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ABSTRACT Cardiovascular diseases are the leading causes of death, and blood pressure (BP) monitoring
is essential for prevention, diagnosis, assessment, and treatment. Photoplethysmography (PPG) is a low-cost
opto-electronic technique for BP measurement that allows the acquisition of a modulated light signal highly
correlated with BP. There are several reports of methods to estimate BP from PPG with impressive results;
in this study, we demonstrate that the previous results are excessively optimistic because of their train/test
split configuration. To manage this limitation, we considered intra- and inter-subject data arrangements
and demonstrated how they affect the results of feature-based BP estimation algorithms (i.e., XGBoost,
LightGBM, and CatBoost) and signal-based algorithms (i.e., Residual U-Net, ResNet-18, and ResNet-
LSTM). Inter-subject configuration performance is inferior to intra-subject configuration performance,
regardless of the model. We also showed that, using only demographic attributes (i.e., age, sex, weight,
and subject index number), a regression model achieved results comparable to those obtained in an intra-
subject scenario.Although limited to a public clinical database, our findings suggest that algorithms that use
an intra-subject setting without a calibration strategy may be learning to identify patients and not predict BP.

INDEX TERMS Blood pressure, photoplethysmography, wearables.

I. INTRODUCTION
Chronic cardiovascular diseases such as hypertension,
hyperlipidemia, and atherosclerosis—combined with aging,
overweight, and diabetes—are major risk factors for severe
conditions such as stroke, heart failure, and myocardial
infarction. Together, these conditions constitute the leading
causes of human death, overtaking cancer mortality [1], [2].
Because this is a global health problem, blood pressure (BP)
monitoring is essential for prevention, diagnosis, assessment,
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and treatment and can predict and avoid acute events [3],
[4]. Observational studies with patients aged 40 to 89, for
example, indicated that the mortality caused by ischemic
heart disease, stroke, and other vascular diseases grow lin-
early with BP, almost doubling the risk for every 20 mmHg
or 10 mmHg increase in systolic and diastolic BP (SBP and
DBP), respectively [5].

Reference devices for BP measurements are aneroid,
mercury, and electronic sphygmomanometers with appro-
priate cuff and bladder sizes matched to the arm circum-
ference [6]. Although there are automated devices, clinical
and ambulatory guidelines advise that only trained healthcare
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professionals should measure and evaluate BP to determine
and monitor cardiovascular risks [4], [7], [8]. However, these
requirements render continuous BP monitoring difficult and
impractical. Furthermore, sphygmomanometers (though they
are adapted to gauge out-of-office BP in daily life) can only
provide non-continuous measurements through repeated cuff
inflation, which causes discomfort and even pain when the
measurement requires a high level of air pressure. These
devices make nighttime assessment complex and often inac-
curate, given that nocturnal cuff inflation may disturb sleep,
indirectly influencing BP [9].

Despite the difficulty of continuous monitoring, when
recorded using an intra-arterial catheter, BP is a highly
dynamic physiological variable, consisting of a sequence of
pulse waves changing its frequency and amplitude over time
windowswithin 24 hours: from beat to beat, minute tominute,
hour to hour, and even from day to night [10]. In addition
to these short-term fluctuations, population studies indicated
that BP might fluctuate over days, weeks, months, and even
years—revealing a complex interaction between environ-
mental/behavioral factors and cardiovascular/physiological
mechanisms [11]. Moreover, because sustained or sudden
increases in BP variability may be associated with underlying
pathological conditions, assessing these fluctuations can help
guide clinical and prognostic decisions [12]. For example,
reliable out-of-office BP measurement is essential to min-
imize ‘‘white coat hypertension’’ and to diagnose masked
hypertension [13]. It is possible to perform non-invasive, con-
tinuous BPmeasurements using the volume-clampmethod or
the artery applanation tonometry [14], [15]. However, these
methods require bulky apparatuses, can be uncomfortable for
users and are not feasible devices for day-to-day use [16].

On the other hand, photoplethysmography (PPG) can be
adapted to a wristband or a ring [17], [18] and has been
considered as an approach for continuous BP monitoring
outside of clinical settings to assess hypertension and other
cardiovascular diseases [19], [20]. PPG is an opto-electronic
method by which alterations in blood volume can be detected
in the microvasculature of the subcutaneous tissue. It uses
light-emitting diodes at the green, red, or infrared wave-
lengths and an arrangement of photodetectors to measure
(through transmission or reflection) small variations in light
intensity due to volumetric oscillations in perfusion of that tis-
sue [21], [22]. In practice, this method has been successfully
adopted in hospitals and clinics via fingertip pulse oximeters
to obtain blood oxygen saturation and heart rate [23], [24].
Nevertheless, because PPG and continuous BP morphologies
are strongly correlated (r > 0.9) [25], and the cardiovascular
system ultimately generates both waves, there is a relative
consensus in the literature that the former can also carry
information about the latter. Based on this principle, signal
processing and machine-learning techniques have been pro-
posed to estimate BP from PPG without calibration [26].

