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ABSTRACT At present, deep residual network has been widely used in image super-resolution and proved
to be able to achieve good reconstruction results. However, the existing super-resolution algorithms based
on deep residual network have the problems of indiscriminately learning feature information of different
regions and low utilization rate of feature information, which make them difficult to further improve the
reconstruction effect. In view of the above problems, a novel super-resolution reconstruction network based
on residual attention and multi-scale feature fusion (RAMF) is proposed in this paper. Firstly, a lightweight
multi-scale residual module (LMRM) is proposed in the deep feature extraction stage, by which the
multi-scale features are extracted and further cross-connected to enrich the information of different receptive
fields. Then, to fully improve the utilization rate of feature information, a dense feature fusion structure is
designed to fuse the output feature of each LMRM. Finally, a residual spatial attention module (RSAM)
is proposed to specifically learn and better retain high-frequency feature information, so as to improve
the reconstruction effect. Experimental tests and comparisons are conducted with the current advanced
methods on four baseline databases, and the results demonstrate that the proposed RAMF can achieve
better reconstruction effect with fewer parameters, low computational complexity, fast processing speed
and high objective evaluation index. Especially, the peak signal-to-noise ratio measured on Urban100 data
set increases by 0.13dB on average, and the reconstructed image has better visual effect and richer texture
detail features.

INDEX TERMS Dense feature fusion, attention mechanism, super-resolution, residual learning.

I. INTRODUCTION
How to reconstruct high-resolution (HR) images with high
definition and rich detail information from low-resolution
(LR) images is a hot research topic at home and abroad [1].
Since the super-resolution (SR) reconstruction technology
has the advantages of easy implementation, low hardware
dependence and low cost, it has been widely used in the fields
of pedestrian re-identification, image enhancement [2] and
texture classification [3], etc.

Since 1960s, large numbers of image super resolution
algorithms have been proposed one after another. Harris was
the first to study image super-resolution reconstruction and
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proposed Harri spectrum extrapolation method [4], which
laid a foundation for subsequent research on image super-
resolution methods. On the basis of Harris’s research, Tsai
and Huang [5] proposed to obtain HR images through fre-
quency domain transformation of multi-frame LR images.
Since then, image super-resolution reconstruction technol-
ogy has gradually gained the attention of researchers, and
has been explored for decades. However, since single image
super resolution (SISR) reconstruction is an ill-posed prob-
lem, there are always multiple HR images corresponding to
the same LR image. Therefore, how to solve this problem
has been the focus of scholars’ attention. In recent years,
with the vigorous development of deep learning, image super
resolution reconstruction algorithm based on convolutional
neural network [6], [7], [8] has made many achievements.
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As the existing SR models based on convolutional neural
networks mainly focus on designing deepened or widened
networks [9], [10] while ignoring the loss of high-frequency
feature information of images, scholars have proposed a
series of solutions to this problem. For example, by using
convolution kernels with different scales of 1 × 1, 3 ×

3 and 5 × 5 to extract rich feature information, Zhang and
Guo [11] obtained reconstructed images with better subjec-
tive visual effects and objective evaluation indexes. By com-
bining multi-scale convolution kernel with residual structure,
Lu et al. [12] proposed a multi-scale information aggregation
block to extract image features efficiently without increas-
ing the number of parameters. By adding extended convolu-
tion branches to the residual block to expand the receptive
field, Esmaeilzehi et al. [13] also proposed a multi-scale
network, which can obtain superior performance with fewer
parameters.

Although the multi-scale convolution kernel can effec-
tively improve the model reconstruction effect, the same
calculation method is adopted for the feature information
of different positions when learning the feature information
collected by the upper layer. As a result, the high-frequency
information with high contribution to the reconstruction
effect cannot be fully learned, resulting in a waste of com-
puting resources. Motivated by the fact that people usually
focus on the parts conducive to brain analysis in images
when watching them, Xu et al. [15] proposed the atten-
tion mechanism, which can effectively utilize computing
resources and improve reconstruction performance. Subse-
quently, to improve the utilization rate of high-frequency
feature information in LR images and solve the prob-
lem of network degradation in deep networks, Zhang et al.
[14] combined the residual structure with channel atten-
tion and proposed the RIR (ResNet in ResNet) residual
structure to adaptively scale the feature information of each
channel. Thus, the robustness of the model and the uti-
lization rate of image feature information are improved.
By integrating the spatial attention and channel attention,
Woo et al. [16] propose a convolutional block attention mod-
ule (CBAM), which can effectively enable the network to
focus on learning the image areas with more high-frequency
feature information and extract the important features of the
images accordingly. To further improve the utilization rate
of image high-frequency information and multi-scale fea-
tures, Lu et al. [17] added long-short jump connections and
mixed attention mechanisms into the model, leading to the
reconstruction effect of image edge information and texture
structure information improved. By combining a multi-scale
detail extraction blockwith amulti-content information chan-
nel attention module to enhance image detail, Wang and
Zheng [10] proposed a multi-scale detail enhancement net-
work (MS-DEN), which can restore more accurate detail and
achieve better reconstruction effect.

