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ABSTRACT We present an interdisciplinary survey of the history of loosely coupled systems. We apply
the presented concepts in communication networks and suggest hybrid self-organizing networks (SONs)
as a universal model for future networks. Self-organizing networks can fulfill the tight requirements of
future networks but are challenging to use due to their complexity and immaturity. Moreover, the lack of
an externally defined goal and centralized control has resulted in many distributed self-organizing systems
failing. This is because the nonlinear relationships between the system parts result in emergence, i.e.,
we cannot predict the behavior of the whole from the behavior of the parts. Furthermore, a set of local optima
does not produce a global optimum. Hybrid SONs tackle these challenges with loose or weak coupling
of interacting agents that combine centralized control for global optimization with distributed control for
local optimization. In the loose centralized control of almost autonomous agents, decisions are made mostly
locally with small delays. This architecture has beneficial properties such as stability, obtained by decoupling
the feedback loops: vertically with time-scale separation and horizontally with interference avoidance.
Applications of loose coupling include modular electronics and computer design, structured software design,
and service-oriented architectures, especially for microservices. Cross-layer design for network optimization
is a new reason to use loose coupling in networks to improve stability. We also summarize some recent trends
and present a roadmap to the future. We expect that loose coupling will be widely used in self-organizing
networks of future wireless systems.

INDEX TERMS Feedback, information and communication technologies (ICT), loosely coupled systems,
multi-agent systems, network layer, self-organizing networks.

NOMENCLATURE
µ Step size.
dk Output signal of the unknown system.
D Delay.
ek Error signal.
E[x] Expected value of x.
i Index.
k Time index.
L Number of realizations in a simulation.
N Number of weights.
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q Order of an MA process.
R Autocorrelation matrix.
sgn(x) Signum function.
T Transposition.
wn Weight n of the adaptive filter.
W k Weight vector.
xk Input signal with correlation.
Xk Input signal vector with correlation.
x ′
k Input signal without correlation.
X ′
k Input signal vector without correlation.

X†
k Input signal vector after orthogonalization.

yk Output of the adaptive filter.
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3GPP 3rd Generation Partnership Project.
AI Artificial intelligence.
API Application programming interface.
ARQ Automatic repeat request.
AWGN Additive white Gaussian noise.
CAES Complex, adaptive, and evolvable system.
CAS Complex adaptive system.
CDMA Code division multiple access.
C-SON Centralized SON.
DE Decision Making Element.
DNA Deoxyribonucleic acid.
D-SON Distributed SON.
ENI Experiential Networked Intelligence.
ETSI European Telecommunications Standards

Institute.
FIR Finite impulse response.
GANA Generic Autonomic Networking Architecture.
GS Group Specification.
HMS Holonic manufacturing system.
H-SON Hybrid SON.
ICT Information and communication technologies.
IEC International Electrotechnical Commission.
ITU-R International Telecommunication Union –

Radiocommunication Sector.
LMS Least-mean square.
LTE Long Term Evolution.
MA Moving average.
ME Managed Entity.
MOO Multiobjective optimization.
MSE Mean-square error.
NBS Nash Bargaining Solution.
NOMA Nonorthogonal multiple access.
NR New Radio.
NUM Network utility maximization.
O-RAN Open Radio Access Network.
OSI Open Systems Interconnection.
PID Proportional-integral-derive.
PQL Pareto Q-learning.
QoS Quality of service.
Rel. Release.
RLS Recursive least-squares.
SDN Software-defined network.
SIR Signal-to-interference ratio.
SNR Signal-to-noise ratio.
SON Self-organizing network.
TS Technical Specification.
ZSM Zero Touch Network and Service Management.

I. INTRODUCTION
Loose or weak coupling [1] is a general principle indepen-
dently used in many disciplines with different terms. Just as
feedback [2], loose coupling is ‘‘an invisible thread in the
history of technology,’’ based on the results of natural and
social sciences and engineering. Complex systems use a hier-
archical layer architecture. The essence of loose coupling is

to reduce communications both between layers and between
subsystems in the same layer, and to balance centralized
and local decision making. It has many benefits and can
solve problems when developing complex information and
communication technologies (ICT) systems. Specifically,
loose coupling supports sustainable development with its
system-wide focus on resource usage.

Large systems need a hierarchical and modular structure
to manage complexity and cope with dynamic environments.
This leads to a set of agents making local decisions
within their sense-decide-act feedback loops, as in [3].
The feedback loops facilitate operating in uncertain and
dynamic environments. On the other hand, global goals and
requirements on resource usage call for centralized control
that is aligned with local decisions. This can be achieved by
organizing the set of agents into a hierarchy where the higher
layer or level agents give goals and requirements for the
lower layer local agents but leave detailed decision-making
for those local agents. In other words, the higher and lower
layer agents are vertically loosely coupled.