Although using a single PPG for assessing hypertension
is promising, the relationship between PPG and BP is not
entirely elucidated. In an attempt to indirectly solve this

issue, several authors ( [27], [28], [29], [30], [31], [32],
[33], [34], [35], [36], [37], [38], [39]) reported accuracies
in line with two guidelines, one by the American Asso-
ciation for the Advancement of Medical Instrumentation
(AAMI) and the other published by the British Hyperten-
sion Society (BHS) [40], [41]. However, as observed by
Schrumpf et al. [42], there is a lack of data regarding the
distribution of the datasets to ensure (1) no mixing samples
of the same subject and (2) equal data size per subject.
Indeed, except for three studies ( [43], [44], [45]), authors
who partially or wholly follow this recommendation identify
errors far above the reference values ( [42], [46], [47], [48],
[49], [50]), suggesting that the estimation problem is not yet
resolved. Therefore, the present work investigates how intra-
and inter-subject variabilities in BP lead to different results
of machine-learning algorithms. By considering specifically
the intra-subject scenario, we compare single PPG machine-
learning algorithms with a regression using age, sex, weight,
and subject index number as attributes and obtain similar
results, suggesting that the algorithms might be learning to
identify patients and not predict BP.

II. BACKGROUND AND STATE OF THE ART
Various PPG-based methods have been studied over the past
few decades to monitor cuff-less BP with reliability and fea-
sibility. In general, these methods fall into four approaches:
pulse transit time (PTT), pulse arrival time (PAT), pulse wave
velocity (PWV), and pulse wave analysis (PWA) [26], [51],
[52], [53]. These approaches are summarized below.

PTT is the time a pressure wave takes to move from a
proximal to a distal arterial site. This interval can be recorded
using two PPG sensors in the ears, fingers, and toes [21].
Using empirical regression models, calculating logarithmic,
linear, and quadratic relationships from PTT to BP is rela-
tively straightforward but requires generating subject-specific
calibration curves [54]; this demands periodic recalibrations,
especially for chronic BP monitoring. Moreover, the sensors
are sensitive to user motion; therefore, the captured signals
must pass through a signal processing stage without losing
their synchronization [26], [55].

PAT is the interval between a proximal electrocardiography
(ECG) wave and the corresponding pressure wave in a distal
arterial site. It can be measured using an ECG and PPG sen-
sors in the upper or lower extremities, ears, or forehead [55],
[56]. Similar to PTT, despite the simplicity of using regres-
sion models [54], BP functions of PAT require personal and
periodic recalibrations and necessitate wearing two sensors
very sensitive to movements to maintain synchronous signal
processing and monitoring [26], [56].

PWV is the speed at which a pressure wave travels through
blood vessels propelled by ventricular ejection [57]. It can be
estimated using two PPG sensors positioned at different loca-
tions of the same arterial branch; values are calculated using
the ratio of artery length between these sensors and PTT [51],
[55]. The mapping from PWV to BP is subsequently given
by a relationship that each maintains with arterial vessel
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elasticity [58]. Even though it is a simple formula, because
PWV depends on a reliable PTT, the former carries the same
limitations as the latter. Therefore, calibration and frequent
recalibrations are mandatory for the success and viability of
the PWV method [26], [51], [55]. Furthermore, non-invasive
estimation of artery pathways is difficult to obtain accurately
other than by magnetic resonance imaging, an expensive and
cumbersome technique [59], [60].

Finally, PWA consists of processing and inspecting a PPG
wave to provide suitable features for creating models that
relate this wave to other physiological signs. It shares with the
methods mentioned above the characteristics of being prone
to motion artifacts but has the advantage of requiring only
one sensor [26]. Teng and Zhang [61] were among the first
authors to propose a BP estimation based on a single PPG.
Unlike PTT, PAT, and PWV, which are based on physical
principles, the relationship between PPG and BP waves is not
fully understood, despite both signals being similar and corre-
lated [23], [25]. Therefore, PWA is a valuable technique used
in classical and deep learning approaches for BP estimation,
although not limited to this purpose.

Feature- and signal-based techniques have been techniques
of PWA for reaching this goal. Feature-based strategies
extract morphological and spectral characteristics from the
PPG signal—and its first and second derivatives—to gener-
ate relevant information for a machine-learning algorithm.
Several regression methods have been used: multilayer per-
ceptron [27], multiple linear regression [28], [30], [31], [36],
support vector machine [28], [29], [31], decision tree [28],
[29], [30], [31], adaptive boosting [29], [30], random for-
est [29], [30], [47], Gaussian process [31], ridge regres-
sion [38], fully connected neural network [33], [43], convolu-
tional neural network [38], long short-termmemory [34], [36]
and gated recurrent unit [34], [36]. Signal-based techniques
explore deep learning models to extract features and perform
the estimation. Several methods, alone and in combination,
have also been used: fully connected neural network [49],
[50], convolutional neural network [32], [37], [48], [50], long
short-term memory [32], [37], [42], [48], [49], [50], gated
recurrent unit [50], AlexNet [42], [44], ResNet [42], [46],
[49], WaveNet [49], U-Net [35], residual U-Net [39] and
generative adversarial network [48]. These contributions are
summarized in Table 7, highlighting the dataset, data split,
techniques and results for each one.

The present work proposes to investigate how a single
PPG signal can be used to estimate BP with a represen-
tative set of machine-learning algorithms covering feature-
and signal-based methods. We emphasized the effect of the
data arrangement—by considering intra- and inter-subject
variabilities—in two frequently used databases: Multipa-
rameter Intelligent Monitoring in Intensive Care II and III
(MIMIC-II, MIMIC-III). Regarding the intra-subject sce-
nario, a regression using age, sex, weight, and subject index
number—therefore, without a PPG signal (or its attributes) as
input—achieves excellent performance, in line with AAMI
and BHS standards. Finally, we discuss possible reasons for

it and provide guidelines regarding what we believe to be
essential procedures to properly evaluate BP estimation from
PPG. In summary, our main contributions are as follows:

1) We compare feature- and signal-based state-of-art tech-
niques to estimate BP from a single PPG, using the
same benchmark database.