However, although the above methods have improved the
model performance to a certain extent, most of them still
have the following problems: (1) low utilization rate of

feature information. The design of feature extraction module
is too complicated and there are redundant parameters, which
cannot effectively extract the image feature information.
(2) Undifferentiated learning of upper feature information.
Using the same learning method to learn the image features
of different regions, it will not be able to treat and learn the
high-frequency feature information pointedly.

In order to solve the above problems, a super-resolution
reconstruction network based on residual attention and
multi-scale feature fusion (RAMF) is constructed for all kinds
of LR images. In the proposed network, the key contributions
can be summarized as follows:

1) A lightweight multi-scale residual module (LMRM) is
proposed, which can obtain abundant image feature informa-
tion of different sensitivity fields with fewer parameters.

2) a dense feature fusion structure is designed, which can
fully fuse the output feature information of each LMRM and
improve the utilization rate of feature information.

3)We develop a residual spatial attentionmodule (RSAM),
which can specifically learn high-frequency feature informa-
tion and reasonably allocate computing resources.

4) For experimental evaluation, the proposed RAMF
has the advantages of fewer parameters, low computa-
tional complexity, fast processing speed and high objective
evaluation index, which can achieve better reconstruction
effect.

The rest sections are organized as follows. Section II
presents the details of the proposed RAMF. T the experi-
mental results and analysis are shown in Section III, and the
conclusions and future work are summarized in Section IV.

II. PROPOSED METHOD
In this section, a novel super-resolution reconstruction algo-
rithm based on residual attention and multi-scale feature
fusion (RAMF) is proposed and its overall structure is shown
in Fig. 1. As can be seen, the network structure of RAMF con-
sists of four parts, which are shallow feature extraction mod-
ule, deep feature extraction module, residual spatial attention
module and image reconstruction module.

Among them, the shallow feature extraction module con-
tains a 3 × 3 convolution layer. The deep feature extraction
module is composed of two kinds of cross-connected
lightweight multi-scale residual modules with different
channel numbers, and the number of channels output by
convolutional kernel in adjacent lightweight multi-scale
residual modules is also different. In addition, the exterior of
the module adopts a dense feature fusion structure to fully
integrate image features of different depths to reduce the
loss of feature information. Subsequently, the residual spatial
attention module is proposed and used to further enhance
the high frequency feature information and suppress the low
frequency feature information, so as to allocate computing
resources reasonably. The final image reconstruction module
consists of an upper sampling layer and a reconstruction layer,
and the principles of the fourmain parts are described in detail
in the following subsections.
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FIGURE 1. The structure diagram of the proposed RAMF network.

A. SHALLOW FEATURE EXTRACTION
The module contains a convolutional layer, and the process
of extracting shallow features can be expressed as:

X0 = ω3×3 ∗ ILR + x0 (1)

where ILR represents the input of the model, ω3×3 and x0
represent the weight and bias of the convolutional layer
respectively, and X0 represents the extracted shallow feature,
which serves as the input of the deep feature extraction layer.

