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ABSTRACT We consider the problem of choosing the best of a set of sequential offers proposed by the
market in a house-selling process. During each decision epoch, the seller sets a listing price, observes the
offers and decides whether to accept the maximum one or to reject all of them. We model a fixed holding
cost, which is the constant marketing cost of searching for buyers, and a variable cost that is proportional to
the number of offers received during each epoch. The objective is to maximize the expected revenue. Most
previous studies assume a stationary known distribution from which the buyers’ offers are generated and
which reflects the market valuation of the house. In contrast, we assume that the number of incoming offers,
and the distribution from which each individual offer is generated, are affected by the seller’s listing price
(i.e., price-based demand response). Thus, we propose a new approach for the selling policy, which consists
of the listing price and the offer acceptance threshold in each period. We derive the seller’s optimal selling
policy and apply it to a scenario involving the sale of individual residential properties in Ames (Iowa), which
yields results consistent with empirical observations.

INDEX TERMS Housing market policy, dynamic pricing, sequential decision making, optimal stopping.

I. INTRODUCTION
Private real-estate trading is conducted under uncertainty
from the perspective of both the seller and the buyer in a
competitive market. The buyers have access to all available
real estate listings and past sale prices, but not the offers
made for individual properties. The seller observes sequen-
tially a series of randomly arriving offers and has to decide,
in each time period, whether to accept the maximum offer
proposed by the market or to reject the offers and continue
with the search. The seller integrates a listing price into the
decision-making process in order to influence the incoming
offers and improve his performance. This paper develops a
policy consisting of a listing price and a reservation price
(i.e., the offer acceptance threshold) that together maximize
the seller’s expected revenue over a given time horizon. The
functions representing the listing price and the reservation
price may change over time until the asset is sold.

The associate editor coordinating the review of this manuscript and
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We make use of the well-known optimal stopping prob-
lem as a mathematical formulation of this scenario. Prob-
lems of optimal stopping have a long history and have been
widely studied in both probability theory and operations
research [1]. Recent papers have used optimal stopping the-
ory to investigate various applications, such as selling an
asset [2], selling an ex-rental car in a rental business [3],
stopping testing in software test management [4], stopping
the interaction between a seller and a buyer who bargain to
determine the transfer price [5], and selecting a cell in 5G
networks [6].

The optimal stopping problem of the type we consider in
this research was introduced by Bertsekas [7]. The model
involves a control space that consists of a finite number of
elements, one of which induces a termination (stopping) of
the evolution of the system. In terms of a Markov decision
process, at each decision epoch, the decision maker has two
available actions in each state: to stop or to continue. If he
decides to stop, he receives a reward (in our terms, he sells
the asset), and if he decides to continue, the system evolves
until the next decision epoch. The objective is to determine a
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policy that maximizes the expected total reward. This model
has been extensively applied to the real estate market [8], [9].
In most research studies, the model assumes a stationary,
known distribution from which the buyers’ offers are gen-
erated and which cannot be influenced by the seller. In a
competitive market, a seller integrates realistic knowledge
into the decision-making process in order to improve perfor-
mance [10], [11], when a listing price is one of the decision
parameters of the seller’s policy that can influence the offer
distribution.

A number of articles have provided models for pricing
an asset under different market conditions and have demon-
strated the influence of the listing price on the incom-
ing offers. Using novel survey data, Han and Strange [12]
proved that the listing price has an impact in terms of both
directing buyers and determining the closing selling price.
Several studies have analyzed and compared the effect of
different listing price strategies adopted by sellers. These
include rounded-price, just-below-price and precise-price
strategies [13], [14], low-price, fair-price and high-price
strategies [15], as well as a list price–discount strategy [16],
where the seller first publishes a list price, then during inter-
actions with a buyer, offers discounts off of the list price [17].
Liu et al. [18] showed that the listing price affects the selling
price and the negotiation process differently in cold market
(in which housing supply is greater than housing demand)
vs in hot market (in which housing demand exceeds housing
supply). Arnold and Lippman [19] compared bargaining and
posted-price mechanisms in a market with discounting and
positive transaction costs in which the seller is imperfectly
informed about both the buyer’s valuation of the asset and
the buyer’s bargaining ability. These two mechanisms were
chosen to reflect the fact that some markets witness posted
prices while others witness bargaining, and it is important
to predict when each of these mechanisms will be utilized.
Yavas and Yang [20] addressed the case where a seller of a
real estate property and his broker have two primary goals:
to sell the property for as high a price as possible and to sell
as quickly as possible. While these are separate objectives,
they are closely related through the listing price of the seller.
The listing price affects how long it takes to find a buyer
(i.e., Time On the Market - TOM), and TOM influences the
price that results from the bargaining between the seller and
the buyer. Yavas and Yang’s paper accomplished two tasks.
Firstly, it provided a theoretical framework to (a) study the
optimal listing price set by sellers in housing markets and
(b) examine the impact of listing price on the time it takes to
sell the property. Secondly, it provided an empirical analysis
of the relationship between the listing price and the time it
takes to sell the property. An interesting connection exists
between our research on optimal property selling strategy
and the problem of optimal trade execution [21], [22]. Both
involve a trade-off between obtaining the highest price and
reducing market risk. The success of both processes depends
on the availability of buyers at the requested price and quick
execution to minimize risk.