2) We reveal the huge difference between results obtained
by partitioning the dataset into intra- and inter-subject
cross-validation schemes, showing that the former
problem is practically resolved while the latter one is
far from it.

3) We investigate an intra-subject scenario in which only
non-PPG features are used and obtain excellent results,
indicating that algorithms might be learning to identify
patients and not predict BP.

4) We provide a guideline on how to perform a fair assess-
ment to help future works to prevent overestimating
performance.

III. METHODS
A. MIMIC-II UCI-ML AND MIMIC-III DATABASES
Initially released by the Research Resource for Complex
Physiologic Signals (PhysioBank, PhysioToolkit, and Phy-
sioNet) to stimulate studies of cardiovascular signals [62],
the Multiparameter Intelligent Monitoring in Intensive Care
(MIMIC) database, or simply MIMIC-I, is a collection of
clinical records from 100 patients admitted to medical, sur-
gical, and cardiac intensive care units (ICUs) at Boston’s
Beth Israel Hospital between 1994 and 1996. The first ver-
sion consists of bedside monitor waveforms (ECG, PPG,
and continuous BP), minute-by-minute hemodynamic trends
(heart rate, SBP, DBP, respiratory rate, and oxygen satura-
tion), and detailed clinical data from patient medical records
and hospital medical information systems [63]. MIMIC-II
is a collection of clinical records from virtually all adult
patients admitted to ICUs at Boston’s Beth Israel Deaconess
Medical Center between 2001 and 2007—25,328 ICU stays
from 22,870 hospital admissions. This second version encom-
passes identical hemodynamic waveforms and trends, labora-
tory results, and electronic clinical documentation [64], [65].

MIMIC-II represented a refinement of MIMIC-I, and
MIMIC-III is better than MIMIC-II. This third version con-
tains clinical records regarding admissions of 38,597 patients
over 16 years of age to ICUs between 2001 and 2012 and
7870 neonates between 2001 and 2008 [66]. Although all
records in MIMIC-III are deidentified according to Health
Insurance Portability and Accountability Act standards, the
MIMIC-III Matched Subset is a portion of the MIMIC-III
in which patient information—age, sex, weight, and medical
history—is associated with clinical records [67]; that is, each
data segment received a subject unique identifier—an index
number—from which that information is retrieved.

Finally, MIMIC-II UCI-ML is a clean and reduced ver-
sion of bedside monitor waveforms present in the MIMIC-II,
hosted in the University of California, Irvine (UCI)
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Machine-Learning (ML) Repository. Using this dataset,
Kachuee et al. provide ECG, PPG, and continuous BP signals
already processed and validated to support and stimulate
works designing cuff-less BP estimation algorithms [68],
[69]. Those signals are available in four MATLAB® files,
consisting of cell arrays and matrices (which facilitate their
use), especially if compared to the original file structure of
the MIMIC. However, MIMIC-II UCI-ML has a substantial
limitation in suppressing the patient index number related to
each record segment.

TheMIMIC-IIIMatched Subset database is the benchmark
through which our study is founded (henceforth, we will refer
to it solely as MIMIC-III). Moreover, although MIMIC-II
UCI-ML database does not report patient index numbers
corresponding to each data segment, we adopt it for some
analysis, given its widespread use by researchers. In both
datasets, PPG and continuous BP—also labeled as arterial
blood pressure (ABP)—are sampled at 125 Hz.

B. PRE-PROCESSING
Because a large volume of signals from raw MIMIC-II is
distorted and corrupted, data from MIMIC-II UCI-ML are
already picked, cleaned, and organized according to pre-
processing steps performed by Kachuee et al. (2015): (1) the
selection of files with ECG, PPG, and ABP waveforms; (2)
the average filtering to smooth these signals; (3) the removal
of data blocks with unacceptable BP and heart rate values
and with persistent discontinuities even after the smoothing
procedure; and (4) the computation of PPG autocorrelation
function to identify the degree of similarity between con-
secutive pulses and subsequent removal segments with high
degrees of alteration [68]. As a result of these steps, data
blocks containing simultaneous ECG, PPG, and ABP are
available [69]. Considering this dataset, we performed no
further cleaning processes; we performed selection to handle
only PPG and ABP signals. PPG segments were then passed
through a fourth-order Chebyshev II band-pass filter from
0.5 Hz to 10 Hz, analogous to the optimal filter proposed
by Liang et al. to eliminate the offset and the high-frequency
noise and highlight the dicrotic notch and the systolic and
diastolic phases [70]; ABP segments were preserved in their
original form.

MIMIC-III is a substantial database that requires picking
and cleaning procedures before being used. We followed
some of the criteria suggested by Slapničar et al. [46]: (1)
the selection of files containing PPG and ABP waveforms,
specified as ‘‘PLETH’’ and ‘‘ABP’’ in the database; (2) the
recognition of snippets with missing signals, represented as
‘‘Not a Number’’ entries; and (3) the identification of flat
lines, which are any interval exceeding ten samples with
equal values. Similar to Sun et al. [71], we set 300mmHg and
20 mmHg as the upper and lower bounds (respectively) on the
physiologic ranges of ABP and set 20mmHg and−20 mmHg
as the maximum and minimum limits (respectively) for vari-
ations between two consecutive points. Subsequently, data

fragments and points from PPG and ABP were replaced by
‘‘Not a Number’’ entries if classified into some abnormality
criteria.

