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ABSTRACT Power generation companies, which participate in the electricity trading mechanism, need
to determine optimal capacity bidding strategy to maximize their operational profit in Korea. Since the
Price-setting Power Generation Schedule determines the profit of power generators, it is important to
predict Price-setting Scheduled Energy during the trading day before the bidding phase. We propose
a methodology for predicting the Pricing-setting Scheduled Energy from the power exchange without
optimizing it. Instead of simulating the planning process, machine learning algorithms are applied and
compared in the process of predicting the Pricing-setting Scheduled Energy. The input variables consist
of seasonal and price information including calendar, fuel cost, and system marginal price. Three categories
of machine learning (ML) algorithms including single, bagging and boosting approaches are implemented
and tested to compare their performances. The computational experiments show that ML algorithms with
price variable are shown to be better in terms of the considered measures. In addition, boosting approach is
more effective than single and bagging approaches.

INDEX TERMS Electricity power generation schedule, electricity trading, machine learning, price-setting
scheduled energy.

NOMENCLATURE
Symbols and acronyms:
KPX Korea Power Exchange.
PPGS Price-setting Power Generation

Schedule.
PSE Price-setting Scheduled Energy.
SMP System marginal price.
DT Decision tree.
SVM Support vector machine.
RF Random forest.
ET Extra trees.
GB GradientBoost.
CB CatBoost.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiyi Li .

XGB XGBoost.
TP True positive.
TN True negative.
FP False positive.
FN False negative.

I. INTRODUCTION
A central power exchange, known as the Korea Power
Exchange (KPX), coordinates electricity supply with the
anticipated demand across the entire country in the Korean
electricity trading market. According to the KPX market
operation rules, the power exchange controls market opera-
tions including demand forecasting, bid management, power
generation scheduling, monitoring, and dispute mediation.

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 58705

https://orcid.org/0000-0003-2141-6761
https://orcid.org/0000-0002-9487-2365
https://orcid.org/0000-0001-6986-6417
https://orcid.org/0000-0001-7498-8005


D. Lee et al.: ML-Based Day-Ahead Prediction of PSE in the Korean Electricity Trading Mechanism

It determines the next-day electricity production schedule
of each plant to meet the expected electricity demand while
considering each generator’s operational characteristics.

Power generation companies participate in the pool to
determine the transaction price and volume of electricity to be
produced the next day. The price of electricity determined in
the electricity market follows the same principle as the price
of general products determined in a competitive market at the
point of equilibrium between supply and demand. Themarket
price in Korea’s electricity market is determined hourly, one
day before the day of electricity trading when the predicted
electricity demand and supply curves formed by generators
participating in supply bidding meet and intersect system
constraints. Power generation companies determine their bid-
ding strategies based on the demand forecast and competitors’
bidding plan prediction. If more companies participate in the
market, the price of electricity decreases, and the profits of
the participants become lower. Therefore, it is quite important
for a power generation company to accurately predict the next
day’s power generation schedule of the power exchange.

The power generation planning program, which is called
the Price-setting Power Generation Schedule (PPGS), deter-
mines the generation output of each power plant while mini-
mizing the total cost of the generators participating in supply
bidding. The power exchange forecasts the electricity demand
on the trading day and determines the power generation
schedule by considering the bidding data of the participating
power plants and forecasted demand load. The objective of
the PPGS is to minimize the system marginal price (SMP).
The unit production cost of the most expensive power gen-
erator from the plan determines the marginal price, which
becomes the baseline for the cost settlement of each power
generator. In a typical setting, either nuclear or coal plants
determine the marginal price during off-peak hours, whereas
expensive liquefied natural gas (LNG) and oil plants deter-
mine the price during peak hours as depicted in Fig. 1. The
power generation level of each plant from the PPGS is called
Price-setting Scheduled Energy (PSE), which is important
information to power generation company. Based on the PSE
information, power generation companies develop their own
bidding strategy.

