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ABSTRACT This paper focuses on a multi-agent zeroth-order online optimization problem in a federated
learning setting for target tracking. The agents only sense their current distances to their targets and aim
to maintain a minimum safe distance from each other to prevent collisions. The coordination among the
agents and dissemination of collision-prevention information is managed by a central server using the
federated learning paradigm. The proposed formulation leads to an instance of distributed online nonconvex
optimization problem that is solved via a group of communication-constrained agents. To deal with the
communication limitations of the agents, an error feedback-based compression scheme is utilized for
agent-to-server communication. The proposed algorithm is analyzed theoretically for the general class of
distributed online nonconvex optimization problems. We provide non-asymptotic convergence rates that
show the dominant term is independent of the characteristics of the compression scheme. Our theoretical
results feature a new approach that employs significantly more relaxed assumptions in comparison to
standard literature. The performance of the proposed solution is further analyzed numerically in terms of
tracking errors and collisions between agents in two relevant applications.

INDEX TERMS Communication efficiency, compression schemes, federated learning, online optimization,
zeroth-order optimization.

I. INTRODUCTION
As datasets and machine learning (ML) models continue to
grow in size and complexity, training ML models increas-
ingly requires carrying out the optimization process across
multiple devices. This is often the result of parallel processing
needs or the collaboration of multiple participants in the
data acquisition and optimization processes. The federated
learning (FL) paradigm [1], [2] addresses this by focusing
on the latter scenario and training a global model through
the cooperation of multiple clients (or agents), managed by
a central server. However, FL is typically carried out by a
large number of communication-constrained agents, making
the transmission of model parameters to the central server a
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potential bottleneck that needs to be addressed for efficient
model training.

In online learning (OL), where decisions are made in
real-time with limited information/feedback provided to the
decision maker, limited communication resources become
even a more severe problem. To address this, first-order FL
algorithms like local stochastic gradient descent (SGD) use
compression techniques like quantization or sparsification
[3], [4], [5] to reduce the size of local gradients before trans-
mission, but this causes information loss which may impact
the learning performance adversely.

To counteract this loss in information, an error feed-
back (EF) mechanism can be added. The EF mechanism
works by incorporating the error made by compression in the
subsequent steps, so that effectively, each gradient is fully
utilized, even if at later stages. Moreover, the EF mechanism
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theoretically achieves the same rate of convergence as
the no-compression case, making compression come at no
cost. [6].

An additional consideration that we may need to have in
practical scenarios is the potentially limited nature of avail-
able information. The zeroth-order (ZO) optimization setting
presents an example for such limitations. In an optimization
problem arising from a real-life scenario, the information
to be used in the optimization process may be the sensed
values of physical quantities such as sound or light intensity,
or relative distance [7]. For instance, assuming that sensing
agents may only sense current distances to their targets and
other nearby agents, we can consider this to be a ZO setting
[8] as agents do not have access to higher-order information,
such as velocity or acceleration.

Fig. 1. Illustration of agent-server communication. The agents
communicate compressed information to the server, whereas the server
transmits back the full information.

As an example of a practical scenario combining all of
the aforementioned considerations, consider delivery robots
that are loaded from the same region and aim to find their
customers. This situation may be viewed as a source local-
ization problem with multiple mobile agents. We adopt the
terms agent and source from the literature on this subject
in the upcoming discussion. If the customers are also mov-
ing, this becomes a target-tracking problem [9], [10]. In a
multi-agent setting, collisions between these delivery robots
may occur, which can be solved by establishing communica-
tion between the agents using the FL framework, somehow
incorporating the information of where nearby agents are.
Supposing additionally that the robots are only capable of
sensing their current distances to their respective targets and
to other nearby robots moves our problem into the field of
ZO optimization. However, doing so would also result in an
online optimization scenario, seeing as the relative locations
of the robots with respect to one another would be continually
changing, producing a time-varying sequence of optimiza-
tion problems to solve. Finally, to overcome the inherent
communication bottleneck engendered by the online and FL
settings, compression schemes may be used along with the
EF mechanism. Our novel formulation of this target tracking
problem is illustrated and explained in detail in Section IV-A.

A. CONTRIBUTION
Motivated by the previous problem formulation, the purpose
of this work is to find an answer to the central question:

Is it possible to devise an algorithm for online, distributed
non-convex optimization problemswith compressed exchange
of zeroth-order information, and with provable convergence
guarantees for both single-agent and multi-agent settings?

To address this question, we focus on a general stochas-
tic nonconvex optimization problem, taking into account
the following factors: i) access to the stochastic cost func-
tion is limited to zeroth-order oracle, meaning only func-
tion values at current locations and times are available,
ii) due to communication constraints, only compressed or
quantized gradients are exchanged between the agents and
the server, iii) multiple agents use zeroth-order information
to track their targets, and iv) the objective functions are
time-varying in nature, resulting in an online optimization
problem.

We prove the existence of a first-order solution inRd that is
ξ -accurate with T = O

(
dσ 2ML(1+ω̄)

ξ2

)
in the dominant term,

where σ 2, L, M , 1, and ω̄ denote the variance of stochastic
gradients, smoothness constant in Assumption 3, bound con-
stant on the stochastic gradients’ second moment in Assump-
tion 2, the difference between averages of loss functions for
the first and last iterates, and the summation of drift bounds
from Assumption 4 respectively. Hence the dominant term in
the convergence error is not dependent on the compression
ratio. This is achieved while using an EF mechanism and a
ZO gradient estimator which uses two function evaluations.
In the derivation of this result, we also relax the assumption
of bounded second moment commonly found in related lit-
erature [6]. Instead of assuming that the second moment of
the stochastic gradients are upper-bounded by a constant term
greater than or equal to their variance, we adopt the relaxed
assumption that it is upper-bounded by the variance plus a
term that is proportional to the square of its expected value.
In other words, we relax the assumptions on the value of M
in Assumption 2, whereas it is commonly assumed in other
literature that M = 0, uniformly. That is, our upper bound
depends on the current sample rather than a uniform bound.
Whereas the previous work deals with a single-agent scenario
[11], we examine the effectiveness of the proposed approach
in a multi-agent target tracking scenario with limited commu-
nication where collision avoidance is of paramount impor-
tance. The problem of reducing collisions among agents is
addressed by incorporating the FL paradigm and a new reg-
ularization term. This task is formulated as an online, dis-
tributed nonconvex optimization problem that can be solved
by a multi-agent variation of the proposed scheme. Theoret-
ical analysis shows that a ξ -accurate first-order solution in

RNd with T = O
(

σ 2dMQ
(
12

+ ω̄2
)
+M

(
σ 2

+ Z4
)

ξ2

)
in

the dominant term can be found in a scenario with N agents,
where Z2 and Q are constants that arise from Assumption 6,
which effectively places a bound on the norm of the gradients
of each client in terms of the average of these gradients over
all of the clients [12]. The results of the study are further
supported by experimental results.
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Our preliminary work on single-agent convergence
analysis and experiments was accepted to and will be pre-
sented at 2023 IEEE International Conference on Acous-
tics, Speech, and Signal Processing [13]. The current work
presents a significantly more thorough analysis of the subject,
with an additional part detailing the multi-agent algorithm
and its analysis, presented in Theorem 2. The complete proofs
of the two theorems are also provided. The experimental
section is ameliorated with more descriptive results, and an
additional experiment involving an area coverage problem.

B. RELATED WORK
1) COMMUNICATION-EFFICIENT FL
FedAvg is the seminal FL paper in which the central server
takes the average of the local gradients transmitted by the
clients and distributes the updated parameters to correspond-
ing clients [1]. The crux of this work is the locality of data,
in that data is acquired and trained on locally by a multitude
of clients, without ever transporting it to a central server.
Several difficulties, including privacy concerns [14], hetero-
geneity of client data [15], and high communication costs in
agent-to-server links [16] arise in relation to this paradigm.
Variations of FedAvg have been developed to mitigate these
problems. For instance, to deal with high communication
costs, [17], [18] propose a sparsification algorithm in com-
munication for time-varying decentralized learning and opti-
mization. Reference [19] proposes utilizing adaptive learning
rate for aggregation, which is relevant to both the client data
heterogeneity and communication efficiency issues. Refer-
ence [20] suggests using a novel aggregation technique which
first quantizes gradients, and then skips communicating less
impactful quantized gradients in favor of reusing previous
ones. Reference [21] proposes using a momentum-based
global update at the server, which promotes communication
efficiency through variance reduction. Reference [22] pro-
poses a derivative-free federated ZO optimization (FedZO)
algorithm, and to improve its communication efficiency over
wireless networks, they propose an over-air computation
assisted variant. Reference [23] proposes a multiple local
update strategy and a decentralized ZO algorithm to improve
the communication efficiency and convergence rate in the
decentralized FL scenario, in which there is no access to
first-order derivatives. Reference [24] promotes the use of
multiple gossip steps for communication efficiency. Various
compression schemes such as Top-k [6], Rand-k [5], Biased
and Unbiased Dropout-p [4], Quantized SGD (QSGD) [3],
and their variants/generalizations are used to achieve the
communication efficiency of FL algorithms. Compression
schemes can be divided into contractive and non-contractive
methods. With contractive compression schemes, which are
our focus in this work, it is common to introduce an EF
mechanism to compensate for the error due to compression
by accumulating compression error in memory and adding it
back as feedback for subsequent rounds. In [6], it is shown
that such a method used in conjunction with SGD has a

comparable rate of convergence to non-compressed SGD.
In this study, we relax the assumption of having
stochastic-first order oracle with bounded noise required
in [6] by meticulously characterizing the impact of such
relaxation on convergence. Furthermore, instead of the
single-agent case as investigated in [6], we consider multiple
agents with the additional contingency of preventing their
collisions, which make the theoretical side more challenging.

2) MULTI-AGENT TARGET TRACKING
In our setting, agents are limited to ZO information, since
they are assumed to only be able to sense their distance
to their targets and other nearby agents. As a result of this
consideration, our method is applicable to different practical
scenarios such as [25] and [26]. In these kinds of scenarios,
gradients of the loss function can still be estimated by finite
differences [27] but doing so in a multi-agent setting under
communication constraints still remains an open challenge.
Reference [11] describes a setup comparable to online opti-
mization employing ZO oracles, applied to a target track-
ing problem. In that work, the authors focus on the case
where there is a single source pursued by a single agent,
which we generalize to the multi-agent setting as part of
our contribution. We further investigate an effective approach
via nonconvex regularization for collision avoidance. The λ
parameter we refer to as the regularization parameter is in
essence similar to the penalty and augmented Lagrangian
methods used in functional constrained optimization [28],
[29]. However, these methods aim to adaptively tune the λ
parameter on-the-go, which is out of the scope of our work.
It should be noted also that this line of research is very
relevant to the area of safe reinforcement learning, see e.g.
[30], [31], [32], and [33].