All entries indicate a set of segmentation positions from
which valid signals start and end; clean data are extracted at
numerical intervals for PPG and ABP waveforms. From each
subject, we selected the first pair of clean segments longer
than 30 minutes to continue pre-processing. Inspecting PPG
signals, we observed that their values are already normalized
and contained in ranges between 0 and 1 [a.u.] and from 0 to 4
[a.u.]. Signals of the former type are more prevalent, and
we chose them for our analysis to maintain attributes as
regular as possible in the feature extraction procedure. Much
likeMIMIC-II UCI-ML segments, MIMIC-III PPG segments
are passed through the fourth-order Chebyshev II band-pass
filter, while the ABP segments are preserved. Finally, despite
the large volume of the MIMIC-III, after cleaning and filter-
ing processes, we retained a 30-minute block of simultaneous
PPG and ABP for each patient with age, sex, and weight
information: 633 ICU patients satisfied these criteria, totaling
316.5 hours of data. We limited the amount to 30 minutes per
subject to reduce bias.

C. FEATURE EXTRACTION
Each data block was subdivided into eight-second non-
overlapping windows for both pre-processed datasets. ABP,
SBP, and DBP labels were obtainedred, by considering the
averages of peaks and valleys along the sections. These
extreme points were recognized using an algorithm adapted
from Hsu et al. [33], in which systolic peaks are marked first,
and diastolic valleys are detected by locating the minimum
point between two consecutive peaks. From PPG windows,
signal-based algorithms explore all points, whereas feature-
based algorithms probe several morphological and spectral
characteristics recommended in the literature.

The PPG signal is commonly formed by a sequence of
pulse waves with a specific shape: a rising edge as the
anacrotic phase (primarily related to systole), a falling edge
as the catacrotic phase (associated with diastole and wave
reflection), and a point of inflection as a dicrotic notch sep-
arating these two phases [23]. Considering this morphol-
ogy, PPG features can be extracted from the original pulse
and its first and second derivatives (Figure 1). Examples
include systolic amplitude, pulse width, pulse area, peak-to-
peak interval, pulse interval, augmentation index, and many
others. These attributes fall into indices representing slopes,
areas, ratios of areas, intensities, ratios of intensities, differ-
ences of intensities, periods, and ratios of periods. Lin et al.,
Chowdhury et al. and El-Hajj et al. provide detailed descrip-
tions of how to extract them [31], [36], [72].

Before the calculation of these features, all PPG pulse
windows and their characteristic points were identified
using a procedure similar to one adopted by Hsu et al. [33].
From each pulse, every morphological attribute reported
by Lin et al., Chowdhury et al. and El-Hajj et al. was then
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FIGURE 1. A sequence of PPG pulse waves (a) along with its first (b) and
second (c) derivatives, including feature points such as peaks, valleys and
dicrotic notches.

FIGURE 2. Resulting distribution of SBP and DBP samples, (a) and (b),
in the MIMIC-II UCI-ML database after the corresponding PPG goes
through pre-processing and feature extraction steps. DBP: diastolic blood
pressure; PPG, photoplethysmography; SBP: systolic blood pressure; µ:
mean; σ : standard deviation.

FIGURE 3. Resulting distribution of SBP and DBP samples, (a) and (b),
in the MIMIC-III database after the corresponding PPG goes through
pre-processing and feature extraction steps. DBP: diastolic blood
pressure; PPG, photoplethysmography; SBP: systolic blood pressure; µ:
mean; σ : standard deviation.

extracted. Despite these characteristics being computed from
every pulse, each feature vector was arranged with the
averages of the pulse attributes. In this process, whenever
the calculation of the features returns inconsistent values—
in general because one or more pulses are distorted—all
attributes were intentionally invalidated, and the entire sec-
tion was discarded. Following this criterion, about ten percent
of windows are excluded from the subsequent analysis. These
windows were excluded from the signal-based analysis to
maintain similar conditions during comparison. Figures 2 and
3 exhibit the distributions of SBP and DBP samples for only
valid windows in the MIMIC-II UCI-ML and MIMIC-III
databases, respectively, indicating an acceptable BP range.

Analogous toXin and Sun andChowdhury et al. [31], [43],
spectral features were considered for analysis and computed
using the fast Fourier transform. Taking the maximum ampli-
tude between 0.5 Hz and 3.0 Hz as a fundamental frequency,
the amplitudes of the first five harmonics were extracted
from the signal of each remaining window—and its first
and second derivatives—and included in the feature vector.
Finally, age, sex, and weight information were added.

A specific baseline analysis (as explained below) uses a
feature vector consisting only of age, sex, weight, and patient
index number (subject unique identifier of the MIMIC-III
Matched Subset) as attributes, i.e., not including anymorpho-
logical or spectral features of PPG.

D. MACHINE LEARNING ALGORITHMS
Feasible machine-learning algorithms to perform BP esti-
mation, considering a feature-based approach, are XGBoost,
LightGBM, and CatBoost. All are based on the iterative
gradient descent algorithm for tree boosting, also known
as gradient boosting decision tree (GBDT), initially estab-
lished by Friedman [73]. The XGBoost is a scalable version
of the GBDT that applies a functional space optimization
adapted for sparse data and approximate tree learning using
a weighted quantile sketch [74]. The LightGBM is a GBDT
implementation that improves the efficiency and scalability,
especially for large data sizes and high feature dimensions,
by proposing gradient-based one-side sampling to exclude
occurrences of data with small gradients and an exclusive
feature bundling to reduce feature number [75]. Finally, the
CatBoost is also a GBDT implementation that presents an
ordered boosting and processing of categorical features to
address the problem of prediction shift in gradient boost-
ing [76].

