
equation (7) [26].

xsi(k) =


1, usj(k) > 1
usi(k), −1 ≤ usj(k) ≤ 1
−1, usj(k) < −1

(7)

In equation (7), ys(k) indicates the system controlled quan-
tity; rs(k) indicates the system given value; i is the input layer
serial number in the subnet; s is the subnet serial number.
The output of the summarized implicit layer is shown in
equation (8) [27].

x ′
sj(k) =


1, u′

sj(k) > 1
u′
sj(k), −1 ≤ u′

sj(k) ≤ 1
−1, u′

sj(k) < −1

(8)

In equation (8), j is the implicit layer neuron serial number.
The weighted sum of all the output values of the implicit layer
constitutes the output of the neurons in the output layer, and
the expression is summarized as shown in in equation (9) [28].

xh′′(k) =


1, uh′′(k) > 1
uh′′(k), −1 ≤ uh′′(k) ≤ 1
−1, uh′′(k) < −1

(9)

In equation (9), h is the serial number of the neuron in
the output layer. PIDNN generates control quantity error
in the control process, and for this reason, the study corrects
the weights in PIDNN by the gradient correction method to

make the control quantity close to the target value. Firstly, the
control quantity error is calculated as shown in equation (10).

J =
1
2

3∑
k=1

[yh(k) − r(k)]2 (10)

In equation (10), yh denotes the predicted output value
and r denotes the control target. After getting the error, the
weights from the input layer to the implied layer and from the
implied layer to the output layer are corrected separately, and
the correction formula for the weights from the input layer to
the implied layer is shown in equation (11).

wij(k + 1) = wij(k) − η1
∂J
∂wij

(11)

The weight correction formula for the implied layer to the
output layer is shown in equation (12).

wjk (k + 1) = wjk (k) − η2
∂J

∂wjk
(12)

In equation (12), η1 and η2 denote the corresponding learn-
ing rates, respectively. Therefore, the closed-loop control sys-
tem formed by the neural network and the controlled system
in the PIDNN is shown in Fig. 4.
In Figure 4, r denotes the control target; u denotes the con-

trol rate; and y denotes the current control amount. To address
the problem that the controller depends on the initial weights,
this study uses MPSO for optimization to improve the control
performance of the controller by dynamically adjusting the
initial weights of the network.The dynamic adjustment pro-
cess of MPSO is to set the relevant parameters according to
the specific problem. First, the dimensionality of the particle
population is estimated based on the topology of the network,
and the dimensionality is used as the connection weight or
threshold of the network. The fitness of the particles increases
as the training error decreases. The algorithm can only termi-
nate the iterationwhen the fitness of the particles is lower than
a certain setting or the number of iterations exceeds a certain
setting, and the particle with the highest fitness is the optimal
solution at that time. the flow of MPSO optimization for each
parameter is shown in Figure 5.
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FIGURE 4. PIDNN Closed loop control system.

IV. COMPARISON OF ALGORITHM PERFORMANCE AND
EXPERIMENTAL ANALYSIS OF CONTROL SYSTEM
A. MPSO ALGORITHM PERFORMANCE COMPARISON
To ensure that the computer equipment will not produce
errors, this experiment uses the same computer equipment
for simulation testing.The computing graphics card used for
the experiment is GTX 1080ti; the CPU is Inter Xeon E5;
the memory is 64 GB; the operating system is Windows 10;
and the deep learning framework used for the experiment is
TensorFlow 1.8. Before testing the performance of the popu-
lation intelligence optimization algorithm, it is also necessary
to select different standard test functions.The study selected
themultidimensional unimodal functionQuartic with random
noise, the unimodal function Rosenbrock that is difficult to
solve, and the multimodal function Griewank that is prone to
trapping the algorithm into local optima as the standard test
functions for this study. The detailed information of the test
function is shown in Table 1.

The study determined the range of optimal parameters
for the MPSO algorithm through preliminary experiments.
In order to further determine the optimal parameter set-
tings for the MPSO algorithm, the study conducted tests on
different subgroup numbers and particle count parameters.
To verify the effect of different subgroup numbers on the
performance of MPSO algorithm, simulation experiments
were conducted on the basis of three standard test functions,
and the results are shown in Figure 6.
In this experiment, the number of subgroups set in the

study is 3 groups, 6 groups and 9 groups, the total number of
particles is 90, and the other parameters remain unchanged.