In [34], a cooperative, mobile multi-agent source local-
ization problem is tackled via using a distributed algorithm.
Compared to our setting, the agents sense first-order infor-
mation and their neighboring agents benefit from collabora-
tion between agents to avoid collision. Reference [35] deals
with a source localization problem in a single-agent and
single-source setting, where the source is stationary or near-
stationary. Reference [36] studies the problem of OL using
ZO information with convex cost functions. They extend the
problem out of the conventional Euclidean setting onto Rie-
mannian manifolds. In [7] a ZO source localization problem
is considered using distance information, where the agents are
essentially multiple sensors of known position. References
[37] and [38] deal with an online optimization problem using
a decentralized network of multiple agents which have access
to ZO information, and propose the usage of local information
and information from neighboring agents in the network.
In [37], an iterative algorithm with guarantees is proposed
for time-varying online loss functions. The theoretical result
there is established by assuming a certain bounded drift
in time assumption which is standard in the literature, see,
e.g., [11].
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3) ONLINE OPTIMIZATION AND ONLINE TARGET TRACKING
In the general online optimization setting, we focus on lit-
erature within or similar to the online convex optimization
framework, which we can consider as a sequential decision
making game in the presence of time-varying loss functions
[39]. In [40], a distributed online optimization problem with
multiple agents is considered, and the local loss function of
each agent is convex and time-varying. The authors propose
a randomized gradient-free distributed projected gradient
descent procedure, where agents estimate the gradient of their
local loss functions in a random direction using information
from a locally-built ZO oracle. In [41], a similar setting is
considered, and a multi-agent distributed optimization prob-
lem is studied in continuous-time, with time-varying convex
loss functions. Reference [11] deals with a setting where
zeroth-order oracles are used for optimization in the presence
of time-varying cost functions. Besides the general online
optimization setting, there is an abundance of literature focus-
ing on the online optimization aspect of the target tracking
problem. A large number of them also involve a swarm of
multiple agents working in coordination. Usually, literature
on this area tends to consider the problem in the context
of unmanned aerial vehicles (UAV), or unmanned surface
vehicles (USV). As pointed out in [42], the approaches to
the problem may be separated into three broad categories:
those using filtering based, control theory based and machine
learning based approaches. For instance, [42] examines the
problem within the domain of reinforcement learning by
formulating it as a constrainedMarkov decision process, with
application to autonomous target tracking using a swarm
of UAVs. The authors provide an algorithm with provable
guarantees. In [43], the authors again consider a multi-agent
multi-target pursuit evasion scenario, where they propose the
usage of a recurrent neural net work for target trajectory pre-
diction, in conjunction with a multi-agent deep deterministic
policy gradient formulation for decision making. Reference
[44] deals with a robust formulation of a similar scenario in
the domain of supervised learning, using a game theoretic
approach. Reference [45] deals with a multi-target following
scenario with consideration of external threats. The authors
treat the problem as an online path planning problem and
adopt a control-theoretic approach. In [46], an online adaptive
Kalman filter is ussed in a target tracking problem where the
sensor signals of the agents are assumed to have unknown
noise statistics, to formulate a solution that is robust to
noise. Lastly, [47] considers a decentralized control problem
involving multiple agents with multiple control objectives,
among which target tracking is one. The authors make use
of a scheme based on adaptive dynamic programming, and
feedback from a critic neural network which approximates
the control objectives in online fashion.

C. NOVELTY W.r.t. EXISTING WORKS
Our work is focused on a nonconvex online distributed opti-
mization problem with compressed exchange of zeroth-order

information, along with the error feedback mechanism.
Although these concepts were investigated individually in
prior works [6], [11], [22], [27], [34] to the best of our
knowledge, we are the first to combine them in a single frame-
work and propose an algorithm with its theoretical analysis
and convergence guarantee.

Furthermore, we may compare our theoretical results in
Section III with the result of the analysis in [48], which
derives an upper bound for the offline, first-order case with
contractive compressors and the error feedback mechanism
for the optimization of a smooth, nonconvex function in the
FL paradigm. Their result establishes, in this setting, an iter-
ation complexity of O(1/Nξ2) to produce a ξ−accurate
first-order solution. Our result agrees with this result on
the ξ−dependency. However, the analysis in this result is
obtained in an offline setting with access to the first-order
derivatives and is hence able to derive a convergence rate
that is inversely proportional to the number of agents N .
As opposed to that setting, we consider a more challeng-
ing online setting in which agents lack access to first-order
derivatives but have access to finite differences. Thus, the
convergence rate we establish is independent of N . More-
over, reference [48] assumes a uniform bound on the second
moment of the gradients. We adopt a more relaxed version
of this assumption, which does not assume a uniform bound
on the second moment (Assumption 2), and this makes our
analysis more involved. We make a similar relaxation of a
standard assumption used in distributed optimization [19],
[49], [50], [51], [52], [53], [54] in the same vein, by lifting
the assumption of a uniform bound (Assumption 6).

The rest of the paper is organized as follows: In Section II,
we present the related background on stochastic gradient
descent in zeroth-order oracle setting and necessary assump-
tions for our theoretical analysis. In Section III, we pro-
pose the EF-ZO-SGD and FED-EF-ZO-SGD algorithms
and present two theorems for their convergence along with
sketches of proofs. Experimental results for two different set-
tings are presented in Section IV followed by the conclusion
in Section V. The complete proofs of the theorems along
with the statements of relevant lemmas are presented in the
Appendix.

II. PRELIMINARIES AND BACKGROUND
We start by providing a description of the problem in the
single-agent setting. We deal with a sequence of time-varying
optimization problems: minx∈Rd ℓt (x), t ∈ Z+. Each ℓt :

Rd
→ R is a continuous loss function and ℓt (x) := Ez[ℓ̃t (x)].

We denote ℓ̃t (x) := ℓt (x, z) where z is a random variable rep-
resenting data points coming from the unknown distribution
Pz, so z ∼ Pz. In our application, the target tracking problem,
it is the position vector of targets. We aim to find a sequence
of solutions {xt }Tt=1 such that 1

T

∑T
t=1 ∥∇ℓt (xt )∥2 ≤ ξ for

some small ξ > 0. Suppose that, at time t , we have some-
how generated a (possibly non-optimal) solution xt to the
problem minx∈Rd ℓt (x). As we are motivated by online and
time-critical missions, we would like to generate a solu-
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tion xt+1 to the problem minx∈Rd ℓt+1(x) applying a simple
update rule which is similar to SGD to xt :

xt+1 = xt − ηt∇ℓ̃t (xt ), (1)

where ηt is the step size or learning rate adopted at time t .
As discussed in Section I, we cannot directly apply such
an update since we are in the ZO setting, that is, we only
have access to evaluation of ℓ̃t and not to its gradient or
stochastic gradient. To overcome this limitation, we resort to
a ZO estimator of the gradient:

g̃µ,t (xt ) :=
ℓ̃t (xt + µut ) − ℓ̃t (xt )

µ
ut , (2)

where µ ∈ R is the so-called smoothing parameter, and
each ut ∼ N (0, Id ). Note that g̃µ,t can be thought of as
an approximation to the stochastic gradient of a Gaussian
smoothing of ℓ̃t , i.e., ℓ̃µ,t (x) := Eu[ℓ̃t (x + µu)]. A final
modification to the update rule arises due to the aforemen-
tioned communication constraints. We apply compression
to the ZO estimator and use the resulting quantity in the
update rule. To mitigate the negative effect of compression
on the convergence of the method, we employ the error
feedback mechanism. Essentially, this serves in each time
step to partially recover information discarded in the previous
compression steps. The details of our approach may be seen
in EF-ZO-SGD.

In the multi-agent setting, we generalize the problem as
follows: There are now N sequences of continuous loss func-
tions where t ∈ Z+ and each ℓt : RNd

→ R, which we
denote ℓ1t , . . . , ℓ

N
t , belonging to agents 1 through N . Similar

to the previous part, ℓit (x) := Ez[ℓ̃it (x)], ℓ̃
i
t (x) := ℓit (x, z) and

z ∼ Pz.We name these the local loss functions, since they rep-
resent the loss of each specific agent. The objective is to find
a sequence of solutions {x1:Nt }

T
t=1 ⊂ RNd that minimizes the

global loss function ¯̃
ℓt =

1
N

∑N
i=1 ℓ̃it .Akin to the single-agent

setting, each agent computes a compressed version of the ZO
estimator, corrected to some extent by feedback of the error
generated due to compression in the previous steps. The result
of this computation is then transmitted to the central server,
where they are aggregated and used to update the locations of
each agent. The full algorithm entailed by this approach can
be seen in FED-EF-ZO-SGD.

Next, we state the assumptions adopted in the forthcoming
analyses of the single- and multi-agent settings.
Assumption 1 (Unbiased Stochastic Zeroth-Order Ora-

cle): For any t ∈ Z+, i ∈ {1, . . . ,N } and x ∈ Rd , we have

Ez

[
ℓ̃it (x)

]
= ℓit (x). (3)

Although we do not explicitly utilize the stochastic gra-
dient ∇ℓ̃t in the forthcoming algorithm, our analysis still
requires a certain regulatory assumption on it.
Assumption 2 (Bounded Stochastic Gradients): For any

t ∈ Z+, i ∈ {1, . . . ,N } and x ∈ Rd , there exist σ,M > 0
such that

Ez

[
∥∇ℓ̃it (x)∥

2
]

≤ σ 2
+M∥∇ℓit (x)∥

2. (4)

We note that this assumption is significantly more relaxed
compared to the assumption typically used in stochastic opti-
mization [55] and EF-based compression [6]. In particular,
[6] requires M = 0 which effectively imposes a uniform
bound on the gradient of ℓt . As part of our contribution,
we carry out the analysis under the relaxed assumption stated
above.
Assumption 3 (L-Smoothness): Each ℓ̃it (x) is continuously

differentiable and L-smooth over x onRd , that is, there exists
an L ≥ 0 such that for all x, y ∈ Rd , t ∈ Z+ and
i ∈ {1, . . . ,N }, we have

∥∇ℓ̃it (x) − ∇ℓ̃it (y)∥ ≤ L∥x−y∥. (5)

We denote this by ℓ̃it (x) ∈ C1,1
L (Rd ). Note that this assumption

implies ℓit (x) ∈ C1,1
L (Rd ).

Assumption 4 (Bounded Drift in Time): There exist N
bounded sequences {ω1

t }
T
t=1, . . . , {ω

N
t }

T
t=1 such that for all

t ∈ Z+ and i ∈ {1, . . . ,N }, |ℓit (x) − ℓit+1(x)| ≤ ωi
t for

any x ∈ Rd . Note that in the case where ℓit+1 = ℓit , this
assumption holds with ωi

t = 0.
Assumption 4 is standard in the literature on time-varying

optimization [11], [56]. Since we work in the online opti-
mization setting where our loss function is time-varying, this
assumption upper-bounds the change in the loss function
uniformly with a different constant value at each time step.