B. DEEP FEATRUE EXTRACTION
As can be seen fromFig. 1, the deep feature extractionmodule
is composed of n LMRM modules, including n/2 LMRM
(a) modules and n/2 LMRM (b) modules. Besides, LMRM
(a) contains multi-scale feature fusion block (a), i.e. MFA(a),
and LMRM (b) contains multi-scale feature fusion block (b),
i.e. MFA(b), and each MFA uses a short residual line to
connect the outside. The detailed structure of the LMRM is
presented in Fig. 2. For these n LMRM modules, a dense
feature fusion structure is constructed among them, and the
input of each LMRM is fused by the output features of all the
previous LMRM modules and shallow features to make full
use of the image feature information and reduce the number
of network parameters. The principle of dense feature fusion
structure can be formulated as:

Hk = ωk
1×1 ∗ [X0,X1,X2, · · ·,Xk−1,Xk ] + bk (2)

where Xk defines the output of the k-th LMRM, X0 represents
the shallow feature extracted by the shallow feature extraction
module, Hk represents the output of the k-th feature fusion
layer, [·] denotes the splicing operation, ωk

1×1 and b
k respec-

tively represent the weight and bias of the 1× 1 convolutional
layer in the kth feature fusion layer.

As can be seen from Fig. 2, each LMRM contains two
MFA modules, each of which uses a short residual line to
connect to the outside. Wherein, the number of input and
output channels of convolutional kernel in LMRM (a) is set
to 64, the number of input channels and output channels of
convolutional kernel in module LMRM (b) is set to 64 and
128. Let the input feature of the k-th LMRM be Hk−1. Then,
the features are extracted using convolution kerns with sizes
of 3 × 3 and 5 × 5 respectively, and then activated by ReLU
activation function respectively to obtain features Tk and Xk
of different scales.

In order to prevent feature loss and make full use
of features with different scales, the multi-scale feature
fusion block adopts the feature fusion structure to fuse
Tk , Xk and input features Hk−1 to get fusion feature
Ok . Finally, the input feature Hk−1 and fusion features
are added to get Xk . The detailed calculation process of
the proposed LMRM can be expressed by the following
formulas:

Tk = σ (ωk
3×3 ∗ Hk−1 + bk3×3) (3)

Xk = σ (ωk
5×5 ∗ Hk−1 + bk5×5) (4)

Ok = ωk
1×1 ∗ [Tk ,Xk ,Hk−1] + bk1×1 (5)

Xk = Ok + Hk−1 (6)

where ωk
3×3, ω

k
5×5 and ωk

1×1 represent the weights of con-
volution layers of different scales in the k-th LMRM,
respectively. bk3×3, b

k
5×5 and bk1×1 define the bias of convo-

lution layers of different scales, respectively. σ (·) represents
themapping function of ReLU activation function. [·] denotes
the splicing operation, andHk represents the output of the k-th
LMRM.
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FIGURE 2. The structure diagram of the proposed lightweight multi-scale residual module (LMRM).

C. RESIDUAL SPATIAL ATTENTION MODULE (RSAM)
Usually, different positions of each featuremap have different
feature information. However, most of the feature informa-
tion is low-frequency feature information whose details or
color changes gently and does not need to allocate a lot of
computing resources for learning. However, a small amount
of important high-frequency details such as edge information
and texture features in the image often need to be calculated
with emphasis. Indiscriminately calculating high-frequency
and low-frequency information will not only cause a seri-
ous waste of computing resources, but also can not retain
useful high-frequency information well, which reduces the
performance of model reconstruction. Therefore, by adding a
residual spatial attention module (RSAM) to the deep feature
extraction module and using the spatial attention mechanism
(SA) to increase the network’s attention to high-frequency
feature information, the proposed RAMF can carry out tar-
geted learning of high-frequency features with high contribu-
tion to model reconstruction performance, effectively solving
the problem of undifferentiated learning of feature informa-
tion from different regions in feature graphs by CNN. The
internal structures of the RSAM and its internal SA are shown
in Figure 1 and Figure 3 respectively.

Let’s start with SA and look at Fig. 3, it firstly calculates
the average pooling and maximum pooling of input feature
graphs with the size of H × W × C according to the direction
of channel axis, and all the sizes of the feature graphs after
pooling are H×W× 1. Then, the average pooling values and
the maximum pooling values are spliced into a two-channel
feature graph, and a 7 × 7 convolution check is used to
fuse the two groups of pooling values, leading to a single
channel fusion feature graph output. Finally, the attention
feature map is obtained after activation by Sigmoid function,
and the values of elements in different positions of the feature
map represent the different learningweights of corresponding
positions of the input feature map.

FIGURE 3. Structure diagram of the spatial attention mechanism.