Another branch of the literature has addressed the problem
of finding a time-dependent strategy for the house-selling
process, using both theoretical and empirical methods. In a
pioneering work, Salant [23] used dynamic programming
to determine the optimal selling strategy for a risk-neutral
seller in an environment with a finite time horizon. The seller
chooses a listing price for each period in which the residential
real estate is up for sale, and, when a bid arrives, decides
whether to accept it or to wait and hope that a higher bid
will arrive in the near future. Salant [23] showed that the
optimal solution generally involves a strictly monotonically
declining sequence of listing prices. The literature has also
documented a set of stylized facts about the behavior of
individual sellers [24], [25]. Merlo and Ortalo-Magné [25],
for example, studied the residential real estate selling problem
based on transaction history data in England between June
1995 and April 1998. They showed that sellers tend to adjust
their listing prices downwards, even when market conditions
do not change, and that sale prices for observationally equiva-
lent residential real estates depend on TOM. Merlo et al. [26]
presented a dynamic model, in a finite time horizon, of the
behavior of the seller of a residential property. The model
was based on their empirical findings which were obtained
by analyzing a rich data set consisting of listing price changes
and all offers made on the residential real estate between the
initial listing and the final sale agreement. They developed
a bargaining model with two-sided incomplete information
where the listing price declines over the selling horizon due
to the fact that the arrival rate of potential buyers exogenously
declines over the selling horizon.

To the best of our knowledge, the present paper is the
first to provide an optimal stopping policy for a house-
selling problem, considering the dynamic listing pricing of
the house, which influences the distribution of market offers
in two ways: (1) the number of offers received and (2) the
distribution from which each individual offer is generated.
We apply the optimal selling policy to a numerical exam-
ple and obtain results that are consistent with the empirical
observations of previous studies, thus providing a theoret-
ical underpinning for those observations. From a practical
perspective, we demonstrate the applicability of the optimal
selling policy based on a real case study of 1,460 individual
residential properties in Ames, Iowa and gain insights that
shed light on the decisions the seller has to make.

II. PROBLEM FORMULATION
The proposed model considers the following order of events.
At the beginning of a given time period, the seller sets a
price for the asset. At the end of the period, the seller decides
whether to accept the maximum offer he received during the
period (and sell the property) or decline all offers and solicit
new offers in the next period. The objective is to determine a
pricing policy and a policy for accepting/rejecting offers that
together maximize the expected revenue of the seller.

The probability distribution of the maximum offer is
affected by the number of offers accumulated during the
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time period and the distribution of each individual offer. It is
common in the literature to assume that stochastic arrivals
of potential buyers are independent, and that the strength of
the market demand can be represented by a Poisson process,
that is, assuming that the offers are drawn from a count-
ably infinite population [2], [27], [28], [29], [30], [31], [32].
We assume also that the individual offers of potential buy-
ers are generated from a known probability distribution that
reflects the market valuation on the property [2], [28], [29].
The parameters that describe the arrival rate and the offer
probability distribution depend on the listing price. Thus,
the impact of the listing price is two-fold. On the one hand,
a higher listing price results, statistically, in a higher indi-
vidual offer. On the other hand, the higher the listing price
of an asset, the lower the buyer arrival rate, which in turn
causes the maximum offer to be statistically lower. This issue
is discussed further in the following subsection.

A. PROBABILITY DISTRIBUTION OF THE MAXIMUM
OFFER
Denote by p the listing price and by λ (p) the price-sensitive
rate of arrival of the offers. The Poisson probability of receiv-
ing n offers during a single time period, qn, is

qn = e−λ (p) λ (p)n

n!
, n = 0, 1, . . . ,∞. (1)

Denote by Xi the i-th offer, i = 1, . . . , n and by Z the
maximum offer, Z = max {Xi}ni=1. Without loss of generality,
we assume that Z = 0 if n = 0 (i.e., if no offer arrives).
This may happen, for example, when the listing price is not
appropriate because it is too far from the market expectation.
The price-sensitive pdf and cdf of an individual offer are
denoted by fx (p, ·) and Fx (p, ·), respectively, and the pdf and
cdf of Z are denoted by fz (p, ·) and Fz (p, ·). The probability
distribution of Z is

Fz (p, ξ) = Pr (Z ≤ ξ) =

∑∞

n=0
qnFx (p, ξ)n, (2)

where we used the fact that the cdf of the maximum of a set
of i.i.d. random variables is the n-th power of the individual
cdf. By substituting (1), we have,

Fz (p, ξ) = e−λ (p)
∑∞

n=0

(
λ (p)Fx (p, ξ)

)n
n!