The next assumption has to do with the aforementioned
compression of the gradient estimator gµ,t . We assume that
the schemes used for the compression satisfy the following
assumption.
Assumption 5 (Contractive Compression [6]): The com-

pression function C is a contraction mapping, that is,

EC
[
∥C(x) − x∥2 | x

]
≤ (1 − δ) ∥x∥2 (6)

for all x ∈ Rd where 0 < δ ≤ 1, and the expectation is over
the randomness generated by compression C.

One can see that δ effectively controls the scale of the com-
pression. δ = 1 corresponds to the case of no compression
and the amount of compression increases as δ → 0.

The compression operators we use in the numerical exper-
iments are as follows:

• topk : We fix a parameter k ∈ {0, . . . , d}. topk : Rd
→

Rd is defined as:

(topk (x))i :=

{
(x)π (i) i ≤ k,
0 otherwise.

(7)

where π (i) is a permutation of {1, . . . , d} such that
(|x|)π (i) ≥ (|x|)π (i+1) for every i ∈ {1, . . . , d − 1} [5].
In other words, topk preserves the k elements of x that
are largest in magnitude, and assigns 0 to the rest.

• randk : We fix a parameter k ∈ {0, . . . , d}. randk : Rd
×

�k → Rd is defined as:

(randk (x, ω0))i :=

{
xi i ∈ ω0,

0 otherwise.
(8)
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where �k = {ω : ω ⊆ {1, . . . , d}, |ω| = k} and ω0 is
chosen uniformly at random from�k [5]. In other words,
randk preserves k random elements of x, and assigns 0
to the rest.

• dropout-bp: We fix a parameter p ∈ [0, 1]. dropout-bp :

Rd
→ Rd is defined as:

(dropout-bp(x))i :=

{
(x)i ui ≤ p,
0 otherwise.

(9)

where each ui ∼ U [0, 1]. Note that dropout-bp(x) is a
biased estimator of x.

• dropout-up: We fix a parameter p ∈ [0, 1]. dropout-up :

Rd
→ Rd is defined as:

(dropout-up(x))i :=


1
p
(x)i ui ≤ p,

0 otherwise.
(10)

where each ui ∼ U [0, 1]. Note that dropout-up(x) is an
unbiased estimator of x.

• qsgdb: We fix a parameter b ∈ N and perform b-bit
randomquantization (where 2b is the quantization level):

qsgdb(x) =
sign(x)∥x∥2

2bw

[
2b

|x|
∥x∥2

+ u
]

(11)

where w = 1 + min(
√
d/2b, d/22b), u ∼ (U [0, 1])d ,

and qsgdb(0) = 0 [3].
It is worth noting that all of these compression schemes

respect Assumption 5, with the sole exception of dropout-up.
Our final assumption concerns only the analysis of the

multi-agent case:
Assumption 6 (Bounded Gradients): For any x1:Nt ∈ RNd ,

there exist Z ,Q > 0 such that

Ez

[
∥∇ℓit (x

1:N
t )∥2

]
≤ Z2

+ Q∥∇ℓ̄t (x1:Nt )∥2 (12)

for all i ∈ {1, . . . ,N },where∇ℓ̄t (x1:Nt ) =
1
N

∑N
i=1 ∇ℓit (x

1:N
t ).

We note that this is a relaxation of the standard assump-
tion capturing the effect of data heterogeneity, commonly
employed in the analyses of decentralized optimization algo-
rithms [12], [57], [58] and in the analysis of FedAvg-like
methods in particular [19], [49], [50], [51], [52], [53],
[54]. The standard assumption poses a uniform bound:
Ez1:T

[
∥∇ℓit (x

1:N
t ) − ∇ℓ̄t (x1:Nt )∥2

]
≤ Z2. In [59], it is argued

that this form usually holds in practice, and may even be
considered too pessimistic. However, one can easily come
up with a counterexample where it does not, e.g., with
ℓit (x) = (ix)2 for all t ∈ Z+. We note that this relaxation of
the assumption is akin to the one adopted with Assumption 2.

III. PROPOSED METHOD
In this section, we present our EF-ZO-SGD and FED-EF-
ZO-SGD algorithms along with their convergence results and
provide sketches of the proofs for these results. The complete
proofs may be found in Appendix.

A. EF-ZO-SGD
We now present EF-ZO-SGD, an algorithm which uses com-
pression along with the EF mechanism in addition to the
ZO estimator in (2) to achieve a communication-efficient
method of approaching the presented problem in the
single-agent scenario. The complete algorithm is demon-
strated in EF-ZO-SGD. Given an initial solution x0 ∈ Rd ,
which for our problem represents the initial position of the
agent, the algorithmworks iteratively to construct subsequent
solutions to the sequence of optimization problems. It first
samples a random vector in Rd from the standard Gaussian
distribution and uses this to construct a ZO estimator to the
gradient (steps 3 and 4). Then, the error feedback vector,
which keeps track of information discarded during compres-
sion in previous communication rounds (step 7) is added
to this ZO estimator to produce the augmented estimator
(step 5). In this manner, information previously lost to com-
pression is re-utilized. The augmented estimator is the quan-
tity used in the update rule to produce the subsequent solution
(step 6), and it is further used to update the error feedback
vector (step 7). This process is repeated for t = 1, . . . ,T to
produce solutions to all terms of the sequence of optimization
problems.

The convergence properties of EF-ZO-SGD are analyzed
next. For the convergence of EF-ZO-SGD in a single-agent
setting, we establish Theorem 1.
Theorem 1: Suppose Assumptions 1–2 hold. Consider

EF-ZO-SGD algorithm. Then, if η =
1

σ
√
(d + 4)MTL

and

µ =
1

(d + 4)
√
T
, it holds that

1
T

T∑
t=1

E
[
∥∇ℓt (xt )∥2

]
≤

81σ (d + 4)
1
2M

1
2 L

1
2

T
1
2

+
8σdL

3
2M

1
2

T
3
2 (d + 3)

3
2

+
2(d + 6)

3
2 L

5
2

σ (d + 4)
5
2 T

3
2M

1
2

+
8σ (d + 4)

1
2 L

1
2

M
1
2 T

1
2

+
(d + 3)3L2

(d + 2)2T
+

32L
δ2σ 2MT

+
8(d + 6)3L3

δ2σ 2(d + 4)3MT 2

+
8ω̄σ (d + 4)

1
2M

1
2 L

1
2

T
1
2

, (13)

where x∗

T+1 ∈ argminx∈Rd ℓT+1(x), 1 = ℓ1(x1) −

ℓT+1(x∗

T+1), ω̄ =
∑T

t=1 ωt , and E[·] denotes Ez1:T [·]. Fur-
thermore, the number of time steps T to obtain a ξ -accurate
first order solution is

T = O
(
dσ 2L1M

ξ2
+
dL1

δ2ξ
+

ω̄σ 2dML
ξ2

)
. (14)

Note that although the EF-ZO-SGD algorithm can be
thought of as a SGD-type scheme, the analysis – due the
interaction of EF and ZO estimation – is involved. In the
proof, we leverage a new intertwined perturbation analysis,
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Algorithm 1 EF-ZO-SGD
Input: Number of time steps T ∈ Z+, smoothing parame-

terµ ∈ R, initial agent position x0 ∈ Rd , learning rate η ∈ R,
sequence of target positions {zt }Tt=1 ⊂ Rd .

Output: Sequence of optimal agent positions {xt }Tt=1 ⊂

Rd .

1: e0 = 0
2: for t = 1, . . . ,T do
3: ut ∼ N (0, Id )

4: g̃µ,t (xt ) =
ℓ̃t (xt + µut ) − ℓ̃t (xt )

µ
ut

5: pt = g̃µ,t (xt ) + et
6: xt+1 = xt − ηC(pt )
7: et+1 = pt − C(pt )
8: end for

wherein we analyze the convergence of a virtual solution
sequence to the smoothed functions ℓµ,t and tie that to the
performance of the real iterates xt to ℓt , while utilizing the
relaxed bounded stochastic gradient assumption.
Sketch of Proof:We begin by defining the perturbed quan-

tity x̃t := xt−ηet .Then, using assumptions 3 and 4, we obtain
the inequality

ℓµ,t+1(x̃t+1) ≤ ℓµ,t (x̃t ) − η⟨g̃µ,t (xt ), ∇ℓµ,t (x̃t )⟩

+
Lη2

2
∥g̃µ,t (xt )∥2 + ωt . (15)

Taking expectations and performing algebraic manipulations
produce the main inequality with the four terms:

η

2
∥∇ℓµ,t (xt )∥2︸ ︷︷ ︸

Term I

≤
[
ℓµ,t (x̃t ) − ℓµ,t+1(x̃t+1)

]︸ ︷︷ ︸
Term II

+
Lη2

2
Eut ,zt

[
∥g̃µ,t (xt )∥2

]
︸ ︷︷ ︸

Term III

+
L2η3

2
∥et∥2︸ ︷︷ ︸

Term IV

+ωt . (16)

We can upper-bound Term II by means of a telescoping
sum. Then, using assumptions 5 and 2, Term I can be
lower-bounded and Terms III and IV can be upper-bounded
by quantities involving Ez1:T [∥∇ℓt (xt )∥2]. Rearranging this,
inserting the values for η andµ and introducing ξ to obtain an
expression for the time complexity lead directly to the result.
The complete proof may be found in the Appendix. ■
We further note that (14) demonstrates that the dominant

term in the complexity is independent of the compression
parameter δ. Therefore, for long sequences of time-varying
optimization problems where T is very large, the contri-
bution of compression to the convergence error is negligi-
ble. Also notable is the fact that the complexity scales with
dimension d . While this dependence is undesirable, in the

Algorithm 2 FED-EF-ZO-SGD
Input: Number of time steps T ∈ Z+, number of agents

N ∈ Z+, smoothing parameter µ ∈ R, initial agent positions
x1:N0 ∈ RNd , learning rate η ∈ R, sequence of target positions{
z1:Nt

}T
t=1 ⊂ RNd .

Output: Sequence of optimal target positions
{
x1:Nt

}T
t=1 ⊂

RNd .

1: for i = 1, . . . ,N do
2: ei0 = 0
3: end for
4: for t = 1, . . . ,T do
Runs on each agent:

5: for i = 1, . . . ,N do
6: uit ∼ N (0, INd )

7: g̃iµ,t (x
1:N
t ) =

ℓ̃it (x
1:N
t + µuit ) − ℓ̃it (x

1:N
t )

µ
uit

8: pit = g̃iµ,t (x
1:N
t ) + eit

9: eit+1 = pit − C(pit )
10: transmit_to_server

(
C(pit )

)
11: end for

Runs on the server:
12: Gt =

1
N

∑N
i=1 C(pit )

13: x1:Nt+1 = x1:Nt − ηGt
14: transmit_to_clients

(
x1:Nt+1

)
15: end for

worst case, it is unavoidable even without compression as
shown in [60].