Let’s come to RSAM, whose input information is the
output feature Hn of the deep feature extraction module. T
represents the number of input feature map channels and
H t
n is the feature information of the t-th channel in the

feature map. Each channel contains H × W elements, and
H t
n(h,w) represents the value of element in h-th row and

w-th column of t-th channel. The input feature mapHn is used
to calculate the average pooling feature map HAvg

n and the
maximum pooling feature map HMax

n respectively according
to the direction of the channel axis.

The element values at different positions of the two
pooling feature maps can be represented as HAvg

n (h,w) and
HMax
n (h,w), where h andw represented the rows and columns

that the element values located. The detailed pooling process
is as follows:

HMax
n = Max

t∈{1,···,T }

H t
n(h,w) (7)

HAvg
n =

T∑
t=1

(H t
n(h,w))

T
(8)

The average pooling feature graph HAvg
n and maximum

pooling feature graph HMax
n calculated in Equations 7 and 8

are first spliced and then a 7 × 7 convolution kernel is used
for fusion, so as to obtain fusion feature Ar . The principle is
given by:

Ar = W 7×7
a × [HMax

n ,HAvg
n ] + ba (9)
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where W 7×7
a and ba represent the weight and bias of 7 ×

7 convolution kernel respectively, [HMax
n ,HAvg

n ] defines the
concatenation process of average pooling feature map HAvg

n
and maximum pooling feature map HMax

n , and Ar represents
the single-channel position feature map output by the convo-
lutional layer. Finally, sigmoid activation function is used to
activate the location feature map Ar to obtain SA feature Aa.

Aa = σ (Ar ) (10)

where σ indicates the sigmoid activation function, and SA
feature Aa denotes the position feature map of single channel.
The element values of different positions represent the differ-
ent weights of corresponding positions of the input feature
map. Then, the output feature map Y1 can be multiplied by
the input feature map Hn.

Y1 = Aa ∗ Hn (11)

In this way, different location feature information is learn
specifically according to its contribution to model reconstruc-
tion performance, which can not only realize the enhance-
ment of high frequency features and suppression of low
frequency features, but also make full use of computing
resources and effectively improve the model reconstruction
performance.

In addition, in order to reduce the loss of feature infor-
mation and alleviate the problem of network degradation,
the RSAM in RAMF is connected by long and short
lines. Subsequently, the input features, shallow features
and attention-added feature maps of the module are added,
respectively. The detailed calculation principle is as follows:

Y2 = Hn + X0 + Y1 (12)

where Y1 represents the output feature map with added atten-
tion, X0 defines the shallow image feature extracted by the
shallow feature extraction module, and Hn represents the
input feature of RSAM.

D. IMAGE RECONSTRUCTION
As can be seen from Fig. 1, the image reconstruction module
is mainly composed of the up-sampling layer and the recon-
struction layer. Considering that subpixel convolution has the
advantages of faster speed and better effect compared with
interpolation-based method and deconvolution method, this
paper adopts it for image up-sampling. The principle of image
reconstruction module can be expressed by the following
formula:

YCN = HCN (Yn) (13)

YPX = HPX (YCN ) (14)

ISR = HRC (YPX ) (15)

where Yn represents the input of image reconstruction mod-
ule; HCN (·), HPX (·) and HRC (·) denote the mapping func-
tion of convolutional layer, pixel recombination layer and
reconstruction layer, respectively. YCN and YCN represent the
output of convolutional layer and pixel recombination layer

respectively. ISR defines the reconstructed high-resolution
image.
In addition, L1 loss function is adopted to train the network,

which can be expressed by the following formula:

SL1 =
1
MN

M∑
x=0

N∑
y=0

|fSR(x, y) − fHR(x, y)| (16)

where fSR(x, y) represents the reconstructed image and
fHR(x, y) denotes the real image. M and N are the width and
height of the image, and SL1 defines the calculated L1 loss
function.

III. EXPERIMENTAL RESULTS
A. DATASETS AND EXPERIMENTAL SETUP
In this section, to validate the superiority of our RAMF,
comprehensively comparative evaluations with the exist-
ing methods are carried out on the server based on
Ubuntu20.04 system, using the deep learning framework,
and configured as pytoch1.8, Cuda11.4, and NVIDIA RTX
3090Ti graphics card. For the datasets, this paper uses DIV2K
dataset as the training dataset, and four benchmark datasets,
Set5 [18], Set14 [19], BSD100 [20], Urban100 [21] as the test
set.