Convenient algorithms that accomplish the same task in
a signal-based approach using deep learning models include
ResNet18, ResNet-LSTM, and residual U-Net. The residual
network (ResNet) is a popular deep learning model in which
shortcut connections between layers (i.e., skipping one or
more layers performing identity mapping) are implemented
to overcome the gradient degradation problem, an unexpected
increase in training error as the network becomes deeper.
In this sense, ResNet18 is merely an 18-layer ResNet [77].
ResNet-LSTM combines a ResNet with a long short-term
memory (LSTM) architecture—a learning model that stores
information through recurrent back-propagation. Although
recurrent neural networks may cause the gradient to blow up
or vanish, LSTM partially solves the latter problem by using
a self-connected unit to enforce a constant error backflow,
which allows long-term features to be learned [78]. Finally,
U-Net is a neural network model initially designed to per-
form image segmentation, consisting of a contracting path
(encoder) similar to a common convolution network and an
expansion path (decoder) in which features from the first path
are concatenated with the second one—resulting in an almost
symmetrical U-like shape [79], [80]. Inspired by ResNet,
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residual U-Net only includes shortcut connections to facilitate
information propagation between layers [81]. To calculate the
BP using the residual U-Net, after obtaining the reconstructed
ABP signal output [82], we calculated the mean value of the
peaks and valleys to represent SBP and DBP, respectively.

It is possible to use machine-learning algorithms other than
the ones previously presented. However, because we aimed to
investigate intra- and inter-subject variabilities, we selected a
set of algorithms in line with the state-of-the-art instead of
exhausting them all.

E. EXPERIMENTAL DESIGN
Two partitioning strategies were adopted to denote BP vari-
ability explicitly throughout the MIMIC-III data. The first
consists of a ten-fold cross-validation in which signal win-
dows were randomly selected to compose each folder. In this
case, there was no concern about where samples of the
same patient index number were allocated; they were dis-
tributed in all folders with equal chance. We called this
arrangement an intra-subject scenario because samples of the
same patient can appear in the training and testing phases,
causing data leakage. The second consists of a ten-fold cross-
validation in which the patient now groups samples to com-
pose each folder. In this case, there was concern about not
allowing samples of the same patient to be located in more
than one folder to guarantee a testing phase without data
leakage—simulating a more realistic and challenging appli-
cation. We called this arrangement an inter-subject scenario
because only cross-subject BP variability was available to
those algorithms during the testing phase.

Unfortunately, regarding MIMIC-II UCI-ML, the sub-
ject indices were not reported, impacting our original two
partitioning strategies. Therefore, an intra-subject scenario
was implemented using a ten-fold cross-validation; however,
there was no way to limit the data per subject, which probably
led to bias. Moreover, a ten-fold inter-subject scenario is
completely infeasible without these indices. To overcome this
difficulty, we adopted a four-fold cross-validation in which
the four MATLAB® files of the database represent each
folder [83], expecting that there would be no mix of patients
in these files. Even if there were, such an arrangement would
at least reduce data leakage to a minimum.

Considering these cross-validation schemes, two machine-
learning experiments were performed. The first design
investigated a PPG feature-based approach with age, sex,
and weight as attributes, in which XGBoost, LightGBM,
and CatBoost were used to perform BP estimation. The
second design explored a PPG signal-based approach in
which ResNet18, ResNet-LSTM, and residual U-Net were
tested. These machine-learning experiments were imple-
mented using Python libraries (xgboost 1.5.2, CatBoost 1.0.5,
and scikit-learn 0.24.1), and deep learning models were
implemented using a TensorFlow library (tensorflow-gpu
2.3.0). The primary settings of these algorithms are sum-
marized in Table 1 and Figure 4. To select parameters

for GBDT models, we performed brute-force searches with
90% subsets of three random training folds and validated
with the remaining 10% in each scenario (intra- and inter-
subject variabilities) and each database (MIMIC-II UCI-ML
and MIMIC-III). The values are displayed in Table 1.

Considering the intra-subject scenario of the MIMIC-III
exclusively, one final design examines a feature vector with
age, sex, weight, and patient index number as attributes
(therefore, without PPG samples) feeding into an XGBoost-
based estimator to provide a baseline for comparison with the
preceding scenarios.

F. METRICS
The AAMI and BHS standards are significant guidelines for
evaluating a device while taking BPmeasurements. The accu-
racy criteria of the former states that SBP and DBPmust have
a mean difference (MD) between reference and test measures
of ±5 mmHg with a standard deviation (STD) less than or
equal to 8 mmHg in a study population of at least 85 sub-
jects [41]. By contrast, the accuracy criterion of the latter
states that SBP and DBP must have cumulative percentages
of the absolute differences (between reference and test mea-
sures) within ≤5 mmHg, ≤10 mmHgred, and ≤15 mmHg
intervals, in accordance with the values in Table 2. If all three
cumulative percentages are equal or greater than the tabulated
values in each row, the test device receives grades A, B, C,
or D, in case it is worse than C [40].

We also present our results in terms of mean absolute error
(MAE), calculated as follows:

MAE =
1
n

n∑
i=1

|yi − ŷi|, (1)

where yi and ŷi are the target and predicted values,
respectively.