We may discuss the implication of our results to the setting
of learning parameters of an overparameterized model, e.g.,
a deep learning predictor. It has been argued, see, e.g. [61]
and [62], such models typically satisfy a so-called strong
growth conditionwhich implies σ = 0 in Assumption 2. That
is, as the EF-ZO-SGD algorithm converges to a stationary
solution, it enters into a virtuous cycle wherein the noise in
the stochastic gradient reduces. As our analysis demonstrates,
in such settings we can modify η and µ accordingly (in
particular set η independent of T) to improve the complexity
of the proposed algorithm to T = O( 1

ξ
).

B. FED-EF-ZO-SGD
FED-EF-ZO-SGD algorithm is a generalization of EF-ZO-
SGD to multi-agent and multi-target setting. In addition to
the compression, EF mechanism, and ZO estimator, agents
are coordinated with the central server and their compressed
gradients are averaged in the server as in [1]. The complete
algorithm is shown in FED-EF-ZO-SGD. Given an initial
solution x1:N0 ∈ RNd , which in our problem represents
the concatenation of the initial position of the agents, the
FED-EF-ZO-SGD algorithm works iteratively on both the
agent side and the server side to generate the consecutive
solutions to the sequence of optimization problems. The agent
side is similar to EF-ZO-SGD except for the content of the
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solution vectors. In our setting, without loss of generality,
we consider agents which can sense the position of nearby
agents called ‘‘neighbors’’ and merge the position vectors
with their current position to obtain x1:Nt . Entries that cor-
respond to the other agents which are not neighbors are set
to 0. The same algorithm can be implemented for the agents
having no knowledge of the nearby agents’ positions. For
every agent, the algorithm first samples a random vector in
RNd from the standard Gaussian distribution and the entries
that do not correspond to ith agent’s position are set to 0
(step 6). Thus, only ith agents position vector is perturbed
to approximate the noisy gradient with finite differences
(step 7). Steps 8 and 9 are the same as EF-ZO-SGD. Lastly,
each agent sends its compressed augmented estimator to the
central server. After the server collects all the estimators
from every agent, it takes their average (step 12). Then, this
average is used in the update (step 13) and the new positions
are transmitted to the agents. This procedure is followed for
t = 1, . . . ,T to produce solutions to all terms of the sequence
of optimization problems.

Now, we proceed with the analysis extended to the
multi-agent case, which involves FED-EF-ZO-SGD.We state
the following theorem:

Theorem 2: Suppose Assumptions 1–6 hold. Consider

FED-EF-ZO-SGDalgorithm. Then, if η =
1

σ
√
(d + 4)MQTL

and µ =
1

(d + 4)
√
T

, it holds that

1
T

T∑
t=1

E
[
∥∇ℓ̄t (x1:Nt )∥2

]
≤

81σ (d + 4)
1
2 M

1
2Q

1
2 L

1
2

T
1
2

+
8L

3
2 dσM

1
2Q

1
2

(d + 4)
3
2 T

3
2

+
8L

1
2 (d + 4)

1
2 M

1
2 Z2

σQ
1
2 T

1
2

+
8L

1
2 (d + 4)

1
2 σ

M
1
2Q

1
2 T

1
2

+
2L

5
2 (d + 6)3

(d + 4)
3
2 T

3
2 σM

1
2Q

1
2

+
32LZ2

σ 2QT δ2
+

32L
MQT δ2

+
8L3 (d + 6)3

(d + 4)3 T 2σ 2MQ

+
8ω̄σ (d + 4)

1
2 M

1
2Q

1
2 L

1
2

T
1
2

, (17)

where ℓ̄t (x) =
1
N

∑N
i=1 ℓit (x), ω̄ :=

∑T
t=1 ωt , x∗

T+1 =

mini∈{1,...,N } argminx ℓiT+1(x), 1 = ℓ̄1(x1:N1 ) − ℓ̄T+1(x∗

T+1),
andE[ · ] denotesEz1:N1:T

[ · ]. Furthermore, the number of time
steps T to obtain a ξ -accurate first order solution is

T = O
(

σ 2dMQ
(
12

+ω̄2
)
+M

(
σ 2

+ Z4
)

ξ2
+
L

5
3

ξ
2
3

+
1

δ2ξ

)
.

(18)
Sketch of Proof: The general outline of the proof is very

similar to that of the single-agent case. We define and work
with the perturbed quantity x̃1:Nt := x1:Nt − ηēt , where

ēt :=
1
N

∑N
i=1 e

i
t . Additionally, our global loss function

in this scenario is ¯̃
ℓt
(
x1:Nt

)
=

1
N

∑N
i=1 ℓ̃it

(
x1:Nt

)
. Using

Assumptions 3 and 4, we obtain

ℓ̄µ,t+1

(
x̃1:Nt+1

)
≤ ℓ̄µ,t

(
x̃1:Nt

)
− η

〈
¯̃gµ,t

(
x1:Nt

)
, ∇ℓ̄µ,t

(
x̃1:Nt

)〉
+
Lη2

2

∥∥∥ ¯̃gµ,t

(
x1:Nt

)∥∥∥2 + ωt , (19)

where ωt = max{w1
t , . . . ,w

N
t }. Taking expectations and

algebraic manipulations lead to the main inequality with four
terms:

η

2

∥∥∥∇ℓ̄µ,t

(
x1:Nt

)∥∥∥2︸ ︷︷ ︸
Term I

≤

[
ℓ̄µ,t

(
x̃1:Nt

)
− ℓ̄µ,t+1

(
x̃1:Nt+1

)]
︸ ︷︷ ︸

Term II

+
Lη2

2
Eu1:Nt ,z1:Nt

[∥∥∥ ¯̃gµ,t

(
x1:Nt

)∥∥∥2]︸ ︷︷ ︸
Term III

+
L2η3

2
∥ēt∥2︸ ︷︷ ︸

Term IV

+ωt .

(20)

Term II may be upper-bounded by means of a telescoping
sum. Term I may be lower-bounded and Terms III and IV
upper-bounded by quantities involving Ez1:N1:T

[∥∇ℓ̄t (x1:Nt )∥2],
using assumptions 5, 2 and 6. Rearranging this, inserting the
values for η and µ and introducing ξ to obtain an expres-
sion for the time complexity lead directly to the result. The
complete proof may be found in the Appendix. ■

Much like in the single-agent analysis, we note that the
dominant term in the complexity is independent of the com-
pression ratio δ.

IV. EXPERIMENTAL RESULTS
In this section, we explore two applications of the proposed
method to multi-agent target tracking under communication
constraints. The first application deals with the main focus of
the work, i.e., multi-agent target tracking. The second is an
alternative view of the problem involving an area-coverage
problem. Our code used for the experiments is available
online with the simulation video [63].

A. TARGET TRACKING
We begin with the application of our proposed FED-EF-
ZO-SGD multi-agent target tracking scenario detailed in the
previous sections. In all experiments, we instantiate a cen-
tral server, N agents {Ai}

N
i=1 and N sources {Si}Ni=1. The

initial location of each agent is chosen uniformly at random
from [−100, 100]2 and each source from [200, 400]2. Hence,
d = 2, i.e., we consider the target tracking problem on a
2−dimensional plane, which is reasonable for the motivating
example of delivery robots. Also, we instantiate the agents
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and sources in two separate clusters, with some initial dis-
tance between them. Each agent Ai aims to track source
Si and each Si actively evades its tracker with maximum
speed. This setting generalizes that of [11] to a scenario
with multiple agents and sources. We use x it , z

i
t to denote

the positions of Ai and Si at time step t . Each Si aims to
maximize its distance toAi, by setting its velocity at each step
to ζ it = β(zit − x it )/∥z

i
t − x it∥, i.e., moving directly away from

Ai with speed β = 0.1. An illustration of the movements of
agents and sources is given in Fig. 2.

Fig. 2. Illustration of 5 agents tracking 5 sources. Sources evade the
agents by moving directly away from them.

As explained in the previous sections, an additional contin-
gencywe introduce to the above setting is the requirement of a
collision avoidance mechanism to prevent agents from unsafe
maneuvers. To this end, we propose a two-level approach:
i) on the local level within each agent, by means of local
neighbor detection leveraging a judicious regularization term,
and ii) coordination via the FL paradigm. With regard to
i), at every step of the simulation, we calculate the set of
neighbors of eachAi as Dit := {j ̸= i : ∥x it − x jt∥ ≤ r}, where
we set r = 10. These neighbor sets determine the local loss
function ℓit of Ai at time step t , which we define as:

ℓit (x
1:N
t , zit ) =

1
2
∥x it − zit∥

2
− λ

∑
j∈Dit

(
∥x it − x jt∥

2
− r2

)
,

(21)

where x1:Nt = [(x1t )
T

· · · (xNt )
T ]T ∈ R(Nd) and λ is

the predetermined regularization parameter. We note that
the time-varying nature of these neighbor sets introduce
time-variance to the loss functions, which is exactly the
setting we examine in the theoretical analysis. We divide
the local loss function into two terms in order to simplify
the notation in the subsequent calculation of the local ZO
gradient estimator giµ,t :

ℓit (x
1:N
t , zit ) = sit (x

i
t , z

i
t ) −

∑
j∈Dit

r i,jt (x it , x
j
t ), (22)

where the loss due to source sit is given by s
i
t (x

i
t , z

i
t ) =

1
2∥x

i
t −

zit∥
2 and the loss due to regularization between agents Ai

and Aj, r
i,j
t , by r i,jt (x it , x

j
t ) = λ(∥x it − x jt∥

2
− r2). In terms

of the scenario, one could see the regularization term as
agents being able to sense other agents within a radius r
around its position. With regard to ii), collision avoidance
is ensured by means of federated aggregation of the local
gradient estimators. The global loss function at t is defined

as ℓ̄t (x1:Nt , z1:Nt ) =
1
N

∑N
i=1 ℓit (x

1:N
t , zit ), where z

1:N
t is defined

similarly to x1:Nt .
Defining the neighborhood of two agents Ai and Aj in

the above manner results in a symmetric relation. To make
the setting more interesting, we also introduce the concept
of neighbor dropout which aims to capture practical consid-
erations such as imperfection in communication links and
sensing capabilities. At each t , if Ai is to be added to Dj

t ,
a random number X is sampled from U [0, 1]. If X > p, i is
added toDj

t , otherwise, it is dropped out. This leads to a more
realistic scenario and opens up room for more meaningful
collaboration between agents by breaking the symmetricity
of the relation. If, for example, Ai is a neighbor of Aj but
fails to detect it, we would expect Aj to compensate for
this. Or worse, if both Ai and Aj fail to detect each other,
we would expectAk such that k ∈ Di

t ∩D
j
t to compensate for

these detection failures. With the local loss function defined
in (21), every agent Ai calculates a ZO gradient estimator
giµ,t . Following the setup in [11], we slightly modify the
computation of the ZO estimator, by introducing a small
change in the argument of the first function evaluation. Let