Loose coupling can also manage unintentional coupling,
such as interference between system components (i.e.,
agents) at the same hierarchy level. This case is horizontal
loose coupling. A hierarchical multi-agent system applying
intentionally both vertical and horizontal loose coupling can
operate in a dynamic environment and achieve system goals
with good performance. The ability to adapt to changes in
the environment and requirements can be further improved
with self-organization [4], [5], [6]. That is, the agents adapt by
updating their organization, structure, or architecture without
any external control.

We apply loose coupling to build a hybrid self-organizing
system. A minimum amount of control information moves
downwards in the layer hierarchy, and a minimum amount
of sensing signals moves upwards in the hierarchy or
horizontally in the same layer, see FIGURE 1.We suggest this
system architecture as complex systems are invariably formed
by rational agents [7], [8], and self-organization improves
adaptability and agility.

In this article, we introduce loose coupling, rational
agents, feedback, hierarchy, self-organization, degree of
centralization, and open systems and explain how they
support building future complex ICT systems. Although the
general principles of these concepts are widely known, this
is the first time that results from a wide set of disciplines are
collected together and used to propose a general architecture
for complex systems. We concretize Simon’s vision of
vertical and horizontal loose coupling in general systems [1].

We discuss communication networks in detail as a prime
example of systems entering new application areas, becoming
increasingly more pervasive and complex, and operating
in more and more dynamic environments. Sustainable
development calling for efficient resource usage further
tightens the requirements set for communication networks.
In addition, the networks must be stable and scalable to
support future needs. Reliability is an important general
performance criterion. Finally, the networks must be agile
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FIGURE 1. A hierarchical loosely coupled group of interacting agents.
Solid arrows mean control signals and dashed arrows mean sensing
signals or exchange of information.

and specifically resilient to cope with abrupt changes in their
operating environment.

We suggest loosely coupled hybrid self-organizing net-
works (H-SONs) as a universal model for future commu-
nication networks, see FIGURE 2. An H-SON combines
centralized SON (C-SON) and distributed SON (D-SON).
We discuss how the requirements listed above can be
fulfilled with H-SONs. A network based on such a model
is an open hierarchical system combining loose centralized,
and distributed control. The feedback control loops in the
system can be interpreted as rational agents. Hence, the
system consists of a hierarchical set of loosely coupled
agents. Furthermore, we explain how feedback, agents, loose
coupling, and self-organization are present in the current
communication networks and the research literature of this
field. Generally, these concepts have not been used as a
general design paradigm for communication networks.

Our contributions are the following. As a main con-
tribution, we present a unified survey of the long, frag-
mented, and multidisciplinary history of loose coupling
and self-organization with their parallel and independent
threads and terms. To the best of our knowledge, all
earlier surveys focus on a certain discipline. For example,
the papers [9] and [10] focus on human organizations
and service-oriented architectures, respectively. We present
results from the general theory of systems, complexity
theory, natural and social sciences, control theory, multi-
agent systems, software design, and manufacturing systems.
Complexity theory is a modern general theory of general
systems. Different disciplines have somewhat surprisingly
independently converged to similar solutions. We observe
that the general principle of loose coupling is used in many
disciplines with different terms, and this observation can
advance interdisciplinary research.

We classify methods useful in the H-SONs. We explain
in detail why the loosely coupled H-SON is an appropriate
solution for self-organization. We assume that the existing
problems in D-SONs come from the lack of centralized
control and a common goal used in C-SONs. This is one
of our basic observations that helps to solve the stability
problem caused by feedback loops. Furthermore, we present
the pros and cons of C-SONs, D-SONs, and H-SONs. It is

well known that negative feedback can be used to improve
the stability of an otherwise unstable system [11]. Our focus
is on coupling between two or more feedback loops creating
instability unless the loops are loosely coupled.

Cross-layer design can be used for joint optimization of the
layers and their subsystems. The layers and subsystems must
both be mutually loosely coupled to improve performance.
We present how time-scale separation [12] and interference
avoidance [13] belong to the loosely coupled paradigm.
However, clear time-scale separation is not used in the
Open Radio Access Network (O-RAN) [14]. Interference
avoidance is not used in the nonorthogonal multiple access
(NOMA) system [15]. Lack of loose coupling may result
in instability in the network if not carefully designed. The
problems with stability are demonstrated with simulations.
A delay in the feedback loop increases stability problems.
We also summarize some recent trends and present a roadmap
to the future.