Once the PSE is determined, the power exchange generates
an operational power generation schedule by considering
detailed constraints such as the network-wide distribution
restriction and finalizes the unit commitment and power dis-
patch solution as show in Fig. 2. Power generation compa-
nies in the pool build their own production plans based on
the finalized schedule from the power exchange. The power
exchange revises the operational power generation schedule
in real time during the trading day, reflecting any changes
in electricity demand and supply. After the trading day, the
power exchange pays the cost of power generation based on
the price settlement rule specified in the operation rules.

Power generation companies, such as LNG and oil genera-
tors, must determine their optimal capacity bidding strategies
tomaximize operational profit. Because the PPGS determines

each power generator’s profit, the generation company fore-
casts the electricity demand load and predicts the system
marginal price and PSE. The PSE of a power generator is the
power generation level obtained from the PSE of the power
exchange. If a power generation company has any resource
constraints, it is better to restrict the bidding capacity when
its power generation level is expected to be low. Therefore,
it is important for power generation companies to predict their
PSE on the trading day.

Predicting the PSE is important; however, existing studies
havemainly focused on power demand forecasting and power
generation plan optimization. For demand forecasting, many
studies have been conducted that applied traditional demand
forecasting techniques such as regression analysis, support
vector regression (SVR) and autoregressive integrated mov-
ing average (ARIMA) [2], [3], [4]. Recently, demand fore-
casting based on deep learning has been investigated [5], [6].
To determine the power generation plan, optimization tech-
niques, such as priority ordering, Lagrangian relaxation, vari-
able neighborhood search, and mixed integer programming,
have been successfully applied [7], [8], [9], [10].

In this study, we propose a methodology for predicting the
PSE from power exchange without optimization. Optimizing
the power generation plan is expected to be more effective
in predicting the PSE. However, it is difficult for each power
generation company to secure all necessary data to optimize
the power generation schedule. To simulate the power genera-
tion planning process of the power exchange, it is essential to
collect production information of each participating company
in the pool and forecast the electricity demand during the
trading day. If there are any mismatches, the prediction qual-
ity of the resulting power generation plan and the associated
PSE of the power generation company are severely affected.
Instead of simulating the power generation planning process,
machine learning algorithms were applied to predict the PSE.
Since the devised algorithms predict the future PSE solely
based on time-series history data, they do not require any
detailed information about production characteristics. The
contributions of this study are listed as follows.

(1) To find the outstanding machine learning algorithm
among the well-known machine learning algorithms for the
considered problem, we compare PSE prediction perfor-
mances by implementing them.

(2) Through grid search with a cross-validation strategy,
the optimal hyper-parameters for each algorithm that result
in the best PSE prediction are determined in this study.

(3) The results of various experiments suggest that the SMP
variable is essential to improve PSE prediction performances.
Moreover, it is found that XGB is to be more effective in
predicting the PSE in the real-world for all seasons.

The rest of this research is organized as follow. Section II
reviews the previous studies related to this research. The
proposed research framework and methods are presented in
Section III. In Section IV, the comparison analysis with ML
algorithms for PSE prediction is performed. Finally, we pro-
vide a summary and implications of this study in Section V.
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FIGURE 1. An example of price-setting power generation schedule illustrated in the KPX homepage [1].

FIGURE 2. A framework for electricity bidding and settlement procedures
from the KPX homepage.

II. LITERATRUE REVIEWS
In terms of energy operation, multiple mixed integer linear
programming was formulated [11]. Qin et al. [12] suggested
a swarm optimization approach dealingwith uncertain renew-
able energy generation and heat demands. Another study
proposed a combined method of simulation and optimization
approaches to find optimal strategies in a district heating
system [13]. More recently, a hybrid method to operate a
residential energy system composed of a photovoltaic, fuel
cell, boiler, and storage units [14]. Optimization approaches
are expected to optimally operate energy system. However,
their practical application in real-world scenarios may be
limited by the high computational costs associated with their
implementation.

Prior studies have been employed statistics approach to
predict energy demands. A study suggested ARMIA-based
model to predict energy demand [15]. Another study
compared the energy demand prediction performances

between ARIMA and seasonal ARIMA (SARIMA) by
using real-time load data of Assam [16]. This research
found that the SARIMA that considers the seasonal
trends provides better performances than the ARIMA.
Wang et al. [17] conducted comparison analysis with vari-
ous SARIMA models by using electricity demand obtained
from China. Although these methods are easily imple-
mented in the real-world environment, the performances
may not be guaranteed when energy demand dynamically
changes. This is because these approaches rely on his-
torical demand trends and seasonal patterns, which may
not always accurately reflect current and future energy
requirements.