ℓit+(x
1:N
t , zit ) :=

1
2
∥x it + µui,it − (zit + 0.5ζ it )∥

2

− λ
∑
j∈Di

t

(
∥x it+µui,jt − (x jt+0.5ξ jt )∥

2
− r2

)
,

(23)

where ui,jt for all j ∈ Di
t are drawn from N (0, Id ) at time t

and ζ it , ξ
i
t denote the velocities of agent Ai and source Si at

time t , respectively. Similar to ℓit and (22), we divide ℓit+ into
two terms:

ℓit+ (x
1:N
t , zit ) = sit+ (x

i
t , z

i
t ) −

∑
j∈Di

t

r i,jt+ (x
i
t , x

j
t ) (24)

where r i,jt+ (x
i
t , x

j
t ) = λ(∥x it + µui,jt − (x jt + 0.5ξ jt )∥

2
− r2) and

sit+ (x
i
t , z

i
t ) =

1
2∥x

i
t + µui,it − (zit + 0.5ζ it )∥

2.
Now, we define giµ,t = [(gi,1µ,t )

T
· · · (gi,Nµ,t )

T ]T ∈ R(Nd)

where

gi,jµ,t =



sit+(x
i
t , z

i
t ) − sit (x

i
t , z

i
t )

µ
ui,it j = i,

−
r i,jt+ (x

i
t , x

j
t , ξ

j
t ) − r i,jt (x it , x

j
t )

µ
ui,jt j ∈ Di

t ,

0 ∈ Rd otherwise.
(25)

In practice, it usually holds that for any i ∈ {1, . . . ,N },
|Di

t | ≪ N , which results in a sparse giµ,t . Each agent
then transmits its local ZO gradient estimator giµ,t to the
server. In scenarios with compression, each agent applies
compression before transmission and transmits C(giµ,t + eit )
(see step 10 in FED-EF-ZO-SGD). The possible compression
schemes that are used in the experiments are the ones that
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Fig. 3. Results of FED-EF-ZO-SGD via the proposed scheme: (a) shows the average tracking error over 100 runs of the simulation with
different compression schemes and EF combinations in the FL paradigm, with SGDm being the non-FL benchmark algorithm, in which
SGD with momentum is run locally on each agent with no communication, and FedAvg with 1−bit QSGD compression and error
feedback term being the FL benchmark algorithm. The difference of this benchmark algorithm with FED-EF-ZO-SGD is the fact that
FedAvg uses first-order information. (b) shows collision numbers for the same experiment. (c) shows the average tracking errors over
100 runs of the simulation with varying number of agents N , using the best-performing model of QSGD1b-EF (1-bit QSGD with error
feedback term). The learning rate η is set proportionally to

√
N . (d) shows the average numbers of collisions over 100 runs of the

simulation for varying values of the regularization parameter λ, using the best-performing model of QSGD1b-EF.

are detailed in Section II. The server collects all of the trans-
mitted (and possibly compressed) local gradient estimators
and averages them, producing the aggregated global gradi-

ent estimator Gt of ℓ̄t : Gt =
1
N

∑N
i=1 C(giµ,t + eit ). Then,

to keep the speed of the agents bounded in order to maintain
a practically plausible simulation, the server normalizes Gt
and then computes its estimation to the optimal position of
every agent by x1:Nt+1 = x1:Nt − ηGt where η is the learning
rate. With this formulation, η determines the speed of the
agents in the practical sense, since ∥Gt∥ = 1, therefore it only
plays a role in determining the directions of the agents. The
subsequent positions of agents are transmitted to the agents,
without compression, and agents move to these positions.
This process is illustrated on Fig. 1. To gauge the performance
of the model with respect to the number of collisions, we keep
track of the number of collisions between agents by checking
whether the position of any two agents Ai and Aj are close

in Euclidean norm, the measure of closeness depends on the
radii of the agents in the simulation. In all experiments, we set
the collision radius R = 3, i.e., we increment the collision
counter whenever ∥x it − x jt∥ ≤ 3 for any two agents Ai and
Aj such that i ̸= j.
We conduct 3 types of experiments and depict the results

on the 4 plots of Fig. 3: In Fig. 3 (a) and Fig. 3 (b) we test the
FED-EF-ZO-SGD algorithms’ performance in terms of loss
and number of collisions with various compression schemes.
Fig. 3 (c) compares the convergence of FED-EF-ZO-SGD for
different numbers of agents N while scaling the learning rate
in proportion with

√
N , since the application bears theoretical

resemblance to mini-batch SGD. Fig. 3 (d) demonstrates the
effect of varying the regularization parameter λ on the num-
ber of collisions. Unless otherwise stated, the parameters used
in the experiments areK = 0.5 for TopK and RandK, p = 0.5
for Dropout, η = 1, β = 0.1, pN = 0.5, d = 2, N = 20,
r = 10 and steps = 1000. 100 instances of the simulation are
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run for each experiment, with the same fixed random seeds
across different methods. In the first experiment, we also
run SGD with momentum (SGDm) locally on each agent
with no communication, i.e., without the FL paradigm as a
benchmark algorithm. Additionally, a benchmark algorithm
within the FL paradigm, we also look at the performance
of FedAvg with 1-bit QSGD and error feedback mechanism,
its key difference from FED-EF-ZO-SGD being that it uses
first-order information.

As Fig. 3 (a) demonstrates, the variant that leverages
EF along with the QSGD compression scheme with 1−bit
quantization (QSGD1b-EF) enjoys the fastest convergence
and even outperforms the setting with no compression
(No-Comp). This might be explained by the inherent noise
introduced by quantization helping convergence. TopK with
error feedback (TopK-EF), 1−bit QSGD without error feed-
back (QSGD1b) and TopK without error feedback (TopK)
perform virtually on par with the no compression setting.
It is interesting to note that TopK seems to slightly outper-
form TopK-EF. These are followed in performance by RandK
with error feedback (RandK-EF), and then RandK without
error feedback (RandK). These are finally followed by Unbi-
ased Dropout (Dropout-U) and Biased Dropout (Dropout-B),
which perform equally well, but with a large gap to the best
performers. It is expected for RandK-EF, RandK, Dropout-U
and Dropout-B to take longer to converge, due to the high
compression error that they inject in the communicated gra-
dient estimators. Although, it appears that the error feedback
helps the convergence of RandK significantly. We note that
all of QSGD1b-EF, No-Comp, QSGD1b, TopK and TopK-EF
converge within 1000 iterations, with RandK-EF also coming
very close. The non-FL benchmark algorithm SGDm out-
performs all FL-based methods in terms of iterations needed
for convergence, however the rate of convergence appears to
be of the same order, and the results are comparable. The
first-order FL benchmark algorithm FO-QSGD1b-EF enjoys
slightly faster convergence than FED-EF-ZO-SGD, but the
performance difference is marginal.

To evaluate the effectiveness of collaboration, we compare
the number of collisions vs iterations for the same experiment
in Fig. 3 (b). The results show that all of our FL-based
methods far outperform the non-FL benchmark method of
SGDm in terms of number of collisions. SGDm, which has
no regard for collision prevention causes on average about
70 collisions whereas all of our schemes, even the ones that
do not achieve good convergence results such as RandK
and Dropout-B cause at most about 10 collisions on the
average. This demonstrates the efficiency of the proposed
regularization term. In Fig. 3 (c), we show the results of
the second experiment, where we use the best-performing
scheme in the first experiment, (QSDGD1b-EF) and test
the convergence results with varying numbers of agents N .
Wemake the observation that increasing the number of agents
in the described multi-agent scenario is akin to increasing the
batch size inmini-batch SGD, as by aggregating themessages
received from agents, the server performs an update on the

global objective. Thus, motivated by the theoretical studies of
mini-batch SGD (see, e.g., [64]), to see the effect of varying
the number of agents, we set the η parameter proportional to
√
N . The values we use for N are 5, 10, 15, 20, and 25, with

the respective η values being 0.5, 0.71, 0.87, 1, and 1.12.
The main lines in the plot show the average tracking errors
averaged over 100 runs of the simulation. It can be seen that
the comparison to mini-batch SGD may be justified, as the
model converges roughly around the same iteration for all N
values except for 5, when η values are set proportionally.

In Fig. 4, we demonstrate the effect of the compres-
sion parameter δ on the convergence of the tracking error.
Although the theoretical analysis shows that the dominant
term in the convergence bound is independent from the com-
pression parameter δ, the transient behavior of the conver-
gence still depends on δ. This is reflected in the experimental
results. In Fig. 4 (a), we consider the effect of varying δ in the
Dropout-B compression scheme. Here, δ corresponds to the
probability that a gradient component will be dropped. The
case of δ = 0 corresponds to when there is no compression.
In these experiments, we set the step size η = 3, to facilitate
convergence in the highly compressed regime when δ = 0.9.
It can be seen that even in the presence of extreme compres-
sion, convergence can be achieved by increasing the step size.
Similarly, in In Fig. 4 (b), we consider the effect of varying
the number of bits used in QSGD on the convergence of the
tracking error. We simulate the experiment with number of
bits 1, 2, 4, and 8 and plot the results.
Finally, in Fig. 3 (d), we compare the effect of the regular-

ization parameter λ on the number of collisions. Similar to the
second experiment, we use the best-performing scheme in the
first experiment, QSDGD1b-EF. The values tested for λ are
0, 1, 2, 5, 7, and 10. We observe that, as expected, increasing
the λ parameter has a significant effect on decreasing the
number of collisions. In the λ = 0 scenario, which practically
corresponds to no communication with regards to collision
prevention among the agents, we observe on the average up
to more than 50 collisions, similar to the numbers observed
in the first experiment with the benchmark SGDm method.
Even the small value of λ = 1 drops the number of collisions
on average by almost half. We observe a drop in the number
of collisions with each increment in λ, with λ = 10 achieving
less than 5 collisions on average. This is naturally expected,
since as we increase λ, the agents are more severely penalized
when they get close to each other; hence, they maintain a safe
distance to ensure a lower collision likelihood. It is intuitively
clear that this effect demonstrates a diminishing marginal
gain effect, in that the decrease in the number of collisions
beyond the value of λ = 5 seems to slow down.

B. AREA COVERAGE
For the second application, we consider a scenario where
multiple agents patrol a designated area by following a fixed
trajectory, illustrated in Fig. 5. The goal of each agent is to
maintain maximum total area coverage by avoiding crossing
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Fig. 4. Convergence results of FED-EF-ZO-SGD under different compression rates: (a) shows the tracking error over 100 runs of the
simulation with different values for δ under the Dropout-B compression scheme with error feedback term. (b) shows the tracking error
over 100 runs of the simulation with different numbers of bits used for the QSGD compression scheme with error feedback term.