Overall, using the test function for testing, the MPSO algo-
rithmwith different subpopulations showed a faster decline in
the first 50 iterations and a smoother trend after 50 iterations.
Figure 6(a) is the test result on the function Quartic. When the
number of subgroups is 9, the algorithm converges in 48 iter-
ations with a fitness of 0.31. When the number of subgroups
is 6, the algorithm converges in 43 iterations, and the fitness
is 0.52. When the number of subgroups is 3, it converges
at 38 iterations, and the fitness is 0.58. It can be seen that
when the number of subgroups is 3 and 6, the curve of fitness
value is relatively close to that of fitness value of 9 subgroups.
Figure 6 (b) is the test result on the function Resenblock.
When the number of subgroups is 9, the algorithm converges
in 43 iterations with a fitness of 82.34. When the number
of subgroups is 6, the algorithm converges in 41 iterations
with a fitness of 88.73. When the number of subgroups is 3,
it converges at 40 iterations, and the fitness is 132.17. It can be
seen that when the number of subgroups is 6 and 9, the curve
of fitness value is relatively close, and the curve of fitness
value is quite different from that of 3 subgroups.Figure 6(c)
is the test result on the function Griewank. When the number
of subgroups is 9, the algorithm converges in 46 iterations
with a fitness of 0.34. When the number of subgroups is 6,
the algorithm converges in 32 iterations with a fitness of
0.48. When the number of subgroups is 3, it converges at
29 iterations, and the fitness is 1.48.It can be seen that when
the number of subgroups is 6 and 9, the curve of fitness value
is relatively close to that of fitness value of 3 subgroups. From
the experimental results, it can be seen that when the number
of subgroups is 3, there is a faster convergence speed; When
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FIGURE 5. MPSO optimizes the flow chart of each parameter.

TABLE 1. Information on standard test functions.

the number of subgroups is 9, it has a better fitness value. The
relationship between the convergence rate, fitness value and
the number of subgroups is revealed. Therefore, in practical
applications, the number of subgroups can be set based on
specific engineering goals and requirements.

Further verifying the influence of different total particle
numbers on the MPSO algorithm’s performance when the
number of sub-groups is the same, as shown in Figure 7.
In this experiment, the number of subgroups is set to

6 groups, the total number of particles is set to 60, 90 and
120 respectively, and the other parameters remain unchanged.
From Figure 7, it can be seen that as the total number of
particles increases, the search accuracy and convergence time
of the three test functions all increase. Overall, using the test
function for testing, the MPSO algorithm with different parti-
cle counts experienced a rapid decline in the first 50 iterations

and tended to flatten out after 50 iterations.As the sum of
particles increases in Figure 7, the search accuracy of the
three test functions increases, and the time of the optimal
solution decreases slightly. Figure 7(a) is the test result on
the function Quartic. When the sum of particles is 60 and
90, the algorithm converges in 27 iterations with a fitness of
1.22 and 0.82. When the sum of particles is 120, it converges
at 31 iterations, and the fitness is 0.38. Figure 7(b) is the test
result on the function Resenblock. When the total number of
particles is 60, 90, 120, the algorithm converges in 24, 25,
27 iterations with a fitness of 132.45, 81.82 and 57.23 respec-
tively. It can be seen that when the total number of particles
is 90 and 120, the fitness value curve is relatively close, and
it is quite different from the fitness value curve when the total
number of particles is 60.Figure 7(c) is the test result on
the function Griewank. When the sum of particles is 60, 90,
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FIGURE 6. MPSO fitness changes with different subgroup numbers.

120, the algorithm converges in 32, 34, 36 iterations with a
fitness of 0.67, 0.48 and 0.32 respectively. It can be seen that
when the total number of particles is 90 and 120, the fitness
value curve is relatively close, and it is quite different from
the fitness value curve when the total number of particles is
60. From the experimental results, it can be seen that when the
total number of particles is 60, there is a faster convergence
speed; When the total number of particles is 120, it has a bet-
ter fitness value. The relationship between the convergence
rate, fitness value and the number of particles is revealed.
Provide reference for the application of algorithms in specific
projects.The conclusion can be drawn that the improvement
of the algorithm depends on the representation of the optimal
information of the subpopulation in the subpopulation and the
difference between the subpopulations, which is consistent
with the influence of the number of subpopulations in the
simulation test on the optimization effect.

In the performance comparison of the algorithms, the stan-
dard PSO algorithm, the hybrid PSO algorithm (Crossover
PSO,CRPSO) and the whale optimization algorithm (WOA),
which are widely used at present, are chosen as the compari-
son algorithms in the study. Training on test functions Rosen-
brock and Griewank was performed to obtain the algorithm
performance comparison results, as shown in Figure 8.

Figure 8(a) shows the training results on the Rosenbrock
function, where MPSO reaches convergence with 62 itera-
tions, PSO reaches convergence with 83 iterations, CRPSO
reaches convergence with 121 iterations, and WOA reaches
convergence with 76 iterations. where MPSO converges sig-
nificantly faster than PSO and CRPSO, and slightly faster
than WOA, but at convergence time MPSO has the best
fitness among the four types of algorithms involved in the
comparison. Figure 8(b) shows the training results on the
Griewank function, where MPSO reaches convergence with
81 iterations, PSO reaches convergence with 93 iterations,
and CRPSO reaches convergence with 99 iterations. WOA
reaches convergence with 112 iterations. although the fitness
value ofWOA is close to that ofMPSO,MPSO converges sig-
nificantly faster than PSO, CRPSO, and WOA, From Fig. 8,
it can be seen that for each test function, MPSO has better
finding accuracy and good finding speed compared to PSO
and CRPSO.