As alternatives, machine learning (ML) and neural net-
work (NN) approaches have been utilized to improve energy
demand prediction. Guo et al. [18] used SVR, extreme learn-
ing, andNNwith correlation analysis to develop ahead energy
demand prediction models. This study found that the optimal
number of hidden layer nodes and feature sets through experi-
ments. A study executed a comparative analysis extreme gra-
dient boosting (XGB) with NN [19]. Recently, an extended
comparative analysis for energy demand in a district heat-
ing system conducted by employing various ML and NN
approaches [20]. Through numerical experiments, the LSTM
and XGB are consistently provide better performances than
others. In addition, a study proposed hybrid method con-
sisting of gate recurrent network (GRU), masked multi head
attention, and light gradient boosting machine for predicting
energy demand [21] and demonstrated the hybrid method is
more effective to predict energy demand compared to other
ML and NN. The previous results suggest that while ML and
NN are useful to predict energy demands, accurate model
selection is required through a comparative analysis since the
performances between approaches are different according to
the problem considered.
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III. MACHINE LEARING ALGORITHMS FOR PSE
PREDICTION
This section introduces the machine learning (ML) algo-
rithms proposed for predicting PSE in advance. First,
Sections II.A and II.B describe the proposed framework
and considered variables, respectively. Next, we explain
in Section II.C the proposed ML algorithms, includ-
ing the single, bagging ensemble, and boosting ensem-
ble algorithms. Finally, in Section II.D, grid search and
cross-validation strategies are explained, which search for the
best hyper-parameters that can improve the performance of
the ML algorithms. Table 1 show notations and nomenclature
used in this paper.

A. PROPOSED FRAMEWORK
The proposed framework for PSE prediction and compares
their performances is presented in Fig. 3. The framework
consisted of training and testing phases. In the first train-
ing stage, we prepared datasets for training that contained
calendar information, SMP, fuel cost, and PSE schedule his-
tory. In Step 1.1, the preprocessing is conducted to redesign
the PSE schedule history for each period. If an electricity
production task is required, it is one; otherwise, it is zero.
Next, the algorithms considered in this study is to set up
presented in Step 1.2. Subsequently, a pool of model parame-
ters is determined to develop PSE prediction models. Finally,
ML algorithm-based PSE predictionmodels are implemented
using the preprocessed training dataset and a grid search with
a cross-validation strategy which is adopted to search for the
best hyper-parameters to enhance the performance of PSE
prediction [22].

In the testing phase, the identical preprocessing employed
in the training phase is carried out using the testing dataset
presented in Step 2.1. In Step 2.2, we perform the comparison
analysis utilizing the selected algorithms that demonstrate the
best prediction performances in the training phase and the
preprocessed testing dataset through the various experiment
settings.

FIGURE 3. Proposed framework for PSE prediction models.

B. VARIABLES
The input and output features considered in this study are
represented in Table 1. The input variables consist of sea-
sonal and price information. The seasonal variables con-
tain hourly, daily, and monthly information, and the price
variables include the fuel cost and SMP information. These
variables are reasonable to consider since they are directly
associated with changes in PSE schedules. In particular, the
SMP is strongly related to the expected schedule of PSE a day
ahead, as the schedule of PSE is determined after the expected
SMP is calculated from the KPX [23]. Thus, we investigate
the differences in prediction performances when the SMP
variable is used (Section III-B).

TABLE 1. Variables considered in this study.

C. PSE PREDICTION MODELS
As introduced in [24], The ML algorithms are typically
categorized into single, bagging, and boosting approaches.
Single machine learning approach is commonly used in many
applications and effective in situations where the data is
well-understood and the problem is well-defined. Bagging
approach is one of ensemble method that aims to reduce
variance of a model by training multiple weak models in
parallel and combining their predictions. This approach trains
a weak model on each sample by using bootstrap sampling
which helps with random sampling from the training data.
Unlike bagging approach, which trains weak models in par-
allel, boosting approach trains weak models sequentially by
emphasizing the misclassified samples in each iteration. Each
model tries to improve the prediction of the previous model
by focusing on the samples that were misclassified.