.

Equivalently,

Fz (p, ξ) = e−λ (p)(1−Fx (p,ξ)). (3)

Equation (3) transforms the distribution of an individual offer
into the distribution of the maximum offer, given the rate of
offer arrivals. Note that Fz (p, ξ) is discontinuous at ξ = 0,
with the discontinuity value of e−λ (p), which is the probability
of having no offers.

We note that in a particular case where an individual offer
is distributed exponentially, Fx (p, ξ) = 1 − e−ξ/p, with the
mean offer value E [X ] = p, the maximum offer follows a
Gumbel distribution,

Fz (p, ξ) = e−e
−(ξ−plnλ (p))/p

,

which is generally used to model the distribution of the max-
imum of a fixed number of samples of various distributions.
The Gumbel distribution in our case, however, is truncated at
ξ = 0.

B. THE SELLER’S OBJECTIVE FUNCTION – STATIONARY
CASE
This section considers a stationary case where the parameters
of the seller’s problem, λ (p) and Fx (p, ξ), do not change over
an infinite time horizon. In such a case, the optimal seller’s
policy is shown to be of a threshold type (see Proposition 1
below). That is, given p, there exists a unique threshold level,
r , such that the offer z is accepted if z > r , and rejected if
z ≤ r (by lower case z we denote a realization of random
variable Z ). This threshold is actually the reservation price of
the seller. The reservation price property was discussed and
proved in [33] for a seller’s problem where the parameters of
offer’s probability density are updated over time in a Bayesian
way.

Regarding the policy of the seller for showing the asset, it is
assumed that the seller receives an offer only after showing
the asset to the buyer. Therefore, the cost incurred for holding
the asset in each decision epoch is represented by a linear
function of the number of buyers,w0+w1n, wherew0 denotes
the constant marketing cost of maintaining the search for
buyers and w1 denotes the communication and showing costs
associated with each prospective buyer. If the seller chooses
to adopt a more flexible showing policy, such as grouping
buyers together or setting pre-showing conditions, the cost
function for holding the asset can become more complex and
may increase in a non-linear manner with respect to n.
Proposition 1: Given p, the optimal seller’s policy is of a

threshold type.
Proof: In Appendix A.

In this section, we formulate the seller’s objective, denoted
by J (p, r), which aims to maximize the seller’s expected
revenue,

max J (p, r) subject to p ≥ 0, r ≥ 0. (4)

We denote the solution of problem (4) by p∗ and r∗, and note
that r∗ is not necessarily smaller than p∗. In the case where
the seller underestimates the asset and suggests a lower p∗,
the bidders compete with each other, which allows the seller
to increase the threshold. Having adopted a threshold policy,
the seller communicates the same listing price in all decision
epochs, until the terminal epoch, where the maximum offer
exceeds the threshold.

The revenue is the maximum offer, Z , received at the ter-
minal epoch. In terms of a Markov decision process, we have
a system with two states – non-terminal and terminal, and the
equation for the total expected revenue

J (p, r) = −w0 − w1E [n] + Fz (p, r) J (p, r)

+ (1 − Fz (p, r)) · E[Z |Z > r]. (5)

The first two terms on the right-hand side of (5) represent the
expected holding cost, while the last two terms are associated
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with a transition to the non-terminal and terminal states,
respectively. The solution of (5) is

J (p, r) = E[Z |Z > r] −
w0 + w1λ (p)
1 − Fz (p, r)

. (6)

We assume that the expected maximum offer E[Z ] is large
enough to cover the expected holding cost incurred during a
single period, i.e.,

E [Z ] > w0 + w1λ (p) . (7)

This assumption defines a minimum requirement for this
business to be profitable. In the next proposition, we use
(7) to prove the properties of the expected revenue function
J (p, r).
Proposition 2: Given p,
(i) the function J (p, r) is quasi-concave w.r.t. r ;
(ii) a solution of the equation

J (p, r) = r, (8)

with respect to r , if it exists, maximizes J (p, r).
Proof: In Appendix A.

In Section III we illustrate Proposition 2 with a numeri-
cal example where an individual offer of a potential buyer
is distributed normally. From Proposition 2 it follows that
J (p, r∗(p)) for each p can be found using a convex search
algorithm. In the numerical examples below, we use the
standard golden search method. The optimal listing price is
then determined as p∗

= argmax
p≥0

J (p, r∗(p)).