This paper is a major extension of our earlier papers
in [16], [17], and [18]. A historical approach is used in all
the sections of this paper. The history of loose coupling is
presented in detail. Furthermore, as we have observed that
the history of open systems and emergence are still not well
known in the IEEE literature, we decided to present their
history in more detail. We often refer to survey papers and
books to manage the number of references. Many concepts
are explained in some detail in our earlier paper [19] using
figures and references. When the literature is fragmented,
knowledge about the origin of each idea has a unifying effect.
The parallel threads related to hierarchy, modularity, and
loose coupling are summarized in the timeline in FIGURE 3
for the last hundred years. In the figure, the development
is presented in social and natural sciences, control theory,
computer science, and communication theory to show the
different terminology. The terminology is explained later.

The rest of this paper is organized as follows. Sec-
tion II summarizes the basic ideas in intelligent systems,
including feedback, rational agent and game theory, and
optimal systems. Section III introduces loosely coupled
systems, including vertical and horizontal coupling and
some simulation results. In Section IV, we apply the ideas
to self-organizing systems and communication networks.
Finally, conclusions are made in Section V.

II. INTELLIGENT SYSTEMS
A. FEEDBACK SYSTEMS
1) DEFINITION OF A SYSTEM
An observer defines the boundary between a system and its
environment. A system can be defined in two ways [20].
According to the first definition, which is more general,
a system is a set of parts with causal relationships between
the parts [21]. Without relationships between the parts,
we would have a set instead of a system. An open system
also has relationships with its environment. The parts are
coupled through the relationships to form a whole. The
coupling or interaction may be intentional or unintentional.
The coupling with the environment of open systems and
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FIGURE 2. A combination of centralized SON (left) and distributed SON (middle) is called hybrid SON (right).

FIGURE 3. The hierarchy, modularity, and loose coupling applications timeline includes recent trends. The terms hierarchy,
mass hierarchy, resonance, and emergence were introduced before the 1900s.

between their parts takes place in the form of materials,
energy, or information [22].

The second definition of a system is more specific. In this
definition, a system is a set of active elements called agents
interacting with each other and their environment [7]. The
agents adapt or learn as they interact. Originally since the
1500s, an agent has meant ‘‘the one who acts’’ or ‘‘deputy,
representative’’ [23]. A human agent is called an actor.
In artificial intelligence, an agent is ‘‘anything that can be
viewed as perceiving its environment through sensors and
acting upon that environment through actuators’’ [3].

2) COMPLEX SYSTEMS
A complex system is a system with emergent behavior, i.e.,
system behavior cannot be predicted with analytical tools
from the behavior of the parts because of the nonlinearities
involved [24], [25], [26]. Thus, the system is mathematically
intractable, although it could be simulated. An exam-
ple of intractability is a three-body system in physics,
whereas a two-body system is mathematically tractable [27].

An intricate system with no emergent properties is compli-
cated [26]. Although often observed, especially in biology,
no theory exists for emergence [28]. Complex systems also
require considering the fundamental limits of nature forming
constraints to system design, the tragedy of commons ham-
pering fair use of resources, and incommensurate resources
hindering decision making.

3) FEEDBACK
Because of complexity, optimization must often be done
hierarchically and iteratively using feedback. The optimum
cannot be found directly except in some simple linear cases,
hence iteration with feedback is crucial. A feedback loop
consists of sense, decision making, and act blocks. The
act block controls the environment, also called the plant
or process [11]. The task of the decision-making block
is to move the environment from the present state to an
externally given goal, which may be a desired state or
improved performance, usually iteratively [29]. Performance
is optimized using an optimization criterion, also called a
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metric. Many metrics can be combined into a utility to
be maximized using a utility function such as weighted
arithmetic or geometric average [30], [31], [32], [33]. Some
simple feedback systems, such as a feedback amplifier, do not
need a goal. Another example is a primitive reflex agent
or robot [3], [34] such as an automatic vacuum cleaner or
lawnmower, which are goalless. A reflex robot moves in
some direction, and after finding an obstacle, it turns to a
new direction selected randomly. However, the working area
is defined using a boundary or constraint beyond which the
robot does not move, and it may have a memory to know
where it has already been.

In control systems, negative feedback targets reducing the
difference between the actual and desired states, whereas
positive feedback reinforces the difference. In general,
negative feedback with small enough feedback gain and
small enough loop delay is known to be stable, and positive
feedback tends to be unstable [11], [35]. Loop delays may
change a stable feedback loop to an unstable loop.