In addition to these metrics, essential assessment tools
include the scattering of the target versus predictions, Bland-
Altman plots, and error histograms. The scattering of the
target versus prediction is the most common visual resource
for estimation problems due to its relationship with the corre-
lation coefficient displayed next to the chart. Nevertheless,
because a high correlation coefficient does not necessarily
denote agreement, the Bland-Altman plot exhibits the 95%
limits of agreement between two measurements, highlighting
their differences relative to their means. In this plot, we expect
the mean and standard deviation of the differences to be
constant over the entire range and such differences to be nor-
mally distributed. The error histogram is essential to verify
the latter condition because a skewed histogram leads the
Bland-Altman plot to be misinterpreted [84]. We explore all
three graphics in our analysis.

IV. RESULTS AND DISCUSSIONS
Table 3 summarizes the performance of the BP algorithms
in terms of MD, STD, and MAE in the MIMIC-III dataset
considering the intra- and inter-subject data arrangements.
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TABLE 1. Parameter values of the boosting algorithms.

FIGURE 4. Deep learning architectures for BP estimation. In particular, to calculate the BP using the residual U-Net, we get the ABP signal reconstructed
by the model, and calculate the mean value of the peaks and valleys in order to represent SBP and DBP, respectively. ABP: arterial blood pressure; DBP:
diastolic blood pressure; SBP: systolic blood pressure; Conv: convolutional 1-dimension operation; SeparableConv: depth wise separable 1-dimension
convolution; LSTM: long short-term memory; ResNet: residual network; ResNet SEP Block: ResNet Block but changing the convolutional 1-dimension
operation by a depth wise separable 1-dimension convolution; BN: batch normalization operation; Relu: rectified linear unit activation function; f:
number of output filters in the convolutions; k: length of the 1-dimension convolution window; mp: size of the max pooling window; u: number of unities
in LSTM layer; d: fraction of the input units to dropout.

TABLE 2. Grading criteria for BHS [40].

In the intra-subject scenario, SBP and DBP values estimated
with XGBoost, LightGBM, CatBoost, residual U-Net, and

ResNet18 met the AAMI standard, suggesting that both
feature- and signal-based methods are equally capable of
solving the problem. ResNet-LSTM did not reach the metrics
for SBP and, for DBP, attains it by a narrow margin, sug-
gesting that intra-subject variability can be learned only by
specific techniques. XGBoost achieved an MD and an STD
of 0.04 ± 4.31 for SBP and 0.01 ± 2.28 for DBP. Residual
U-Net achieved 0.36 ± 4.64 and −0.08 ± 2.49, respectively.
Both results are comparable to the state-of-the-art methods
that do not explicitly inform a separation of individuals dur-
ing cross-validation. Nevertheless, the same algorithms show
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higher error values in estimating BP in the latter scenario.
Indeed, because they exhibit an STD close to 20.77 mmHg
and 12.84 mmHg for SBP and DBP, respectively, these meth-
ods seemingly pursue no other tendency than the standard
deviations relative to SBP and DBP averages of the dataset
itself, as shown in Figure 3, revealing their complete inability
to extract information from the inter-subject variability.

Table 4 exhibits the performance of those algorithms
according to the BHS standard. The values met the same
general conclusion. In the case of intra-subject variability,
XGBoost, LightGBM, CatBoost, and residual U-Net are clas-
sified as Grade A for SBP and DBP—a grading similar to the
state-of-the-art. ResNet18 is classified as Grade B for SBP
and Grade A for DBP, whereas ResNet-LSTM is classified
as Grades D and B. Once more, XGBoost presented the
best indices, with 84.93%, 96.70% and 98.86% of the dif-
ferences between actual and expected values for SBP within
the ≤5 mmHg, ≤10 mmHg and ≤15 mmHg criteria, respec-
tively, and 96.92%, 99.37% and 99.76%, respectively for
DBP. Residual U-Net showed 85.59%, 96.66% and 98.58%
for SBP and 97.22%, 99.25% and 99.65% for DBP. However,
in the case of inter-subject variability, all methods notably
fell into Grade D for SBP and DBP. XGBoost, for exam-
ple, despite being one of the best in the preceding scenario,
reached low cumulative percentages (19.39%, 37.75%, and
53.93% for SBP and 37.63%, 69.25%, and 86.52% for DBP),
suggesting that these algorithms are incapable of solving the
problem in the most general case: when the samples of each
subject are allocated in the training or testing set (but not in
both) and when these samples are arranged to be the same
size.

Figures 5 and 6 display the scattering of the target versus
prediction (items (a) and (b)), the Bland-Altman plot (items
(c) and (d)), and the histogram of the errors (items (e) and (f))
for SBP and DBP estimation using XGBoost. These find-
ings help to understand how machine-learning algorithms
behave. On the one hand, Figure 5 depicts the intra-subject
scenario, in which the target and prediction have correlation
coefficients (ρ) of 0.98 for SBP and DBP, respectively. The
distribution of samples within the 95% limits of agreement
in the Bland-Altman plot is flattened along the entire range,
and the histogram of the errors is normally distributed around
zero. On the other hand, Figure 6 depicts the inter-subject
scenario, in which the correlation coefficients drop to 0.24 for
SBP and 0.43 for DBP. The sample distribution is biased
when moving away from the midpoint of averages, and the
histogram of the errors is more widespread and no longer
zero-centered.