Fig. 5. Illustration of the agents in the area coverage experiment. Each
agent has the main objective of patrolling its designated area, following a
circular route (indicated with the dashed curves). However, there is
overlap between the areas, and the secondary objective is to discourage
the agents from moving towards area that is already covered by another
agent.

into areas already covered by other agents, while generally
maintaining its fixed trajectory. A motivating example might
be one where the agents are UAVs carrying out a ground
coverage task of their designated areas, where the areas over-
lap in certain regions. Ideally, to have the maximum amount
of ground coverage at any given time, we would want to
discourage a UAV from approaching an overlapping region
of its designated coverage area if it is already being covered
by another UAV, since employingmultiple UAVs for covering
the same area would reduce the total amount of area covered.
We claim that this can be seen akin to the first experiment in
the following manner: If we increase the r parameter of the
agents to a suitable value, the collision preventionmechanism
works in the way that the agents try not to cross into territories
that are already covered by other agents. Also, the trajecto-
ries of the agents in their patrolling area can be modelled
as perpetually tracking a target that follows said trajectory.
In the experiments, we investigate 3 scenarios: the central
server assigns agents new locations under compressed gra-
dients with error feedback and nonzero regularization term,
the same scenario but with the regularization term set to 0
(which corresponds to a scenario without communication),
and a scenario with no central aggregation, where agents run
SGDm locally. Wemodel the intended coverage areas of each
agent as a disk of radius 5, with overlapping regions ranging

between 10% to 25%. We report the number of ‘‘collisions’’,
which in this case represents the number of area violations
between agents, and present them in Table 1.

TABLE 1. Average number of collisions over 5 runs of the simulation for
varying N with methods SGDm without central server; FED-EF-ZO-SGD
with QSGD3b, TopK, Dropout-B and RandK, and No-Comp.

In the experiments, in addition to the 3-agent scenario illus-
trated in Fig. 5, we also test 2 and 4 agent cases. We run
each experiment for 7000 iterations, with values λ = 100,
N = 2, 3, 4, and the rest of the parameters have the same
values as in the first experiment of the target-tracking prob-
lem. Running the simulation for 7000 iterations corresponds
to about 4 full cycles of the agents around their circular
trajectory. Again, we observe that the number of collisions
reduces significantly by our FED-EF-ZO-SGD algorithm and
the results obtained using a compressed gradient with error
feedback are very close to the case where no compression is
used. In some cases, compression with error feedback leads to
even better results. This can be explained similarly to before
in that owing to compressed gradients, we inject more noise
to the gradients, introducing randomness to the trajectories of
the agents, which helps avoid collisions.

V. CONCLUSION
In this study, we tackled a problem of distributed online
optimizationwith communication limitations, wheremultiple
agents collaborate to track targets in a federated learning
setting, limited to only zeroth-order information. The com-
munication from the agents to the server was assumed to
be constrained, and we addressed this constraint by com-
pressing the communicated information along with an error
feedback term. Our analysis showed that in the single-agent
scenario, after O( dσ 2

ξ2
) steps in the dominant term, the
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EF-ZO-SGD algorithm will reach a ξ -accurate first-order
solution. In the multi-agent scenario, the FED-EF-ZO-SGD
algorithm will converge to a ξ -accurate first-order solu-
tion after O(σ 2dMQ(12

+ω̄2)+Mσ 2
+Z4)

ξ2
) steps in the dominant

term. The dominant term in these convergence results are
independent of the compression ratio δ. The convergence
of the FED-EF-ZO-SGD algorithm was confirmed through
simulations.

As future work, one can investigate the collision con-
straints of each agent from safe reinforcement learning where
in addition to maximizing rewards, agents must satisfy some
constraints. This framework can be incorporated into our
setting and can be analyzed from an optimization perspec-
tive. Additionally, rather than doing simple averaging at the
central server, our work can be extended to a personalized
federated learning setting where the losses are minimized by
considering one step further of each agent. Further avenues
for research include the examination of how the adaptive
tuning of step sizes and the regularization parameters might
change the convergence analysis. We note that the tuning
of the regularization parameter is very related to dual for-
mulations and Lagrangian methods in the general functional
constrained optimization context. Finally, following the intu-
ition presented in the experimental section, the effect of the
number of agents on the variance of the stochastic gradients
of the local loss functions may be studied. In this manner,
as inmini-batch SGD, onemight discover that incorporating a
factor of

√
N in the selection of the step size might accelerate

convergence in a multi-agent scenario with N agents.

APPENDIX. PROOFS
A. LEMMAS
We state several lemmas from [65], mainly related to the
zeroth-order method, which will be used in the main proofs.
Suppose f (x) ∈ C1,1

L (Rd ). Then, the following hold:
Lemma 1: fµ(x) ∈ C1,1

Lµ
(Rd ), where Lµ ≤ L [65].

Lemma 2: fµ(x) has the following gradient with respect to
x:

∇fµ(x) =
1

(2π)d/2

∫
f (x + µu) − f (x)

µ
ue(−

1
2 ∥u∥2)du, (26)

where u ∼ N (0, Id ) [65].
Lemma 3: For any x ∈ Rd , we have

|fµ(x) − f (x)| ≤
µ2Ld
2

, (27)

[65].
Lemma 4: For any x ∈ Rd , we have

∥∇fµ(x) − ∇f (x)∥ ≤
µ

2
L(d + 3)

3
2 (28)

[65].
Lemma 5: For any x ∈ Rd , we have

Eu

[∥∥gµ (x)
∥∥2]≤ µ2

2
L2(d + 6)3+2(d+4)∥∇f (x)∥2, (29)

where u ∼ N (0, Id ) and gµ(x) =
f (x+µu)−f (x)

µ
u [65].

Lemma 6: (Young’s Inequality) For any x, y ∈ Rd and
λ > 0, we have

⟨x, y⟩ ≤
∥x∥2

2λ
+

∥y∥2λ
2

(30)

[65].

B. PROOF OF THEOREM 1
Proof: We assume that zt ∈ Rd are i.i.d. random vari-

ables for all t ∈ Z+. Furthermore, we drop the superscript
notation present in the assumptions, since i is always 1 for
the single-agent case. Let x̃t be defined as follows (following
the analysis in [6]):

x̃t := xt − ηet . (31)

From EF-ZO-SGD, we know that et+1 = pt −C(pt ) and pt =

g̃µ,t (xt ) + et , so we can rewrite x̃t+1 as

x̃t+1 = xt+1 − ηpt + ηC(pt )
= xt − ηC(pt ) − ηg̃µ,t (xt ) − ηet + ηC(pt )
= xt − ηet − ηg̃µ,t (xt )

= x̃t − ηg̃µ,t (xt ), (32)

where g̃µ,t (xt ) =
ℓ̃t (xt+µut )−ℓ̃t (xt )

µ
ut and ut ∼ N (0, Id ). By

Assumption 3, we can write the following:

ℓµ,t (x̃t+1) ≤ ℓµ,t (x̃t ) + ⟨∇ℓµ,t (x̃t ), x̃t+1 − x̃t ⟩

+
L
2

∥x̃t+1 − x̃t∥2. (33)

Now by Assumption 4, we get:

ℓµ,t+1(x̃t+1) ≤ ℓµ,t (x̃t ) − η⟨g̃µ,t (xt ), ∇ℓµ,t (x̃t )⟩

+
Lη2

2
∥g̃µ,t (xt )∥2 + ωt . (34)

Since ∇ℓµ,t (xt ) = Eut ,zt
[
g̃µ,t (xt )

]
, taking the expectation of

both sides with respect to ut and zt , we have the following:

Eut ,zt
[
⟨g̃µ,t (xt ), ∇ℓµ,t (x̃t )⟩

]
= ⟨∇ℓµ,t (xt ), ∇ℓµ,t (x̃t )⟩,

(35)

and

⟨∇ℓµ,t (xt ), ∇ℓµ,t (x̃t )⟩ =
1
2
∥∇ℓµ,t (xt )∥2 +

1
2
∥∇ℓµ,t (x̃t )∥2

−
1
2
∥∇ℓµ,t (xt ) − ∇ℓµ,t (x̃t )∥2.

(36)

In the last step, we use the fact that 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 −

∥a− b∥2. Inserting this into (34), we get:

ℓµ,t+1(x̃t+1) ≤ ℓµ,t (x̃t ) −
η

2
∥∇ℓµ,t (xt )∥2

−
η

2
∥∇ℓµ,t (x̃t )∥2 +

L2η
2

∥xt − x̃t∥2

+
Lη2

2
Eut ,zt

[
∥g̃µ,t (xt )∥2

]
+ ωt . (37)
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Note that ∥∇ℓµ,t (xt ) − ∇ℓµ,t (x̃t )∥2 ≤ L2∥xt − x̃t∥2 by
Assumption 3, with subsequent application of Lemma 1.
Also, we can drop - η

2∥∇ℓµ,t (x̃t )∥2 because it is nonpositive.
Using the fact that x̃t − xt = ηet , we get the main inequality:

η

2
∥∇ℓµ,t (xt )∥2︸ ︷︷ ︸

Term I

≤
[
ℓµ,t (x̃t ) − ℓµ,t+1(x̃t+1)

]︸ ︷︷ ︸
Term II

+
Lη2

2
Eut ,zt

[
∥g̃µ,t (xt )∥2

]
︸ ︷︷ ︸

Term III

+
L2η3

2
∥et∥2︸ ︷︷ ︸

Term IV

+ωt . (38)

We will put an upper bound to the Terms II, III and IV and a
lower bound to Term I. Starting with Term III, by Lemma 5,
we know that

Eut ,z1:T

[
∥g̃µ,t (xt )∥2

]
≤ 2(d + 4)Ez1:T

[
∥∇̃ℓt (xt )∥2

]
+

µ2L2

2
(d + 6)3, (39)

where Ez1:T [∥∇̃ℓt (xt )∥2] ≤ MEz1:T
[
∥∇ℓt (xt )∥2

]
+ σ 2 by

Assumption 2. Note that, in this step, we use the princi-
ple of causality and the fact that zt are i.i.d. random vari-
ables. We can put the following upper bound to Term II by
means of a telescoping sum and subsequent application of
Lemma 3:

T∑
t=1

[
ℓµ,t (x̃t ) − ℓµ,t+1(x̃t+1)

]
= ℓµ,1(x̃1) − ℓµ,T+1(x̃T+1),

(40)

and

ℓµ,1(x̃1) − ℓµ,T+1(x̃T+1) ≤ µ2Ld + ℓ1(x̃1) − ℓT+1(x̃T+1)

= µ2Ld + ℓ1(x1) − ℓT+1(x̃T+1),

(41)

where we use the fact that ℓ(x1) = ℓ1(x̃1), since x̃1 = x1 by
definition. Then, we can do the following:

T∑
t=1

[
ℓµ,t (x̃t ) − ℓµ,t+1(x̃t+1)

]
≤ µ2Ld + ℓ1(x1)

− ℓT+1(x̃T+1)

≤ µ2Ld + ℓ1(x1)

− ℓT+1(x∗

T+1), (42)

where x∗

T+1 ∈ argminx ℓT+1(x). We can put the following
lower bound to Term I by using Lemmas 4 and 6:

1
2
∥∇ℓt (xt )∥2 −

µ2L2

4
(d + 3)3 ≤ ∥∇ℓµ,t (xt )∥2. (43)

Lastly, we can put the following upper bound to Term IV by
Assumption 5 and Lemma 6. (Due to space considerations,

in the remainder of the proof, we denote the total expectation
Eu1:T ,z1:T ,C1:T [ · ] as E[ · ].)