The previous study related to this research applied ML
algorithms to compare their performances in energy predic-
tion problem separately for each category of single, bagging,
and boosting [25]. Accordingly, these approaches are selected
in this study as shown in Table 2, and we conduct comparison
analysis by utilizing them.

TABLE 2. Applied machine learning algorithms.

First, for the single approach, the decision tree (DT)
algorithm searches for the best path that can observe the
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hourly PSE schedule a day ahead by hierarchically investi-
gating the nodes connected to each other [26]. The advan-
tage of this algorithm is that it can interpret why an out-
put value is achieved using an input value from the nodes
[27]. SVM is based on training to find the best hyperplane
among multiple hyperplanes in a high-dimensional space that
enables accurate prediction of the hourly PSE schedule a day
ahead [28].

Next, bagging approaches such as RF and extra trees (ET)
are considered. The purpose of bagging is to improve the
prediction performance of a PSE day-ahead schedule by com-
bining a set of algorithms [25]. RF creates multiple different
trees in the training phase to search for the best tree that
shows high prediction accuracy [29] compared to DT. How-
ever, the outcome interpretation of RF is more difficult than
that of DT, because the investigation of all trees is difficult.
The output function is denoted as Z and is calculated using
Equation (1) where pt (y | x) is the probability distribution
of each tree t , x is a set of samples, and T is total trees,
respectively.

Z = argmax
1
T

T∑
t

pt (y | x) (1)

Finally, ET is very similar to RF, whereas ET randomly
chooses candidate trees among multiple trees to split nodes.
It successfully reduces the training time and biases compared
to RF [24].

Lately, for the boosting approach, gradient boosting
(GB), CatBoost (CB), and XGBoost (XGB) are employed.
GB attempts to select the new tree to enable accurate forecast-
ing of a PSE schedule by using categorical cross-entropy from
the previous tree. A GB uses decision trees as base predictors
in each training step to reduce the loss function. As noted by
[30], the output function is presented as follows.

Z =

J∑
j=1

βjg(x; bj) (2)

where the function g(x; bj) is a predictor x is the input values,
βj is the expansion coefficients, and bj is the parameters
of the applied model. CB is useful not only for supporting
categorical and numerical variables, but also for improving
training performance by using a level-wise method. The
output function is explained by [31] and calculated using
Equation (3) where cj is the leaf value, and Rj represents
the set of disjoint regions that correspond to the leaves of
the tree.

Z =

J∑
j=1

cj{x∈Rj} (3)

As XGB is efficient in overcoming the overfitting problem by
utilizing a regularization method [32], it is likely to forecast
a day-ahead PSE schedule.

D. GRID SERACH WITH CORSS-VALIDATION STRATEGY
The considered algorithms require considerable computa-
tion time to obtain optimal hyper-parameters that yield the
best outcome from the number of parameters. Moreover,
they may experience an overfitting problem when the best
hyper-parameters are obtained from only a particular test
dataset. Thus, we applied grid search with a cross-validation
strategy to easily obtain the best hyper-parameters by explor-
ing the combinations of grouped hyper-parameters [32].
Here, five cross-validation tasks are used as the most popular
[25], [32], [33]. First, different hyper-parameters for each
algorithm within reasonable ranges are set up. Second, the
data is equally separated into four folds that are utilized
for training, and the remaining fold is used for evaluation
of prediction performance. Finally, each algorithm searched
for the best hyper-parameters by evaluating the performance
based on the accuracy of all combinations of grouped hyper-
parameters. This task is repeated when five cross-validations
were completed.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
We collected the PSE schedules of a power generator in
South Korea in 2019. Among them, 7,416 training instances
were employed in the grid search phase. 1,344 test instances
representing for every two weeks in February, May, August,
and November were utilized to evaluate the prediction per-
formance of the applied ML algorithms across seasons. SMP
and fuel cost data were obtained from the KPX database.