For parameter setting, the model parameters in this paper
are set as: the number of LMRM is 16, in which the number of
LMRM(a) and LMRM(b) are both 8, and the two are directly
cross-connected. Besides, the input and output channels of
3 × 3 and 5 × 5 convolution nuclei in LMRM (a) are both
64, while the input channels and output channels of 3 ×

3 and 5 × 5 convolution nuclei in LMRM (b) are 64 and
128 respectively. Moreover, dense feature fusion structure is
adopted to connect different LMRM. In addition, the initial
learning rate is set as 10−4, and the learning rate is halved for
every 200 epoch trained. The adaptive momentum estimation
(ADAM) is selected as the optimization method in this paper,
and its setting parameters are: β1 = 0.9, β2 = 0.999,
ε = 10−8.

B. EVALUATION METRICS
Generally, according to the audience perception effect and
visual attributes, the model performance evaluation can be
divided into subjective evaluation and objective evaluation.
In this paper, these two ways are both used to evaluate the
effects of reconstructed SR images.

For the subjective evaluation, it is based on the natural and
clear perception effect of human eyes on the SR image, which
can directly reflect the visual effect of the reconstructed SR
image. However, due to the strong subjectivity of the sub-
jective evaluation, it is not scientific and accurate enough,
so it is necessary to adopt objective evaluation indicators
to make a more comprehensive judgment on the quality of
image reconstruction.

For the objective evaluation, the most widely used image
evaluationmetric in the field of image super-resolution recon-
struction is peak signal-to-noise ratio (PSNR) (unit: dB), and
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TABLE 1. Effects of different feature extraction modules and RSAM on
model performance.

the formula for calculating PSNR can be given by

PSNR = 10 log10(
MAX2

MSE
) (17)

whereMAX represents the maximum value of the pixel range
in the image, which is 255 in this paper. MSE denotes the
mean square error between the real image and reconstructed
image. The higher the PSNR measured between two images,
the closer the reconstructed image is to the real image.

In this paper, to ensure the comprehensiveness of model
evaluation results, the structural similarity (SSIM) are also
used as performance evaluation metric. For the SSIM, it mea-
sures the similarity of images comprehensively from the three
dimensions of brightness, contrast and structure, and the
formula for calculating SSIM can be given by

SSIM (x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x

+ σ 2
y

+ c2)
(18)

where x and y correspond to SR image and original HR image
respectively. µx and µy represent gray average values of the
two images respectively. σxy is the covariance of x and y,
σx and σy denote the variances of x and y respectively. c1
and c2 are constants. The closer the SSIM value is to 1, the
more similar the structure of the SR image and the original
HR image is, and the better the model reconstruction effect
will be.

C. ABLATION EXPERIMENT
To verify the improvement of the model reconstruction effect
of LMRM and RSAM proposed in this paper. Four kinds of
network blocks, MSRB [22], VLDB [23], MFRB [24] and
LMRM, are connected and unconnected to the RSAM respec-
tively. The connection modes between modules all adopted
the dense feature fusion structure. The objective evaluation
metrics PSNR, SSIM and params are used for evaluation, and
Table 1 shows the 2x reconstruction results of each model on
Urban100 data set withmore details. The best value is bolded,
and the second-best value is underlined.

As can be seen from Table 1, adding RSAM to the net-
work with the same feature extraction module can not only
effectively improve the reconstruction effect, but also hardly

increase the number of parameters in the network model.
Herein, the reason why we say they barely increase the
number of parameters while they have the same number of
parameters is that we round the argument to the third decimal
place, and we should always keep in mind that the parameter
is measured in megabits, a relatively small weight and rank
unit, So its third decimal place is of little real significance as
an indicator of the number of parameters in a model.

For example, after adding RSAM to a VLDB network, its
PSNR and SSIM increase by 0.07dB and 0.0007 dB respec-
tively, while its corresponding parameter number hardly
increases. Similarly, after adding RSAM to the MSRB,
MFRB and LMRM networks, the number of the three model
parameters did not increase significantly, while their PSNR
increased by 0.03dB, 0.05dB and 0.02dB, respectively, and
SSIM increased by 0.0003 on average. This proves that the
RSAM can effectively improve the model reconstruction
effect and the number of parameters is almost constant.