Propositions 3 and 4 below derive some structural prop-
erties of the optimal solution, which are then illustrated in
Example 1.
Proposition 3: If (p∗, r∗) is an optimal policy, then the

following two conditions hold,

r∗
= E [Z ] − w0 − w1λ

(
p∗

)
+

∫ r∗

0
Fz

(
p∗, z

)
dz, (9)

w1
∂λ (p)

∂p

⌋
p=p∗

+

∫
∞

r∗

∂Fz (p, z)
∂p

⌋
p=p∗

dz = 0. (10)

Proof: In Appendix A.
Proposition 4: The optimal revenue decreases with the

parameters w0 and w1.
Proof: In Appendix A.

Example 1: Let an individual offer be distributed expo-
nentially, Fx (p, ξ) = 1 − e−ξ/p, and the arrival rate be also
exponential, λ (p) = λ0e−χp, where λ0 and χ are positive
parameters. Then, as noted in Section II-A, the cdf of the
maximum offer is,

Fz (p, ξ) = e−λ0e−χp−ξ/p
, ξ > 0 and Fz (p, 0) = 0.

By substituting that in (9) and (10), we conclude that r∗ and
p∗ satisfy the following algebraic equations,

r∗
= −w0 − w1λ0e−χp∗

+ p∗

(
γ − χp∗

+ Ln
(
λ0

)
−Ei

(
−λ0e

−χp∗
−
r∗
p∗

))
, (11)

and(
χp∗2

− r∗

) (
1 − Fz

(
p∗, r∗

))
= w0 + w1λ0e−χp∗

(1 + χp∗), (12)

where γ is Euler’s constant and Ei (·) is the exponential inte-
gral function. By neglecting the communication cost,w1 = 0,
and by assuming that the marketing cost per time period is
small enough, w0 ≪ p∗, equations (11) and (12) can be
further simplified (see technical details in Appendix B) and
result in

r∗
= χp∗2

− p∗ (13)

where p∗ is the largest root of the equation

p∗e1−2χp∗

= w0/λ0. (14)

From (13) and (14) one can observe that it is optimal to let
p∗

= r∗ with these two values equal to 2/χ , if

λ0

χ
=
e3

2
w0.

The listing price should over-report the threshold, i.e. p∗ >

r∗, if

ew0 <
λ0

χ
<
e3

2
w0.

The listing price should under-report the threshold, i.e. p∗ <

r∗, if

λ0

χ
>
e3

2
w0.

C. THE SELLER’S OBJECTIVE FUNCTION – FINITE TIME
HORIZON CASE
In this section we assume that the seller must sell the prop-
erty within a given finite time horizon. The objective is to
determine a time-dependent pricing policy, as well as a policy
for accepting/rejecting offers, which together maximize the
expected revenue. Let pk be the price set by the seller in epoch
k , and let rk be the threshold level at k , k = 1, . . . ,N , where
N is the given time horizon.
At the terminal period, k = N , the threshold is trivial, r∗

N =

0, since the seller must sell the asset provided the process has
not been stopped earlier. The seller’s expected revenue in this
case is

JN (p) = E [Z ] − w0 − w1λ (p). (15)

The optimal price at k = N maximizes JN (p),

p∗
N = argmax

p
JN (p).

We denote by J∗
N the maximum expected revenue at k = N ,

J∗
N = JN

(
p∗
N

)
.

Having determined the objective and the two decision
variables at the terminal period, we can recursively calculate
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r∗
k , p

∗
k and J

∗
k for k = N − 1,N − 2, . . . , 1 as follows. First,

we define the expected revenue at k given p,

Jk (p) = −w0 − w1λ (p) + E
[
max

{
J∗

k+1,Z
}]

. (16)

The first term in the max operator in (16) corresponds to the
decision to ‘‘reject’’ the maximum offer and ‘‘continue’’ the
process, while the second term corresponds to ‘‘sell’’ and
‘‘stop’’. The second step is to obtain the optimal price by
maximizing Jk (p),

p∗
k = argmax

p
Jk (p).

Third, the threshold follows from (16),

r∗
k = J∗

k+1.

The next section demonstrates the applicability of the station-
ary and time-dependent solution methods developed above to
two practical cases.