An example of the input and output values, such as seasonal
data, SMP data, and the PSE schedule on a particular day is
shown in Table 3. Seasonal variables are simply presented as
numerical values [34]. The units for the SMP and fuel cost are
Korean republic won (KRW) for 1 Gcal, corresponding to the
considered power generator. Each PSE schedule is expressed
in binary values of 0 or 1 through preprocessing in Steps 1.1
and 2.1 presented in Fig. 3.

TABLE 3. Example of input and output values in a day.

To evaluate the predictive ability of each algorithm through
Step 2.2 in Fig. 3, the accuracy, precision, recall, and F1
metrics are adopted and defined as Equations (4)-(7). TP and
FP are defined as the number of electricity production tasks
that are correctly and incorrectly estimated from the number
of true production tasks, respectively. Further, TN and FN
are the number of correctly and incorrectly predicted tasks
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among the number of false production tasks, respectively.

Accuracy =
TP+ TN

TP+ FN + FP+ TN
(4)

Precision =
TP

TP+ FP
(5)

Recall =
TP

TP+ FN
(6)

F1 =
2 × (Precision× Recall)
Precision+ Recall

(7)

These measures are typically utilized to examine the per-
formance in many classification problems [35], [36], [37].
The F1 metric is the weighted average of precision and
recall scores. Based on this metric, we can consider the
prediction ability of an algorithm in terms of both precision
and recall. The experiments are executed in the following
hardware settings: Ryzen 3900X CPU and 32 GB RAM on
64-bit Windows. The Python SciKit-learn library was used to
implement the ML algorithms [38].

The obtained best hyper-parameters of each algorithm
from grid search with cross-validation strategy through Steps
1.2-1.4 are listed in Table 4. The hyper-parameter values C ,
G, and L are cost, gamma, and learning rate, respectively.
Notably, the hyper-parameters of each algorithm are differ-
ently acquired depending on whether SMP data is used or
not. Therefore, the grid search is essential to be addressed
regardless of ML algorithms when the considered input vari-
ables change. The sets of the designed hyper-parameters for
each algorithm for Step 1.3 are introduced in Table 8 in the
Appendix.

TABLE 4. Best hyper-parameters observed by grid search for each
algorithm.

B. EXPERIMENT RESULTS
Figs. 4 (a)-(d) visualizes the accuracy changes obtained
through grid search for SVM, ET, RF, and XGB among all
algorithms when SMP data is additionally used as an input
variable. SVM shows less effective performances. The others
are approximately the same, but XGB has the best prediction
performances of the day-ahead PSE schedule. These results
indicate that the prediction performances change according

to the hyper-parameters; thus, it is essential to investigate the
best hyper-parameters by using grid search.

Figs. 5 (a) and (b) presents the receiver operating character-
istic (ROC) curve results of each algorithm according to the
variables used; their area under the curve (AUC) results are
displayed in Table 5. For each algorithm, a ROC curve closer
to the red dotted line indicates that this algorithm precisely
forecasts the PSE schedule. In contrast, a ROC curve closer
to the black dotted line represents random prediction. Fur-
thermore, the AUC indicates the accurate prediction ability
of an algorithm; a value closer to 1 means that an algorithm
perfectly forecasts a day-ahead PSE schedule.

As shown in Figs. 5 and Table 5, SVM has the same
performances for PSE schedules regardless of the usage of
SMP data. Although RF and CB underperform regarding
the prediction of PSE schedules when SMP data is used,
the others improved their performances. Specifically, XGB
exhibits the best prediction performances (i.e., 0.960). These
results indicate that SMP information is necessary to enhance
the prediction performances of the day-ahead PSE schedule.
Since SMP prediction models have been developed [39],
[40] to show excellent performances, we believe that the
SMP can be utilized as an input variable. In addition, the
boosting ensemble approach is more suitable for estimating
a day-ahead PSE schedule than the other approaches. Addi-
tionally, XGB is likely to accurately forecast PSE schedules,
whereas SVM tends to randomly predict PSE schedules.

TABLE 5. AUC results of each model against used variables.