For the same connection mode, the reconstruction effect of
the proposed LMRM is obviously better than that of MSRB
VLDB and MFRB. For example, when the RSAM module
is added to all four networks, compared with MSRB, VLDB
and MFRB, the PSNR of the proposed LMRM proposed is
increased by 0.18dB, 0.14dB and 0.11dB, respectively, and
the SSIM is increased by 0.0016 on average. Furthermore,
the number of parameters decreased by 0.16M, 0.64M and
0.36M, respectively, which proves that our LMRM can effec-
tively utilize image feature information and improve model
reconstruction performance.

All in all, through the above experiments, we can draw the
following conclusions: both the LMRM and RSAMmodules
proposed in this paper can effectively improve the model
reconstruction effect.

D. EXPERIMENTAL RESULTS AND DISCUSSION
In this subsection, to further verify the validity of our RAMF
network, 11 advanced image SR networks (i.e., MSRN [22],
DID-D5 [23], MDFN [24], Bicubic [25], SRCNN [26],
VDSR [27], DRCN [28], LapSRN [29], IMDN [30], OISR-
SK2 [31] and LatticeNet [32]) are tested on the four bench-
mark datasets and compared with the proposed algorithm in
terms of objective evaluation indicators and subjective visual
effects. All the networks are tested and compared under the
three scaling factors of ×2, ×3 and ×4 to fully verify the
effect of the proposed RAMF network.

1) OBJECTIVE EVALUATION
The results of different models under objective evaluation
metrics PSNR and SSIM are shown in Table 2.
As can be seen from Table 2, compared with the Bicubic,

SRCNN, VDSR, DRCN and LapSRN networks on the
4 benchmark datasets with the ×2 scaling factor, the PSNR
of the RAMF proposed in this paper increases by 4.14dB,
1.74dB, 0.92dB, 0.9dB and 1.02dB on average, respectively.
Besides, compared with the multi-scale network models
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TABLE 2. Comparison of index performance of each network under the four benchmark datasets when scaling factor is 2, 3 and 4, respectively.

MSRN, DID-D5 and MDFN of the same type with the ×4
scaling factor, the PSNR obtained by our RAMF on the four
benchmark datasets is also improved by 0.30dB, 0.07dB and
0.04dB on average, respectively.

In addition, it is worth noting that the RAMF proposed in
this paper also has a breakthrough in the evaluation index

of SSIM which is difficult to improve. For example, com-
paredwith the Bicubic, SRCNN,VDSR, DRCN and LapSRN
networks on the 4 benchmark datasets with the ×3 scaling
factor, the SSIM obtained by our RAMF is also improved
by 0.0827, 0.0324, 0.0168, 0.0164 and 0.0165 on aver-
age, respectively. Furthermore, compared with the advanced

59536 VOLUME 11, 2023



Q. Kou et al.: Image SR Based on RAMF

networks, IMDN, OISR-SK2 and LatticeNet in recent years
on the 4 benchmark datasets with the ×2 scaling factor,
the SSIM obtained by the proposed RAMF is improved by
0.0020, 0.0004 and 0.0008 on average, respectively. More-
over, compared with the multi-scale network models, MSRN,
DID-D5 and MDFN, of the same type with the ×4 scal-
ing factor, the SSIM obtained by our RAMF on the four
benchmark datasets can also be improved by 0.0088, 0.0021,
0.0012 on average, respectively.

According to the above results analysis, we can conclude
that the image reconstruction effect of RAMF proposed in
this paper are obviously superior to the other 11 networks
under the three scaling factors. Especially, compared with
the DID-D5 network published in ICPR 2021 and MDFN
network published in 2022, the PSNR on the Urban100 test
set with rich image texture information can be improved
by 0.19dB and 0.13dB on average, and SSIM increased by
0.0039 and 0.0027 on average.

2) SUBJECTIVE EVALUATION
In terms of subjective visual effects, to more intuitively
observe and discover the superiority of the proposed RAMF,
partial reconstruction results of different networks under the
Urban100 data set with rich image details are shown in
Figure 4-6. Since the larger the scaling factor, the higher the
requirement on network model performance, and the more
difficult it is to reconstruct. Therefore, to fully prove the effec-
tiveness of the proposed RAMF network, the reconstruction
results of different networks with the ×4 scaling factor are
selected in this paper for display.