The feedback gain defines the speed of the loop, which
must be decreased using a smaller feedback gain if the delay
within the loop is made larger. In the case of two nested
feedback loops, positive feedback can be used in the inner
loop if the outer negative feedback loop dominates so that the
loop as a whole forms a negative feedback loop. In a network,
stability requires that negative feedback dominates at all
levels of the system [36]). In complex ICT systems, many
coupled feedback loops may cause instability and chaotic
emergent behavior.

In present communication networks, common applications
of feedback include transmitter power control, synchro-
nization, channel estimation and equalization, automatic
repeat request (ARQ), and flow and congestion control
in the physical, data link, and transport layers [37], [38].
Feedback is also used in the network layer, for example,
in the form of routing, admission control, handover, and
load balancing [39]. Conventionally, feedback has been used
strictly within each layer. In some cases, sensing information
has been transmitted from the routers in the network layer to
the transport layer [38], but these are exceptions. Instability
may be caused by a long delay in a feedback loop [35]
and tight vertical and horizontal coupling between feedback
loops [12], [13], [40]. Now cross-layer design in the form
of feedback loops is introduced in standards [41] and new
proposals for standards [14]. These feedback loopsmay cause
additional stability problems if not carefully designed.

4) HISTORY OF FEEDBACK SYSTEMS
The history of feedback is briefly summarized in [2]. Home-
ostasis and equilibrium in biological systems are closely
related to the feedback concept. Bernard (1878) was the first
to study homeostasis and equilibrium in living systems [42].
The meaning of homeostasis has been since 1926, ‘‘tendency
toward stability among interdependent elements’’ [23]. As an
example of homeostasis, our body temperature is kept
almost constant, independently of the temperature of the

environment. Cannon (1932) defined the concepts of home-
ostasis and equilibrium in open systems [42]. Rosenblueth
(1943) later linked homeostasis to the feedback concept.
He noticed that goal-directed operation in negative feedback
systems is purposeful behavior, the opposite of purposeless
or random behavior [29].

The term feedback has been used since 1920, meaning
‘‘the return of a fraction of an output signal to the input
of an earlier stage’’ [23]. The feedback concept has been
known since the antique [2]. Dreppel invented the thermostat
in the 1600s. Watt (1769) used feedback in his steam
engine, and Maxwell (1868) offered the first analysis.
Minorsky (1922) developed the proportional-integral-derive
(PID) controller, and Black (1927) invented a negative
feedback amplifier. Interest in feedback rose after Nyquist
(1932) published his stability analysis, and the generality
of the concept was understood. Since then, feedback has
formed the basis of automation, a term used since 1948;
the adjective ‘‘automatic’’ has been used since 1812 with
a related meaning [23]. The concept of feedback has been
reinvented many times with different terms.

Wiener (1948) used feedback for his cybernetics, which
combines communication and control theories. The concept
of artificial intelligence (AI) was developed in 1956 to
separate it from cybernetics [43]. Therefore, since then,
computing has been included in system theories in addition
to control and communications.

5) HIERARCHY
Hierarchy is a common method to manage complexity
by dividing a complex problem into smaller problems.
Hierarchical systems are divided into nested and nonnested
hierarchies, and nonnested hierarchies are divided into
dominance and layer hierarchies [19], [44]; see FIGURE 4.
In a nested hierarchy, the higher levels contain the lower
levels. In a nonnested hierarchy, the higher levels do not
contain the lower levels. The dominance hierarchy is also
called an organizational hierarchy, as in human organizations.
The layer hierarchy is a special case of dominance hierarchy
where each layer contains only one decision-making block
to be controlled from above. Communication networks are
based on the dominance hierarchy, which is often called layer
hierarchy.

Each hierarchy level or layer includes one or more
modular parts called subsystems. In the physical layer,
an important module is, for example, power control for
each network user and may result in coupling between
users through radio waves. Hence, power control is needed
in the uplink from a mobile terminal to the base station.
Simon noticed that many complex systems are hierarchical,
having: i) loose or sparse connections between different
levels (this is vertical loose coupling), ii) at any level of
hierarchy loose connections between different subsystems
(this is horizontal loose coupling), but iii) tight or dense
connections within each subsystem [1], [45]. Network
functionalities and resources can be allocated optimally
in a hierarchical layered architecture using optimization
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FIGURE 4. Classification of hierarchies.

decomposition defined in the network utility maximization
(NUM) theory [31], [46], [47]. The NUM theory is based on
joint optimization. Such decomposition has been used earlier
in control theory [48], [49].