III. COMPUTATIONAL STUDIES
A. NUMERICAL EXAMPLE
Let the seller estimate the market value of the asset and the
variability of the market value asµ0 and σ0, respectively. The
seller also estimates that an individual offer of a potential
buyer is distributed normally regardless of the listing price.
However, the mean µ (p) and standard deviation σ (p) of the
probability distribution of an individual offer are affected by
the listing price, p. To be specific, the seller assumes the
following dependence:

µ (p) = µ0 − σ0 + 2σ0
e
p−µ0

σ0

1 + e
p−µ0

σ0

, σ (p) = σ0
µ (p)
µ0

,

(17)

which satisfies the following properties:
(i) µ (p) increases with p, i.e., a higher listing price results

in stochastically higher individual offers.
(ii) σ (p) increases with p, i.e., a higher listing price usu-

ally reflects a house with more unique characteristics,
which results in a wider distribution of offer prices,
as presented in several previous studies based on exper-
imental evidence [34], [35].

(iii) Regardless of p, the expected value of an individual
offer remains within a ‘‘reasonable’’ interval, defined
as

µ0 − σ0 < µ (p) < µ0 + σ0 ∀p. (18)

Even if the seller underestimates the asset and lists an
extremely low price, the competition between multiple
buyers ensures that µ (p) does not fall below µ0 − σ0.
On the other hand, if the seller overestimates the asset
and asks an extremely high price, the potential buyers
remain rational in the sense thatµ (p) does not increase
above µ0 + σ0.

(iv) µ (p = µ0) = µ0. That is, the appropriate listing price,
p = µ0, makes the market respond appropriately.

(v) The relative standard deviation of the individual offer
distribution is constant, σ(p)

µ(p) =
σ0
µ0

∀p.
The seller estimates that when listing the appropriate price,

the rate of offers is λ0, and that thereafter, as the price
increases, the rate of offers decreases exponentially. That is,

λ (p) = λ0eχ (µ0−p),

where χ is the sensitivity parameter of λ (p).
Fig. 1 presents the pdf of an individual offer and of the

maximum offer for the following demand-side parameters:

µ0 = 100, σ0 = 25, λ0 = 10, χ = 0.03

and for p = 80, 100 and 120 (low, appropriate, and high
listing prices). Fig. 2 illustrates Proposition 2 and shows that
the revenue function is quasi-concave with the threshold, and
that the maximum revenue equals the threshold. Figs. 3 and 4
present the impact of the demand-side factors (λ0 and σ0) and
supply-side factors (w0 and w1) on the optimal seller’s policy
(p∗, r∗). Fig. 5 presents the division of the (λ0, σ0) parameter
space into the regions where the threshold is lower (r∗ < p∗)
or higher (r∗ > p∗) than the listing price.
Fig. 3 presents the optimal seller’s policy (p∗, r∗) with the

cost parameters w0 = 2, w1 = 0.3 when the demand-side
parameters are kept constant (at the values shown above),
except for the parameter that is the target of the sensitivity
analysis. The graph on the left-hand side shows the optimal
seller’s policy as a function of the variability of the mar-
ket value, σ0. As mentioned in property number (ii) above,
a wider distribution of the offer prices represents disagree-
ment regarding the market value of the asset, which usually
reflects a unique asset whereby the perception of its market
value varies among buyers. From Fig. 3, we observe that both
p∗ and r∗ increase in σ0. However, r∗ increases faster and
overtakes p∗ at σ0 ≈ 19. This shows that a higher market vari-
ability of an asset allows the seller to increase the reservation
price (i.e., threshold), since the higher the variability of the
market value, the higher the probability of generous offers.
These findings support the empirical observations and claims
of several previous research studies [35], [36], [37], which
concluded that atypical houses that face a larger variance of
offer prices tend to set a higher reservation price, and are sold
at a higher price, although they require a relatively longer time
period to be sold. The graph on the right hand-side shows the
optimal selling policy as function of the offer arrival rate, λ0.
A higher buyer arrival rate indicates stronger market demand,
allowing the seller to increase both p∗ and r∗.
Fig. 4 shows the optimal selling policy (p∗, r∗) when hold-

ing all demand-side and sell-side parameters constant, except
for either the constant marketing cost w0 (left-hand graph) or
the variable cost per prospective buyer w1 (right-hand graph).
It can be seen that a higher constant marketing cost may
cause the seller to reduce the time on the market and sell the
house faster by setting lower reservation and listing prices.
Similarly, a higher variable cost will cause the seller to sell
the house faster by reducing the reservation price. However,
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FIGURE 1. The probability distribution of an individual offer (left side)
and maximum offer (right side) for listing price p = 80 (blue line), 100
(red line) and 120 (black line).

FIGURE 2. The expected revenue J(p, r ) as a function of threshold r for
listing price p = 80 (blue line), 100 (red line) and 120 (black line). The
dashed line is for J

(
p, r

)
= r .

FIGURE 3. Sensitivity of the optimal seller’s policy to the demand-side
parameters: variability of the market value (left) and offer arrival rate
(right).

the seller sets a higher listing price, to reduce the number of
prospective buyers in each epoch, and as a result, there is a
decrease in the total showing and communication cost in each
epoch.