As can be seen from Fig. 4, the clarity of glass window
images reconstructed by different networks is quite different.
For example, the reconstructed images by the Bicubic and
SRCNN are very fuzzy with unclear lines and poor visual
effects. Although the reconstruction effect has been improved
to a certain extent by the IMDN and DID-D5 networks, and
the line images are basically clear, the vertical lines are still
overlapped and the edges are blurred. For the MSRN and
MDFN, the line outline of the image reconstructed by the
two networks is clear, but the lines at the intersection are
blurred and have a ringing effect. However, compared with
the other networks, RAMF has the clearest image texture
details, and basically does not have ringing phenomenon,
achieving the best reconstruction effect. Similarly, almost the
same reconstruction effect can also be observed in Fig. 5.
Seen from Fig. 6, we can find that except for RAMF,

the zebra crossing images reconstructed by the other six
methods all have the problem of line direction confusion.
Especially, the image reconstructed by Bicubic, SRCNN,
IMDN and DID-D5 could hardly see the lines in the right
direction, resulting in serious blurring.What’smore, although
some lines in the correct direction can be seen in the image
reconstructed by MSRN and MDFN, serious distortion still
exists and ringing effect is obvious. Compared with the other
6 networks, the RAMF network proposed in this paper has
the best reconstruction effect, especially to solve the problem

TABLE 3. Comparison of complexity and performance indicators of
different models.

of line orientation confusion, and the reconstructed image
texture details are very rich. To sum up, the above experi-
mental results demonstrate that the proposed RAMF using
RSAM and LMRM can achieve outstanding reconstruction
effect both in terms of objective evaluation indicators and
subjective visual effects.

E. PARAMETER ANALYSIS
To set the parameters of the proposed RAMF network reason-
ably, this subsection further analyzes the effects of the number
Q of LMRM in the RAMF and the number of convolutional
layer output channels N in the LMRM on the model perfor-
mance, in which the N of LMRM (a) is 64 and that of LMRM
(b) is 128. Two sets of experiments are designed to test the
influence of Q and N on the model performance, and the test
results are shown in Fig. 7. In addition, the NH in the Fig. 7
indicates the cross connection of LMRM (a) and LMRM (b).

As can be seen from Fig. 7(a), when the number of
convolutional layer output channels N in LMRM remains
unchanged, themore LMRM, themoremodel parameters, the
bettermodel performance, indicating that increasing the num-
ber of LMRM can improve the model reconstruction effect,
but also lead to an increase in the number of model parame-
ters. It can be observed from Figure 7 (b) that compared with
the model only used LMRM (a) to extract image features, the
PNSR of the model used LMRM (a) and LMRM (b) cross-
connected is higher and much more stable. What’s more,
compared with the model only used LMRM (b) to extract
image features, the model used LMRM (a) and LMRM
(b) cross-connected have fewer parameters and almost no
reduction in reconstruction performance.

According to the experiments in this section, increasing
the number of LMRM in the RAMF and the number of con-
volutional layer output channels in the LMRM can improve
the model performance to some extent, while the number of
model parameters will also increase, leading to the recon-
struction efficiency will also be affected.

Therefore, to balance the number of model parameters
and reconstruction effect, and obtain higher reconstruction
efficiency, the number of LMRM in RAMF is finally set to
16, and LMRM (a) and LMRM (b), whose output channels
of the convolutional layer are set to 64 and 128 respectively,
are cross-connected.
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FIGURE 4. Reconstruction results of Image002 in Urban100.

FIGURE 5. Reconstruction results of Image060 in Urban100.

F. COMPLEXITY ANALYSIS
Generally, the complexity of the network will affect the com-
puting speed and reconstruction performance of the model.
Although the reconstruction performance can be improved
to a certain extent by deepening the depth of the network,
the complexity of the model and the training time will also
increase, resulting in the decline of the reconstruction effi-
ciency. To balance the number of model parameters and
the reconstruction effect, the lightweight multi-scale residual
module LMRM and residual spatial attention module RSAM
are proposed in this paper. Then, the RAMF network is
constructed, which can improve themodel performancewhile
reducing the number of model parameters.