B. EXPERIMENTAL ANALYSIS OF OPTIMIZED PIDNN
INTELLIGENT CONTROL SYSTEM
In order to better compare the optimization control capabili-
ties of different algorithms, the study compares the effects of
WOA algorithm optimization, PSO algorithm optimization,
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FIGURE 7. MPSO fitness changes with different particle numbers.

FIGURE 8. Performance comparison of different algorithms.

and the MPSO algorithm optimization proposed in this study.
Study the control error of each optimization model under dif-
ferent target control quantities using a motor control system
commonly used in PIDNN control as the controlled object.
As shown in Figure 9.
Figure 9(a) shows the comparison of the control effects

of the motor when the control amount is 0.7. Among them,

the PSO optimization control reached stability at 0.091s,
with a stable control value of 0.642; The WOA optimiza-
tion control reached stability at 0.043 seconds, with a stable
control value of 0.641; The MPSO optimized control reached
stability at 0.027 seconds, with a stable control value of 0.696.
Figure 9(b) shows the comparison of the control effects of
the motor when the control amount is 0.4. Among them, the
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FIGURE 9. Comparison of control effect of different algorithms.

TABLE 2. Performance comparison of various optimization control methods.

PSO optimization control reached stability at 0.091s, with a
stable control value of 0.487; The WOA optimization control
reached stability at 0.031s, with a stable control value of
0.483; The MPSO optimization control reached stability at
0.018s, with a stable control value of 0.403. The absolute
error, relative error and system response time when the target
control quantity of the motor is 0.4 and 0.7 are counted,
as shown in Table 2.

From Table 2, it can be seen that the proposed method
not only has the best control effect, but also has the shortest
system response time, with an average time of 1.294 seconds.
Compared to PSO andWOAoptimization, it has decreased by
61.48% and 43.07%, respectively. The feasibility and advan-
tages of using MPSO to optimize neural network intelligent

control in this study have been verified. The error con-
trol curves for comparing different algorithms are shown in
Figure 10.

As shown in Figure 10, in the error curve of each algorithm
optimization NN-intelligence control system, the error of
MPSO optimization control is the smallest, and the time to
reach the minimum error is the shortest. The error of MPSO
is controlled within 0.01 within 0.02s. At this time, the error
of PSO optimization control is 0.072, and the error of BP
optimization control is 0.478. At 0.1s, all three models partic-
ipating in the comparison achieved stable control effects, with
a control error of 0.067 for MPSO-PIDNN; The control error
of WOA-PIDNN is 0.132; The control error of PSO-PIDNN
is 0.198.Compared with PSO andWOA optimization control,
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FIGURE 10. Comparison of error control curves of different algorithms.

the error of MPSO optimization control at 0.02s decreased
by 98.95% and 93.06%, respectively; At 0.04s, the errors
decreased by 72.23% and 98.38% respectively; The errors
decreased by 66.16% and 49.24% at 0.1s, respectively. The
experiment proved the PIDNNintelligence control system,
which is based on MPSO optimization, is accurate and effec-
tive, and it validated the usefulness of the improvement
approach suggested in this study. However, in this experi-
ment, the experimental parameters were set too ideal, the
common random disturbances were not analyzed exhaus-
tively, and the experimental sample was not large enough,
so there may still be large errors. If the applicability of this
study is improved, it will be the main research direction in the
future.

V. CONCLUSION
With the continuous innovation of science, technology and
means, the intelligence control system also urgently needs
to be optimized. In order to improve the response time and
control effectiveness of neural network control, this study
optimized neural network intelligent control based on the
PSO improvedMPSO algorithm. In the experimental results,
the iteration number of MPSO algorithm is 62 when it con-
verges on Rosenbrook function and 81 when it converges
on Griewank function, which is significantly lower than
other algorithms and has higher accuracy. When the control
amount is 0.7, the PSO optimization control reaches stability
at 0.091s, with a stable control value of 0.642; The WOA
optimization control reached stability at 0.043 seconds, with
a stable control value of 0.641; The MPSO optimized con-
trol reached stability at 0.027 seconds, with a stable control
value of 0.696; When the control amount is 0.4, the PSO
optimization control reaches stability at 0.091s, with a sta-
ble control value of 0.487; The WOA optimization control
reached stability at 0.031s, with a stable control value of
0.484. In addition, compared to PSO optimization and WOA

optimization, the error of the PIDNN controller optimized by
MPSO decreased by 98.95% and 93.06% at 0.02s, respec-
tively; The errors at 0.04s were reduced by 72.23% and
98.38%, respectively, and at 0.1s, the errors were reduced by
66.16% and 49.24%, respectively. The experimental results
show that the proposed method can effectively reduce control
errors and reduce the time consumption of intelligent control,
verifying the effectiveness of this method. However, in this
experiment, if the experimental parameters are set too ideal,
the common random interferences have not been thoroughly
analyzed, and the experimental samples are not large enough,
so there may still be significant errors. How to improve the
applicability of this study will become the main research
direction in the future.
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