Fig. 6 presents the optimal dynamic policy in a
non-stationary case with the time horizon N = 10 and the
parameters listed above. As expected, the (r∗

k , p
∗
k ) policy

tends to the stationary one as the remaining time until the
end of the process increases.

B. REAL-LIFE CASE STUDY
The main goals of the real-life case study are twofold: to
demonstrate the steps with which the optimal sales strategy
can be determined and implemented in a practical setting, and
to deepen our comprehension of the results produced by this
approach.

FIGURE 4. Sensitivity of the optimal seller’s policy to the holding cost
parameters: constant marketing cost (left) and variable cost per
prospective buyer (right).

FIGURE 5. Diagram in the (λ0, σ0) parameter space specifying the regions
where, respectively, the threshold is lower and higher than the listing
price.

FIGURE 6. Optimal dynamic policy r∗

k (black dots) and p∗

k (blue dots) over
a finite time horizon of N = 10 time units.

The case study is based on a dataset describing the
sale of individual residential properties in Ames, Iowa
from 2006 to 2010. The database is taken fromKaggle, which
is a public source for high quality datasets from different
disciplines. It contains 1460 observations and 80 explanatory
variables that have been shown to affect property prices.
The 80 explanatory variables include 20 continuous variables
related to various area dimensions (such as basement area
and lot size), 14 discrete variables typically quantifying the
number of items within the house (such as the number of
bathrooms or bedrooms), 23 ordinals (such as the quality level
of the kitchen or garage) and 23 nominals (such as the garage
location and the general zoning classification of the property).

Since we don’t have data that includes the list of offers for
individual property, we propose a linear regressionmodel that
predicts the market value of the properties and evaluate the
distribution of offers.
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As a preprocessing step, we convert all the categorical
variables to discrete numbers, and evaluate the regression
model by using a ten-fold cross validation test. Thus, the data
are divided into ten subsets, where nine-tenths are used for
training the prediction model and the remaining one-tenth is
used, in turn, as the validation set. The prediction accuracy is
calculated 10 times, each time one of the sub-samples is used
as the test sample. This technique is common in classification
and prediction models [38], [39], [40]. The regression model
is given by

pi = β0 + β1xi1 + β2xi2 + · · · + βnxin + εi,

where pi is the price of the i-th observation (i.e., the prop-
erty price, which is the dependent variable), xij is the i-th
observation on the j-th independent variable, βj is the regres-
sion parameter of the j-th independent variable, β0 is the
y-intercept, and εi is the error term for the i-th observation.
The regression model finds that 23 of the 80 explanatory
variables have an association with price that is significant
with a p-value of less than 0.05.
In order to apply the pricing policy developed in Section II

for residential property i in the one-tenth of the database
used for validation, we need to determine the following
parameters: (i) the three factors related to the demand, i.e.,
the market value of the asset represented by the mean and
standard deviation of the offer prices (µ0, σ0), and the arrival
rate λ0 assuming a listing price p = µ0, which indicates
the strength of the market demand; and (ii) the two factors
representing the holding cost incurred by the seller during
each decision epoch, namely the constant marketing cost, w0
and the showing cost per prospective buyer, w1.
Since, in linear regression, the errors between the observed

price and the predicted price (i.e., the residuals of the regres-
sion) are assumed to be normally distributed, we can evaluate
the distribution of offer prices for a specific residential prop-
erty. In particular, we observe that the standard deviation of
the errors is σ̂0 = 31, 998$. We follow Han and Strange [12],
who claimed that for identical homes, increasing the list-
ing price by 1% reduces the arrival rate of potential offers
by ∼0.6% and who assumed the following linear relation,
λ (p) = λ0

(
1.6 −

0.6·p
µ0

)
. We set the arrival rate λ0 =

0.27 offersday , by assuming that the seller receives an average of
30 offers before the house is sold, and that the average mean
time on the market is 111 days, as was reported by Levitt and
Syverson [41]. Since most sellers in the housing market still
use a traditional high-street estate agent [42], who typically
charges a total commission of 3% of the sale price [41]
in return for bearing the marketing costs (e.g., advertising,
conducting open houses), we assume an average constant
marketing cost of w0 =

0.03·µ0
111

$
day . Finally, a showing cost

of w1 = 100$ per prospective buyer is assumed, estimated
by the loss of alternative income of the seller during the time
when they are required to prepare the house for a viewing.
We consider an individual property from the validation set,
which, according to the explanatory values, yields a predicted

FIGURE 7. The stationary policy.