To verify the effectiveness of the proposed RAMF, the
four networks, DID-D5, OISR-SK2,MSRN andMDFN,with
better performance among the 11 comparison algorithms in

this paper are selected for comparison experiment in terms
of model complexity and reconstruction performance respec-
tively. The Urban100 (×4) is used for test dataset, and Table 3
shows the complexity information of different networks,
as well as the reconstruction results in PSNR and SSIM. The
best value is bolded, and the second-best value is underlined.
The best results are shown in bold and the sub-optimal values
are underlined.

As can be seen from Table 3, compared with the MSRN
network with larger parameters, the PSNR and SSIM of
the proposed RAMF are significantly improved by 0.45dB
and 0.0082, respectively. Furthermore, its parameter num-
ber is reduced by 25.49%, while Flops is also significantly
decreased. Compared with the DID-D5 and OISR-SK2 net-
works, the PSNR and SSIM of the proposed RAMF network
not only increase by 0.13dB and 0.0035 on average, but
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FIGURE 6. Reconstruction results of Image093 in Urban100.

FIGURE 7. PSNR comparison of the RAMF with different Q and N.

also the number of parameters and Flops decreased signif-
icantly. For the MDFN network, its number of parameters
and the amount of computation are 7.9% and 7.1% higher
than the proposed RAMF, but its PSNR and SSIM are 0.1dB
and 0.0034 lower than our RAMF, respectively. The above
experiments fully prove that the proposed RAMF can not

FIGURE 8. Reconstruction effect of 220075 in BSD100.

FIGURE 9. Reconstruction effects of monarch in Set14.

only achieve good reconstruction effect, but also has fewer
parameters, low computational complexity, fast processing
speed and high objective evaluation index.

To observe the specific reconstruction effects of the five
networks more directly in subjective visual evaluation, Fig. 8
and Fig. 9 show their ×4 reconstruction results on 220075 in
test set BSD100 and monarch in test set Set14, respectively.

As can be seen in Fig. 8, OISR-SK2 and MDFN show
ringing effect at the black stripes on the zebra body, and the
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FIGURE 10. Comparison of PSNR and parameter number of different
models on Urban100 (×3).

lines are obviously blurred, making it impossible to see the
outline of the lines. Besides, the zebra stripes reconstructed
by MSRN and DID-D5 are relatively clear, but the fringe
of the stripes is still blurred. Compared with the other four
algorithms, the image fringes reconstructed by the proposed
RAMF network are the clearest, and it can effectively reduce
the edge blur phenomenon. In Fig. 9, compared with MSRN,
OISR-SK2, DID-D5 and MDFN, the butterfly image recon-
structed by our RAMF has a clearer outline at the antennae
and ismore clearly distinguishable from the pink background,
which indicates that our network can reconstruct a more
realistic image. The experimental results of the above sub-
jective and objective indicators show that our RAMF can
not only effectively improve the image reconstruction effect,
but also reduce the number of model parameters, improve
the utilization rate of feature information, and realize more
efficient image super-resolution reconstruction.

To further prove the superiority of RAMF proposed in this
paper, Fig. 10 shows the comparison of the PSNR and param-
eter number obtained by different networks on Urban100
(×3). As can be seen from Fig. 10, although the param-
eter number of our RAMF is higher than that of SRCNN,
VDSR, DRCN and LapSRN, the PSNR of the reconstructed
image is also much higher than them. Compared withMSRN,
DID-D5, OISR-SK2 and MDFN, our RAMF achieves the
highest PSNR while the number of parameters is less than
theirs, which fully demonstrates the superiority of the pro-
posed network.

IV. CONCLUSION
In this paper, an image super-resolution reconstruction
network based on residual attention and multi-scale fea-
ture fusion is proposed. By constructing 16 lightweight
multi-scale residual modules, abundant image feature infor-
mation of different sensitivity fields with fewer parame-
ters are obtained. Then, each LMRM is connected by a
dense feature fusion structure, which reduces feature loss and
improves information utilization. Finally, a residual spatial

attention module is developed and used to specifically learn
high-frequency feature information and reasonably allocate
computing resources. Comprehensively experimental results
on four databases demonstrate that the proposed network
can achieve remarkable reconstruction effect, high objective
evaluation index and fast processing speed while enjoying a
fewer network parameters and lower computational complex-
ity. In future work, channel attention and its combination with
spatial attention used in this paper will be explored to further
improve the effect of image super-resolution reconstruction.
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