Sensitivity analysis is carried out using D1-D6 datasets
which are set up as presented in Table 6.

D1, D2: Testing instances for the first-second and the
third-forth weeks in December, March, June, and September,
and training instances for the remaining instances

D3, D4: Testing instances for the first-second and the
third-forth weeks in January, April, July, and October, and
training instances for the remaining instances

D5, D6: Testing instances for the first-second and the
third-forth weeks in February, May, August, and November,
and training instances for the remaining instances

The results for sensitivity analysis are presented in
Figs. 6 (a) and (b). The findings suggest that there are per-
formance differences between the models according to the
approach that divides into training and testing datasets. How-
ever, it is important to note that although no one model is
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FIGURE 4. Detailed training results of SVM, ET, RF, and XGB according to grid search.

TABLE 6. The results for sensitivity analysis using D1-D6.

dominant in performance for all datasets, XGB consistently
demonstrates better performances than the other models.

In this section, the prediction performances among the
algorithms considered with respect to each season are com-
pared since the change in the day-ahead PSE schedule largely
depends on the season. In general, relatively large changes are
observed in spring and autumn, whereas comparatively small
changes are observed in summer and winter. This means

TABLE 7. F1 scores observed by each algorithm according to seasons
(bold means best performance).

that the prediction of a day-ahead PSE schedule is more
complicated in spring and autumn than in other seasons.

The F1 scores obtained by each algorithm against each
season are presented in Table 7. Here, bold numbers indi-
cate the best performances among all algorithms. In autumn,
all algorithms show less effectiveness to forecast day-ahead
PSE schedules. Interestingly, the prediction performances
of XGB are relatively high, exhibiting F1 score over 70%.
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FIGURE 5. Detailed testing results of SVM, ET, RF, and XGB.

FIGURE 6. The results of sensitivity analysis.

Moreover, for the other seasons, XGB identifies a day-ahead
PSE schedule with over 90 % F1 score. As a conclusion,

TABLE 8. Designed hyper-parameters of each algorithm.

XGB is successful in observing day-ahead PSE schedules for
all seasons. Therefore, it is believed that this model could
contribute to operating the power generator and maximize
revenue in the real world.

V. CONCLUSION
In this study, we applied the most popular ML algorithms
to investigate the most suitable algorithm for predicting the
PSE from power exchange. The proposed algorithms learn to
understand the relationship between input and output values.
These methods perform grid search with a cross-validation
strategy to search for the best hyper-parameters that exhibit
excellent prediction performance.

The research presented in this paper aims to explore a suit-
able ML algorithm for predicting the PSE day-ahead. To this
end, the study conducts a numerical comparative analysis
between different ML algorithms, including DT, SVM, ET,
RF, GB, CB, and XGB. The findings in Fig. 5 and Table 5
show that the SMP variable plays a crucial role in enhancing
the performance of PSE prediction when applied XGB. This
finding has important practical implications, as an accurate
prediction of SMP can facilitate the accurate prediction of
PSE in real-world settings.

To further evaluate the performance of the different ML
algorithms, the study presents the results of the analysis
across four different seasons, as shown in Table 7. The
findings demonstrate that the boosting approach consistently
outperforms the other algorithms across all seasons. In partic-
ular, XGB outperforms the other algorithms with the highest
prediction accuracy and the lowest error rate. This finding is
consistent with previous studies related to energy prediction
problems [25], [41] and provides further evidence for the
effectiveness of the XGB algorithm.

Still, the study has certain limitations. As it is not easy to
obtain PSE schedules in the real-world, this study only used
PSE schedules for one year as the training and test datasets.
Moreover, we compared PSE prediction performances of ML
algorithms without implementation of deep learning tech-
niques since deep learning techniques are known underper-
forming when the number of training instances is low [42].
Hence, in the future, we plan to compare the PSE prediction
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performances of deep learning techniques through more data
collection.

APPENDIX
The appendix presents the designed hyper-parameters for
each algorithm. The method for deriving hyper-parameters
when deploying the ML algorithms was based on the
recommendations provided in [24]. Based on these sets
of hyper-parameters, each algorithm searches for the best
hyper-parameters according to the input variables.
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