FIGURE 8. The dynamic policy, r∗

k (black dots) and p∗

k (blue dots), over a
finite time horizon of N = 120 days.

sale price of µ̂0 = 321, 555$. The distribution of each
individual offer, assuming a listing price equal to the market
value of the asset, is estimated as fx (·) ∼ N

(
µ̂0, σ̂0

)
. Using

the stationary case described in Section II-B, we calculate
the optimal threshold for this property for listing prices in the
range 300, 000 ≤ p ≤ 600, 000 (see Fig. 7) and find the
optimal selling policy, which corresponds to the listing price
p∗

≈ 460, 000 and the reservation price r∗(p∗) ≈ 415, 000.
The revenue of the optimal policy is J (p∗, r∗) = r∗(p∗) ≈

415, 000.
This case clearly illustrates the trade-off discussed in Sec-

tion II. On the one hand, a higher listing price results in
higher individual offers distributed normally with µ (p∗) =

352, 718 and σ (p∗) = 35, 099 (see (17)). On the other hand,
the buyer arrival rate decreases to λ (p∗) = 0.2. The combi-
nation of these two factors enables the seller to establish the
threshold r∗ within the interval [µ (p∗) + σ (p∗) , µ (p∗) +

2σ (p∗)]. This implies that r∗ is set at a level that is both
low enough to accept a significant offer and high enough to
optimize the objective.

Fig. 8 shows the convergence of the selling policy in the
non-stationary case for N = 120 days. It can be observed that
the (r∗

k , p
∗
k ) policy tends to the stationary one as the remaining

time until the end of the process increases.
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IV. CONCLUSION
In a house-selling problem, a crucial task formany sellers is to
develop listing and reservation pricing policies that together
maximize the expected revenue. In this paper, we generalize
the house-selling model by allowing the seller to set a price
for the asset dynamically, at each period, which influences the
distribution of market offers. By making use of optimal stop-
ping theory, we find the seller’s optimal selling solution and
provide explicit expressions for determining the listing and
reservation pricing policy over an infinite planning horizon.
We also present theoretical properties of this solution. In addi-
tion, we show how the optimal solution can be adjusted in the
case where the seller must sell the property within a given,
finite time horizon. In such a case, the listing and reservation
pricing policies are dynamically updated. Thus, the results
are useful both to house sellers who are not pressed for time
in the sale of their house, and to sellers who need to sell
their house within a finite time horizon, perhaps because they
have already purchased another house and may be repaying a
bridging loan.

We implement the solution method proposed in this paper
for the case of a house with a normally distributed mar-
ket value, and arrive at some specific conclusions that sup-
port the findings of previous empirical studies. For the infi-
nite planning horizon, we draw the following conclusions:
(i) When the distribution of offer prices is wider, which
usually reflects a unique asset for which the market value
is perceived differently by different prospective buyers, the
reservation and listing prices are higher. For a very high
dispersion of offer prices, the dispersion of reservation prices
exceeds the dispersion of listing prices. (ii) In the case of
stronger market demand and a higher buyer arrival rate, the
seller increases both the listing and the reservation price, with
the reservation price always higher than the listing price.
(iii) Higher holding costs cause the seller to set a lower
reservation price in order to reduce the number of epochs
before the sale of the house. (iv) The seller sets a lower
listing price when the constant costs are higher, but sets a
higher listing price when the variable costs are higher (so as to
reduce the number of prospective buyers arriving during each
epoch).

Finally, we carry out a case study in which we esti-
mate the market price distribution, as well as the list-
ing and reservation pricing policies, based on real sales
data of individual residential properties in Ames, Iowa
from 2006 to 2010. Accordingly, we demonstrate the appli-
cability of the optimal selling solution to a rich and real
dataset.

Future research could further investigate the methodology
suggested in this paper by applying the solution method to
other types of market value distribution. Other directions
could include extending the problem to the case where it
is assumed that the distribution of offers is unknown to the
seller. In such a case, the seller would have to estimate
the (non-stationary) distribution shape and parameters by a
learning process over time.

APPENDIX A
Proof of Proposition 1: The cost-to-go criterion of the

problem satisfies the equation,

V (z) = max {z,E [V (z)] − w0 − w1E[n]} , (A1)

where z is the maximum offer at a time period. The first
term in themax function in (A1) corresponds to the ‘‘accept’’
decision. The second term in themax function corresponds to
the ‘‘reject’’ decision, where seller’s expected revenue at the
next time period equals E [V (z)] subtracting the holding cost.
Let the second term in the max function be denoted by α,

α = E [V (z)] − w0 − w1E [n] .

Then, by applying the expectation operator to (A1),
we obtain,

α + w0 + w1E [n] =

∫
∞

α

fz (p, z) zdz+ αFz (p, α).