Figures 7 and 8 for residual U-Net have similar descrip-
tions. In conclusion, the contrast between the two scenarios
is evident and reinforces the point that BP estimation from
PPG alone is not resolved in the most challenging case.

Table 5 and Table 6 exhibit, for the MIMIC-II UCI-ML
database, the performance of the BP algorithms concerning
AAMI andBHS standards, respectively. Although the general
appointments are essentially the same, regarding intra-subject

FIGURE 5. Scattering of the target versus prediction, (a) and (b),
Bland-Altman plot, (c) and (d), and histogram of the errors, (e) and (f), for
SBP and DBP estimation using XGBoost in the MIMIC-III database,
by considering the intra-subject variability. DBP: diastolic blood pressure;
SBP: systolic blood pressure; µ: mean; σ : standard deviation; ρ:
correlation coefficient.

FIGURE 6. Scattering of the target versus prediction, (a) and (b),
Bland-Altman plot, (c) and (d), and histogram of the errors, (e) and (f), for
SBP and DBP estimation using XGBoost in the MIMIC-III database,
by considering the inter-subject variability. DBP: diastolic blood pressure;
SBP: systolic blood pressure; µ: mean; σ : standard deviation; ρ:
correlation coefficient.

variability, only XGBoost and residual U-Net attain the STD
criterion and Grade A for SBP and DBP. LightGBM, Cat-
Boost, and ResNet18 exceed the reference limit for SBP,

VOLUME 11, 2023 57941



T. B. D. S. Costa et al.: BP Estimation From PPG by Considering Intra- and Inter-Subject Variabilities

TABLE 3. Evaluation of BP estimation in the MIMIC-III dataset with regard to AAMI standard and MAE.

TABLE 4. Evaluation of BP estimation in the MIMIC-III dataset with regard to BHS standard.

satisfy it for DBP, and reach no more than Grade B for SBP
while achieving Grade A for DBP. Finally, ResNet-LSTM
achieves reasonable performance only for DBP. Neverthe-
less, regarding inter-subject variability, similar toMIMIC-III,
all methods decisively fail because they are skewed toward
the standard deviations of SBP and DBP averages of the
dataset—21.27 and 10.07 (Figure 2)—and are at most ranked
as Grade C, once again revealing their inability to solve the
general problem.

Comparing our results with the literature (Table 7),
we inferred that Wang et al., Khalid et al., Mousavi et al.,
Chowdhury et al., Panwar et al., Hasanzadeh et al., Hsu
et al., El-Hajj and Kyriacou, Athaya and Choi, Rong and
Li, Wang et al. and Kim et al. ([27], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39]) probably
yielded an overlap between training and testing subjects
because their results are similar to our intra-subject scenario.
Hasanzadeh et al. even tried to prevent it by retaining the
original order of the dataset during ten-fold cross-validation.
However, there is no guarantee that such a strategy has
worked (although it has possibly reduced it) because the
patient index numbers are not reported in their datasets.
Slapničar et al., Xing et al., Schrumpf et al., Brophy et al.,
Paviglianiti et al. and Leitner et al. ([42], [46], [47], [48],
[49], [50]) explicitly ensured training, validation, and testing

sets without mixing subjects in an attempt at a calibration-
free approach. Their results are similar to our inter-subject
scenario, in which the performances are far from assured.
Ultimately, only Xing and Mingshan, Schlesinger et al. and
Mahmud et al. ([43], [44], [45]) did not mix individuals, and
they achieved impressive results; nevertheless, we failed to
reproduce them.

Finally, Figure 9 exhibits the scattering of the target versus
prediction, the Bland-Altman plot, and the histogram of the
errors for a BP estimation using XGBoost (in this case,
trained and tested with age, sex, weight, and patient index
number as attributes instead of PPG features). Curiously, the
target and prediction have a high correlation coefficient, the
distribution of samples within the Bland-Altman limits is flat
along the entire range, and the error histogram has a narrow
and normal shape around zero. This result is very similar to
the one obtained with PPG feature-based XGBoost. Concern-
ing BHS and AAMI, this approach achieves an MD and an
STD of 0.00± 5.67 for SBP, 0.00± 2.76 for DBP, and Grade
A for both (74.03%, 92.85% and 97.54%; 94.52%, 99.16%
and 99.69%; respectively). Such a finding is not surprising
and occurs for a simple reason: although BP is the training
label throughout the learning process, it is a feature for rec-
ognizing individuals. Consequently, any powerful technique
can learn the average BP values per subject and, only with
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TABLE 5. Evaluation of BP estimation in the MIMIC-II UCI-ML dataset with regard to AAMI standard and MAE.

TABLE 6. Evaluation of BP estimation in the MIMIC-II UCI-ML dataset with regard to BHS standard.

this information, achieve a reasonable or even excellent per-
formance, which makes ambiguous how much of the PPG-
based estimation is owing to hemodynamic outcomes [85].

Although the inter-subject configuration performs worse
than the intra-subject one, and the former represents a more
realistic and challenging application, several works have sug-
gested that a feasible solution is to include a calibration
step—a manner to provide intra-subject information to the
machine learning algorithm. After all, everyone is differ-
ent, which makes inferring an individual’s vital signs from
other individual’s training sets an extremely difficult task.
On the other hand, techniques for predicting BP from PPG
is very convenient, especially for continuous long-term BP
monitoring out of hospital, even if the training and testing
data are from the same individual. Nevertheless, a dedicated
algorithm, trained on a person’s historical BP and PPG data,
has practical value.