E
[
∥et+1∥

2
]

= E
[
∥pt − Ct (pt )∥2

]
≤ (1 − δ)E

[
∥pt∥2

]
= (1 − δ)E

[
∥et + g̃µ,t (xt )∥2

]
≤ (1 − δ)(1 + ϕ)E

[
∥et∥2

]
+ (1 − δ)

(
1 +

1
ϕ

)
Eu1:T ,z1:T

[
∥g̃µ,t (xt )∥2

]
, (44)

which we can write as,
t∑
i=1

[(1 − δ)(1 + ϕ)]t−i (1 − δ)(1 +
1
ϕ
)

Eui,z1:T

[
∥g̃µ,i(xi)∥2

]
, (45)

for some ϕ > 0, zt , ut , Ct are i.i.d., and ECt [ · ] denotes
the expectation over the randomness at time t due to
the compression used. Note that by using Lemma 5 and
Assumption 2,

Eut ,z1:T [∥g̃µ,t (xt )∥2] ≤ AEz1:T

[
∥∇ℓt (xt )∥2

]
+ B, (46)

where

B = 2σ 2(d + 4) +
µ2L2

2
(d + 6)3 and

A = 2M (d + 4). (47)

So we can rewrite (44) as follows:

E
[
∥et+1∥

2
]

≤

t∑
i=1

[(1 − δ)(1 + ϕ)]t−i (1 − δ)(1 +
1
ϕ
)[

AEz1:T

[
∥∇ℓi(xi)∥2

]
+ B

]
. (48)

If we set ϕ :=
δ

2(1−δ) , then 1 +
1
ϕ

≤
2
δ
and (1 − δ)(1 + ϕ) =

(1 −
δ
2 ), so we get:

E
[
∥et+1∥

2
]

≤

t∑
i=1

(
1 −

δ

2

)t−i [
AEz1:T

[
∥∇ℓi(xi)∥2

]
+ B

]
×

2(1 − δ)
δ

. (49)

If we sum through all E[∥et∥2], we get:
T∑
t=1

E
[
∥et∥2

]
≤

T∑
t=1

t−1∑
i=1

(
1 −

δ

2

)t−i
[
AEz1:T

[
∥∇ℓi(xi)∥2

]
+ B

] 2(1 − δ)
δ

≤

T∑
t=1

[
AEz1:T

[
∥∇ℓt (xt )∥2

]
+ B

]
∞∑
i=0

(
1 −

δ

2

)i 2(1 − δ)
δ
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≤

T∑
t=1

[
AEz1:T

[
∥∇ℓt (xt )∥2

]
+ B

]
K , (50)

where K =
2(1−δ)

δ
2
δ

≤
4
δ2
. If we define 1 := ℓ1(x1) −

ℓT+1(x∗

T+1), where x
∗

T+1 ∈ argminx ℓT+1(x), and combine
the upper bounds derived in (39), (40), and (44), and the lower
bound derived in (43) and insert them into (38), we get the
following:

T∑
t=1

η

4
Ez1:T

[
∥∇ℓt (xt )∥2

]
−

ηµ2L2

8
(d + 3)3T

≤ µ2Ld + 1 +
Tµ2L3η2

4
(d + 6)3 +

Lη2

2
σ 2T2(d + 4)

+
Lη2

2
× 2M (d + 4)

T∑
t=1

Ez1:T

[
∥∇ℓt (xt )∥2

]
+

η3L2

2

×
4
δ2
T
[
2σ 2(d + 4) +

µ2L2

2
(d + 6)3

]
+

η3L2

2

×
4
δ2

T∑
t=1

2M (d + 4)Ez1:T

[
∥∇ℓt (xt )∥2

]
+

T∑
t=1

ωt . (51)

Now, since zt ’s are i.i.d. for all t ∈ Z+, we have:

E
T

T∑
t=1

Ez1:T

[
∥∇ℓt (xt )∥2

]
≤

µ2Ld + 1

T
+

η2L3µ2(d + 6)3

4
+ Lη2σ 2(d + 4)

+
ηµ2L2(d + 3)3

8
+

η3L2

δ2
4σ 2(d + 4)

+
η3L2

δ2
µ2L2(d + 6)3 +

1
T

T∑
t=1

ωt , (52)

where

E =
η

4
− LMη2(d + 4) −

L2η3

δ2
4M (d + 4)

= η

[
1
4

− LMη(d + 4)
(
1 +

4Lη

δ2

)]
. (53)

If η ≤
1
4L , the first upper bound will instead be:

1 +
4Lη

δ2
≤ 1 +

1
δ2

=
δ2 + 1

δ2
≤

2
δ2

. (54)

We proceed to find an η such that

2
δ2
LMη(d + 4) ≤

1
8
. (55)

Then, we get

η ≤
δ2

16LM (d + 4)
, (56)

which implies E ≥
η
8 . Multiplying all terms in the bound

by 8
η
,

1
T

T∑
t=1

Ez1:T

[
∥∇ℓt (xt )∥2

]

≤
81
(ηT )

+
8µ2Ld

ηT
+ 2ηL3µ2(d + 6)3 + 8Lησ 2(d + 4) + µ2L2(d + 3)3

+
32η2L2

δ2
σ 2(d + 4) +

8η2L4µ2(d + 6)3

δ2
+

8
ηT

T∑
t=1

ωt .

(57)

Let

η =
1

σ
√
(d + 4)MTL

and µ =
1

(d + 4)
√
T

. (58)

Putting these values into (57), we get (13) as follows:

1
T

T∑
t=1

E∥∇ℓt (xt )∥2

≤
81σ (d + 4)

1
2M

1
2 L

1
2

T
1
2

+
8σdL

3
2M

1
2

T
3
2 (d + 3)

3
2

+
2(d + 6)

3
2 L

5
2

σ (d + 4)
5
2 T

3
2M

1
2

+
8σ (d + 4)

1
2 L

1
2

M
1
2 T

1
2

+
(d + 3)3L2

(d + 2)2T
+

32L
δ2σ 2MT

+
8(d + 6)3L3

δ2σ 2(d + 4)3MT 2

+
8ω̄σ (d + 4)

1
2M

1
2 L

1
2

T
1
2

. (59)

Defining ω̄ :=
∑T

t=1 ωt , the number of times steps T to
obtain a ξ -accurate first order solution is

T = O
(
dσ 2L1M

ξ2
+
dL1

δ2ξ
+

ω̄σ 2dML
ξ2

)
. (60)

C. PROOF OF THEOREM 2
Proof:We assume in the following that z1:Nt ∈ RNd are

i.i.d. random variables for all t ∈ Z+. Similar to the analysis
in the single-agent case, we begin by defining:

ēt :=
1
N

N∑
i=1

eit , (61)

and

x̃1:Nt := x1:Nt − ηēt . (62)

Additionally, our global loss function in this scenario is:

¯̃
ℓt

(
x1:Nt

)
=

1
N

N∑
i=1

ℓ̃it

(
x1:Nt

)
. (63)

Now, we have:

x̃1:Nt+1 = x1:Nt+1 − ηēt+1

= x1:Nt+1 − η
1
N

N∑
i=1

[
pit − C

(
pit
)]

= x1:Nt − ηGt − η
1
N

N∑
i=1

[
pit − C

(
pit
)]
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= x1:Nt − η
1
N

N∑
i=1

pit

= x1:Nt − η
1
N

N∑
i=1

[
g̃iµ,t

(
x1:Nt

)
+ eit

]
= x̃1:Nt − η ¯̃gµ,t

(
x1:Nt

)
, (64)

where we define ¯̃gµ,t (x1:Nt ) :=
1
N

∑N
i=1 g̃

i
µ,t
(
x1:Nt

)
. Now,

we have by Assumption 3 that each ℓit is L−smooth, there-
fore, our global loss function ℓ̄t is also L−smooth. Using
Lemma 1, we write

ℓ̄µ,t

(
x̃1:Nt+1

)
≤ ℓ̄µ,t

(
x̃1:Nt

)
+

〈
∇ℓ̄µ,t

(
x̃1:Nt

)
, x̃1:Nt+1 − x̃1:Nt

〉
+
L
2

∥∥∥x̃1:Nt+1 − x̃1:Nt
∥∥∥2 . (65)

By Assumption 4, this implies

ℓ̄µ,t+1

(
x̃1:Nt+1

)
≤ ℓ̄µ,t

(
x̃1:Nt

)
− η

〈
¯̃gµ,t

(
x1:Nt

)
, ∇ℓ̄µ,t

(
x̃1:Nt

)〉
+
Lη2

2

∥∥∥ ¯̃gµ,t

(
x1:Nt

)∥∥∥2 + ωt ,

(66)

where ωt = max{w1
t , . . . ,w

N
t }. Now, since we have

Eu1:Nt

[
¯̃gµ,t

(
x1:Nt

)]
= Eu1:Nt

[
1
N

N∑
i=1

g̃iµ,t

(
x1:Nt

)]

=
1
N

N∑
i=1

∇ℓ̃iµ,t

(
x1:Nt

)
= ∇

¯̃
ℓµ,t

(
x1:Nt

)
, (67)

the following holds:

Eu1:Nt ,z1:Nt

[〈
¯̃gµ,t

(
x1:Nt

)
, ∇ℓ̄µ,t

(
x̃1:Nt

)〉]
=

〈
∇ℓ̄µ,t

(
x1:Nt

)
, ∇ℓ̄µ,t

(
x̃1:Nt

)〉
=

1
2

∥∥∥∇ℓ̄µ,t

(
x1:Nt

)∥∥∥2
+

1
2

∥∥∥∇ℓ̄µ,t

(
x̃1:Nt

)∥∥∥2
−

1
2

∥∥∥∇ℓ̄µ,t

(
x1:Nt

)
− ∇ℓ̄µ,t

(
x̃1:Nt

)∥∥∥2 , (68)

sinceEz1:Nt
[∇ ¯̃

ℓ(x1:Nt )] = ∇ℓ̄(x1:Nt ).Now, combining this with

(66) and using L−smoothness, we obtain:

ℓ̄µ,t+1

(
x̃1:Nt+1

)
≤ ℓ̄µ,t

(
x̃1:Nt

)
−

η

2

∥∥∥∇ℓ̄µ,t

(
x1:Nt

)∥∥∥2
−

η

2

∥∥∥∇ℓ̄µ,t

(
x̃1:Nt

)∥∥∥2
+
L2η
2

∥∥∥x1:Nt − x̃1:Nt
∥∥∥2

+
Lη2

2
Eu1:Nt ,z1:Nt

[∥∥∥ ¯̃gµ,t

(
x1:Nt

)∥∥∥2]+ ωt

(69)

Note that the third term at the right-hand side of the inequality
can be dropped because it is nonpositive. Using the definition
of x̃1:Nt , and taking the expectation of both sides with respect
to u1:Nt and z1:Nt , we have the following main inequality:

η

2

∥∥∥∇ℓ̄µ,t

(
x1:Nt

)∥∥∥2︸ ︷︷ ︸
Term I

≤

[
ℓ̄µ,t

(
x̃1:Nt

)
− ℓ̄µ,t+1

(
x̃1:Nt+1

)]
︸ ︷︷ ︸

Term II

+
Lη2

2
Eu1:Nt ,z1:Nt

[∥∥∥ ¯̃gµ,t

(
x1:Nt

)∥∥∥2]︸ ︷︷ ︸
Term III

+
L2η3

2
∥ēt∥2︸ ︷︷ ︸

Term IV

+ωt . (70)

We will continue the proof by putting an upper bound to
Terms II, III, and IV and a lower bound to Term I. Starting
with Term III, using Jensen’s inequality, we get

Eu1:Nt ,z1:Nt

[∥∥∥ ¯̃gµ,t (x1:Nt )
∥∥∥2]

= Eu1:Nt ,z1:Nt

∥∥∥∥∥ 1N
N∑
i=1

g̃iµ,t (x
1:N
t )

∥∥∥∥∥
2

≤
1
N

N∑
i=1

Eu1:Nt ,z1:Nt

[∥∥∥g̃iµ,t (x
1:N
t )

∥∥∥2] . (71)

Then, by Lemma 5 we know

Eu1:N1:T ,z1:N1:T

[
∥g̃iµ,t (x

1:N
t )∥2

]
≤ 2(d + 4)

Ez1:N1:T

[
∥∇ℓ̃it (x

1:N
t )∥2

]
+

µ2L2

2
(d + 6)3. (72)

Using Assumption 2, we have Ez1:N1:T
[∥∇ℓ̃it (x

1:N
t )∥2] ≤

MEz1:N1:T

[
∥∇ℓit (x

1:N
t )∥2

]
+ σ 2. Then, through application of

Assumption 6 and Lemma 6, we have:

Eu1:N1:T ,z1:N1:T

[
∥g̃iµ,t (x

1:N
t )∥2

]
≤ 2(d + 4)(MZ2

+ σ 2)

+ 2(d + 4)MQEz1:N1:T

[
∥∇ℓ̄t (x1:Nt )∥2

]
+

µ2L2

2
(d + 6)3. (73)

For Term II, if we do a summation on both sides of (70) from
t = 1 to T , we get a telescoping sum:

T∑
t=1

[
ℓ̄µ,t

(
x̃1:Nt

)
− ℓ̄µ,t+1

(
x̃1:Nt+1

)]
= ℓ̄µ,1

(
x̃1:N1

)
− ℓ̄µ,T+1

(
x̃1:NT+1

)
. (74)
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By adding and subtracting ℓ̄1(x̃1:N1 ) and ℓ̄T+1(x̃1:NT+1) on both
sides and using Lemma 3, we have:

ℓ̄µ,1

(
x̃1:N1

)
− ℓ̄µ,T+1

(
x̃1:NT+1

)
≤ µ2Ld + ℓ̄1(x1:N1 ) − ℓ̄T+1(x̃1:NT+1).

≤ µ2Ld + ℓ̄1(x1:N1 ) − ℓ̄T+1(x∗

T+1)

= µ2Ld + 1, (75)

where x∗

T+1 = mini∈{1,...,N } argminx ℓiT+1(x) and 1 =

ℓ̄1(x1:N1 ) − ℓ̄T+1(x∗

T+1). Note that we use x̃1:N1 = x1:N1 . For
Term I, one should note that if ℓit (x) ∈ C1,1

L , then ℓiµ,t (x) ∈

C1,1
L by Lemma 1. This implies that ℓ̄µ,t (x) ∈ C1,1

L because
ℓ̄µ,t (x) =

1
N

∑N
i=1 ℓiµ,t (x). Thus, using Lemmas 4 and 6,

we get

1
2
∥∇ℓ̄t (x1:Nt )∥2 −

µ2L2(d + 3)2

4
≤ ∥∇ℓ̄µ,t (x1:Nt )∥2. (76)

Finally, forTerm IV, we use the recursive summation similar
to the one in the single-agent proof. We want to put an upper
bound to ∥ēt∥2. We can do so by taking the expectation of
both sides in (70) with respect to u1:N1:T , z1:N1:T ,C1:T and put an
upper bound to Eu1:N1:T ,z1:N1:T ,C1:T

[
∥ēt∥2

]
instead. (Due to space

considerations, in the remainder of the proof, we denote
the total expectation Eu1:N1:T ,z1:N1:T ,C1:T [·] as E[·].) By Jensen’s

inequality, we can do the following:

E
[
∥ēt∥2

]
= E

∥∥∥∥∥ 1N
N∑
i=1

eit

∥∥∥∥∥
2 ≤ E

[
1
N

N∑
i=1

∥∥∥eit∥∥∥2
]

=
1
N

N∑
i=1

E
[
∥eit∥

2
]

(77)

Note that putting an upper bound to the terms inside summa-
tion is nothing but putting an upper bound to the single-agent
case, which we have done in Proof B of the single-agent
setting. Hence, we know

E
[
∥eit−1∥

2
]

≤

t−1∑
j=1

[(1 − δ)(1 + ϕ)]t−1−j(1 − δ)
(
1 +

1
ϕ

)
[
AEz1:N1:T

[
∥∇ℓij(x

1:N
j )∥2

]
+ B

]
. (78)

Using this fact in (77), we obtain

E
[
∥e1:Nt ∥

2
]

≤
1
N

N∑
i=1

t−1∑
j=1

[(1 − δ)(1 + ϕ)]t−1−j

(1 − δ)
(
1 +

1
ϕ

)[
AEz1:N1:T

[
∥∇ℓij(x

1:N
j )∥2

]
+ B

]
. (79)

Using the same procedure in (50), if we sum both sides
through t = 1 to t = T , we get the following inequality:

T∑
t=1

E
[
∥e1:Nt ∥

2
]

≤
1
N

N∑
i=1

T∑
t=1

[
AEz1:N1:T

∥∇ℓit (x
1:N
t )∥2 + B

]
K , (80)

where A = 2M (d + 4),B = 2σ 2(d + 4) +
µ2L2(d+6)3

2 and
K =

4(1−δ)
δ2

≤
4
δ2
. Another way of expressing (80) is:

T∑
t=1

E
[
∥e1:Nt ∥

2
]

≤

T∑
t=1

[
A

(
1
N

N∑
i=1

Ez1:N1:T

[
∥∇ℓit (x

1:N
t )∥2

])
+ B

]
K . (81)

Using Assumption 6, we can write this as:

T∑
t=1

E
[
∥e1:Nt ∥

2
]

≤

T∑
t=1

[
A
(
Z2

+ QEz1:N1:T

[
∥∇ℓ̄t (x1:Nt )∥2

])
+ B

]
K . (82)

If we now combine the upper bounds derived for Terms I,
II and IV, and the lower bound derived for Term III and insert
them into (70), we get the following inequality:

η

4

T∑
t=1

Ez1:N1:T

[
∥∇ℓ̄t (x1:Nt )∥2

]
−
Tηµ2L2(d + 3)2

8

≤ µ2Ld + 1 + TLη2(d + 4)(MZ2
+ σ 2)

+ Lη2(d + 4)MQ

(
T∑
t=1

Ez1:N1:T

[
∥∇ℓ̄t (x1:Nt )∥2

])

+
TL2µ2η2(d + 6)3

4
+

2TL2η3K
δ2

+
4L2η3(d + 4)MQ

δ2

(
T∑
t=1

Ez1:N1:T

[
∥∇ℓ̄t (x1:Nt )∥2

])

+

T∑
t=1

ωt (83)

where K = 2M (d + 4)Z2
+ 2σ 2(d + 4) +

µ2L2(d+6)3
2 . After

rearranging the terms and dividing both sides by T , we have
the following inequality:

E
T

T∑
t=1

Ez1:N1:T

[
∥∇ℓ̄t (x1:Nt )∥2

]
≤

µ2Ld + 1

T

+ Lη2(d + 4)(MZ2
+ σ 2)

+
L3µ2η2(d + 6)3

4

+
2L2η3K

δ2
+

ω̄

T
, (84)

where ω̄ :=
∑T

t=1 ωt , and

E =
η

4
− LMQη2(d + 4) −

4L2η3MQ(d + 4)
δ2
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= η

[
1
4

− LMη(d + 4)
(
1 +

4Lη

δ2

)]
. (85)

If η < 1
4L , the first upper bound will instead be:

1 +
4Lη

δ2
≤ 1 +

1
δ2

≤
2
δ2

. (86)

We proceed to find an η such that

2Lη(d + 4)MQ
δ2

≤
1
8
. (87)

Then, we get

η ≤
δ2

16LMQ(d + 4)
, (88)

which implies E ≥
η
8 . Multiplying all the terms in the bound

by 8
η
,

1
T

T∑
t=1

Ez1:N1:T

[
∥∇ℓ̄t (x1:Nt )∥2

]
≤

81
ηT

+
8µ2Ld

ηT
+ 8Lη(d + 4)(MZ2

+ σ 2) + 2L3µ2η(d + 6)3

+
32L2η2M (d + 4)Z2

δ2
+

32L2η2σ 2(d + 4)
δ2

+
8L4µ2η2(d + 6)3

δ2
+

8w̄
ηT

. (89)

Let

η =
1

σ
√
(d + 4)MQTL

and µ =
1

(d + 4)
√
T

. (90)

Then, the number of times steps T to obtain a ξ -accurate first
order solution is:

T =O
(

σ 2dMQ
(
12

+ω̄2
)
+M

(
σ 2

+ Z4
)

ξ2
+
L

5
3

ξ
2
3

+
1

δ2ξ

)
.

(91)
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