Consequently,

α + w0 + w1E [n] = E [Z ] −

∫ α

0
fz (p, z) zdz+ αFz (p, α),

and after integrating by parts,

α + w0 + w1E [n] = E [Z ] +

∫ α

0
Fz (p, z) dz. (A2)

By considering the left- and right-hand sides of (A2) as a
function of α, we observe

- the left-hand side grows with the rate of 1;
- the right-hand side grows with the smaller rate of

Fz (p, α);
- at α = 0, the left-hand side is smaller than the right-

hand side. This follows since we assume that the expected
maximum offer is large enough to cover the expected holding
cost incurred during a single period (see (7));

- when α tends to infinity, the expression

α −

∫ α

0
Fz (p, z) dz

tends to E [Z ], and as a result, the left-hand side is larger than
the right-hand side.

Therefore, there exists a unique α which satisfies (A2).
This proves that α is the threshold, and the ‘‘accept’’
(‘‘reject’’) decision ismade at any periodwhen z > α (z < α).
Proof of Proposition 2: By differentiating (6) w.r.t. r ,

we obtain
∂J (p, r)

∂r
= h(p, r)(J (p, r) − r), (A3)

where h(p, r) is the hazard rate of the distribution function
Fz (p, r),

h (p, r) =
fz (p, r)

1 − Fz (p, r)
.

At r = 0, J (p, r = 0) = E [Z ] − w0 − w1λ (p), which is
positive according to the assumption given in (7). Therefore,
from (A3), we conclude that the derivative of J (p, r) at r = 0
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is positive. The case where J (p, r) remains greater than r
along an infinite interval is not of interest, since in practice,
the reservation price of an asset is finite. Therefore, we focus
on the case where

J (p, r) = r

at some r , which we denote by r∗(p). Since the second
derivative of J (p, r) at r∗(p) is strictly negative, we conclude
that ∂J (p, r)

/
∂r must be negative for all r > r∗(p). This

proves the quasi-concavity of the function J (p, r) w.r.t. r for
all p, and the uniqueness of r∗(p), where J (p, r) attains its
maximum value. This proves also that

J
(
p, r∗(p)

)
= r∗(p). (A4)

Proof of Proposition 3: By substituting (A4) in (6) we
obtain the expression for r∗(p) for all p,

r∗ (p) =

∫
∞

r∗(p) zfz (p, z) dz− w0 − w1λ (p)

1 − Fz (p, r∗ (p))
.

Consequently,

r∗ (p) = E [Z ] − w0 − w1λ (p) +

∫ r∗(p)

0
Fz (p, z) dz. (A5)

By differentiating (A5) w.r.t p, and equating the derivative to
zero, we obtain

w1
∂λ (p)

∂p
+

∫
∞

r∗(p)

∂Fz (p, z)
∂p

dz = 0. (A6)

The two statements of the proposition are now obtained by
substituting p with p∗ in (A5) and (A6).
Proof of Proposition 4: By differentiating (12) w.r.t. w0 we

obtain
∂r∗

∂w0
= −

1
1 − Fz (r∗)

.

Similarly, by differentiating (12) w.r.t. w1,

∂r∗

∂w1
= −

λ

1 − Fz (r∗)
.

The two partial derivatives are negative that proves the propo-
sition.

APPENDIX B
By assuming w1 = 0, equations (11) and (12) simplify to

r∗
= −w0 + p∗

(
γ − χp∗

+ Ln
(
λ0

)
−Ei

(
−λ0e

−χp∗
−
r∗
p∗

))
(B1)

r∗
= χp∗2

−
w0

1 − Fz (p∗, r∗)
, (B2)

We note (seeWikipedia, Exponential integral) that Ei (−y) =

γ + Ln (y) +
∑

∞

k=1
(−y)k

k·k! for y > 0. That is, for y ≪ 1 the
terms of the orders higher than k = 1 can be neglected, and,
as a result, (B1) is rewritten as

r∗
= −w0 + r∗

+ p∗
λ0e

−χp∗
−
r∗
p∗ .

Equivalently,

r∗
= −χp∗2

− p∗Ln
(
w0

p∗λ0

)
. (B3)

Combining (B2) and (B3) yields

2χp∗2
+ e

w0
p∗

(
w0 − 2χp∗2

)
= p∗

(
e
w0
p∗ − 1

)
Ln

(
w0

p∗λ0

)
.

Assuming that
w0

p∗
≪ 1,

we conclude,

2χp∗2
+

(
1 +

w0

p∗

) (
w0 − 2χp∗2

)
= w0Ln

(
w0

p∗λ0

)
.

Consequently,

1 − 2χp∗
= Ln

(
w0

p∗λ0

)
. (B4)

By combining (B3) and (B4), we obtain that

r∗
= χp∗2

− p∗. (B5)

Equations (B4) and (B5) are equivalent to (13) and (14).
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