Because of the previous analyses, we suggest the following
guidelines regarding what we believe to be the best practices
for a fair assessment of a BP estimation from PPG only:

1) Do not mix subjects during the k-fold cross-validation
to avoid data leakage and deliver new samples during
the test.

2) Select an equal data size per subject rather than differ-
ent proportions to avoid bias.

3) Do not use databases not reporting the subject index
number to meet previous recommendations.

4) In addition to the AAMI and BHS standards, provide
plots for the scattering of the target versus prediction,
the Pearson correlation coefficient, the Bland-Altman
plot, and the error histogram to complement the analy-
sis and provide a unified point of view.

5) Finally, compare the results with the average BP values
per subject to confirm that the proposal is better than
directly selecting these values.

We are convinced that any algorithms or methods gen-
uinely concerned with the problem of estimating BP from
a single PPG will be considered only if they achieve their
results in line with all preceding recommendations. However,
there is a balance between convenience and precision of a new
technology, i.e., the AAMI and BHS standards are rules for
medical devices and possibly too strict for wearable devices
that seek to predict BP based on PPG. Wearable applications
are developed and positioned to be used anywhere, anytime
for home health care (rather than medical or hospital use),
where even a less precise estimation may help to avoid acute
cardiovascular events.

Finally, our work has limitations to some extent. First,
MIMIC-II and MIMIC-III are collections of records from
patients admitted to ICUs, with the most varied clinical
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TABLE 7. Summary of papers in literature that proposed BP estimation methods.
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TABLE 7. (Continued.) Summary of papers in literature that proposed BP estimation methods.
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TABLE 7. (Continued.) Summary of papers in literature that proposed BP estimation methods.

FIGURE 7. Scattering of the target versus prediction, (a) and (b),
Bland-Altman plot, (c) and (d), and histogram of the errors, (e) and (f), for
SBP and DBP estimation using residual U-Net in the MIMIC-III database,
by considering the intra-subject variability. DBP: diastolic blood pressure;
SBP: systolic blood pressure; µ: mean; σ : standard deviation; ρ:
correlation coefficient.

conditions and under the effects of medication. Therefore,
PPG and ABP waveforms from these patients are not neces-
sarily representative samples of a broader healthy population.

FIGURE 8. Scattering of the target versus prediction, (a) and (b),
Bland-Altman plot, (c) and (d), and histogram of the errors, (e) and (f), for
SBP and DBP estimation using residual U-Net in the MIMIC-III database,
by considering the inter-subject variability. DBP: diastolic blood pressure;
SBP: systolic blood pressure; µ: mean; σ : standard deviation; ρ:
correlation coefficient.

Second, our results are limited to a single PPG analysis.
Because it was out of our scope, we did not investigate PPG
combination with other signals such as ECG for predicting
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FIGURE 9. Scattering of the target versus prediction, (a) and (b),
Bland-Altman plot, (c) and (d), and histogram of the errors, (e) and (f), for
SBP and DBP estimation using XGBoost in the MIMIC-III database,
by considering only age, sex, weight and patient index number as
attributes. DBP: diastolic blood pressure; SBP: systolic blood pressure; µ:
mean; σ : standard deviation; ρ: correlation coefficient.

BP. Third, our results cannot be extended to works using
calibration strategies. We only use a continuous 30-minute
segment of each patient, which does not have enough variance
to study how long a calibration fit lasts.

V. CONCLUSION
The importance of BP monitoring for diagnosing, assessing,
and treating cardiovascular diseases resides in the fact that
this simple procedure (with clinical follow-up) can prevent
diseases from becoming severe. However, reference devices
to perform BP measurements remain aneroid, mercury,
and electronic sphygmomanometers, providing discontinu-
ous values through repeated cuff inflation—uncomfortable
and painful methods. On the other hand, PPG monitors BP
and screens for hypertension because it can be adapted to a
wristband or a ring. PPG andABP are strongly correlated, and
ultimately both are generated by the cardiovascular system.
The former can carry information about the latter.

Guided by this principle, many works have sought signal
processing and machine-learning techniques to estimate BP
from a single PPG, especially those for which the calibration
step can be waived. These works have reported satisfactory
results. As a matter of principle, we then investigate how
intra- and inter-subject variabilities in BP influence the train-
ing of a representative set of machine-learning algorithms—
by considering two different cross-validation schemes. They
succeed in the first scheme and fail decisively in the sec-
ond scheme. We also found that, regarding the intra-subject
scenario, these machine-learning algorithms—covering both

PPG feature-based and PPG signal-based methods—achieve
similar performancewith anXGBoost-based regression using
age, sex, weight, and patient index number as attributes. The
latter finding suggests that, although BP is the training label
during the learning process, it is a feature for recognizing
individuals. Hence, any powerful technique can learn the
average BP values per subject and reach a performance meet-
ing the evaluation metrics.

However, considering the importance and benefits of con-
tinuous long-term BP monitoring in non-clinical settings,
it is imperative to further investigate the constraints of PPG-
basedmethods for predicting BP, before evaluating their prac-
tical feasibility. While striving for a universally applicable
algorithm, the potential suitability of specialized algorithms
cannot be dismissed. Furthermore, the criteria set forth by
AAMI and BHS standards seem to be excessively rigorous
for wearable devices intended mainly for home health-care
use rather than hospital applications. Ultimately, even a less
precise BP estimationmay offer valuable insights for prevent-
ing cardiovascular diseases.
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