The empty world hypothesis [45] presents a useful system
design guideline. The hypothesis describes that in a complex
system, one must consider only a small part of relationships,
and the expression ‘‘everything depends on everything’’ is
useless and misleading [50]. Usually, one can focus on the
nearest neighbors vertically and horizontally.

6) HISTORY OF HIERARCHY
The term hierarchy has been used since the 1600s in
the modern meaning ‘‘ranked organization of persons or
things’’ [23]. The concept of hierarchy has been used
much earlier in the army. The Roman army was one of
the first formal hierarchies. The various military units in
the army form a nested hierarchy, and the commanders
and leaders in the command hierarchy form a nonnested
hierarchy [50]. Egler (1942) and Novikoff (1945) studied
hierarchy in ecology and biology, respectively [44]. Simon
started scientific research on hierarchies and described
hierarchy [44], [50] and modularity [1], [45], [51]. Mesarovic
(1970) divided control hierarchies into stratified (nested),
multilayer, and multiechelon (dominance) hierarchies [48].
The Open Systems Interconnection (OSI) reference model
(1984) used the multilayer hierarchy concept [38].

In [52], the author referred to [45] and observed that
biological systems use a nested hierarchy that consist of
holons. The corresponding architecturewas called a holarchy.
In manufacturing systems, the holonic control architecture
combines centralized and distributed control [53]. Some early
papers on holonic manufacturing systems are mentioned

in [53] and [54]. In [54], the author says that the first exper-
iments with the holonic concept applied to manufacturing
were already done in Japan in 1989. References [6], [55],
and [56] present the holonic architecture as a nested or
recursive architecture. In other references [53], the holonic
architecture is based on a nonnested dominance hierarchy.

The concept of modularity started from the architectural
theories by Bemis (1936) [51]. He used the term modular
in the modern meaning ‘‘composed of interchangeable
units’’ [23]. Modular electronics design (1949) was started
at the National Bureau of Standards [51]. Later IBM used
modular design in its computers (1957). Parnas presented
criteria for modular design [57]. The modular design of
products improves a system’s comprehensibility and flexibil-
ity and shortens its development time [4], [57]. In modular
design, each module is only loosely coupled with other
modules.

7) DEGREES OF CENTRALIZATION
Complexity can be managed with various degrees of cen-
tralization, often combined with hierarchy. Architectures can
be divided into centralized, decentralized, distributed, and
hybrid architectures [19], [58], all used in communication
networks. Decentralized and distributed architectures are not
hierarchical, but centralized and hybrid architectures are
hierarchical. In some disciplines, a distributed system is
called a heterarchy as the opposite of a hierarchy [53], [59].

Centralized and decentralized control form two extremes
of control, and distributed control is an intermediate form
between them as in [60]. In centralized control, no autonomy
is allowed; in decentralized control, complete autonomy
exists if defined as in [49]. In decentralized systems, the
agents are autonomous and compete with each other. This is

VOLUME 11, 2023 59461



A. Mämmelä et al.: Loose Coupling: An Invisible Thread in the History of Technology

the initial condition in an ad hoc network that does not yet
form an actual network but only a set of nodes. An ad hoc
network has no fixed infrastructure available. In distributed
systems, the agents exchange information with their nearest
neighbors (FIGURE 2).

In centralized control, all the intelligence is in the central
agent, who must solve an optimization and decision problem
with exponential complexity [61]. In decentralized and
distributed control, all the intelligence is in the local agents,
and the decision problem is divided into smaller problems that
are easier to solve. However, a set of local optima do not result
in a global optimum, as the suboptimization principle states:
‘‘If each subsystem, regarded separately, is made to operate
with maximum efficiency, the system as a whole will not
operate with utmost efficiency’’ [62], [63]. Therefore, systems
cannot generally be optimal unless they use at least some
weak centralized control [64]. Simon’s idea on the bounded
rationality principle (1953) explains this: the subsystems
do not have full knowledge of the overall situation [65].
Although Simon’s idea is older (from the year 1953), he used
the term ‘‘bounded rationality’’ for the first time in 1957 [66].

On the other hand, centralized systems exchange much
control information and have long delays, which may lead
to slowness and instability. Distributed systems, in turn,
can require a long time to obtain a general view of
the environment unless the agents exchange sufficient
information, increasing communication. Distributed systems’
stability analysis is complicated [67]. Decentralized control
is especially suitable for decoupled and loosely coupled
problems. It may also be desirable for economic reasonswhen
there is a geographical separation between the control units
or unreliable links between them [49].

Centralized and distributed control can be combined
with the hierarchy concept. The hierarchy levels may have
different degrees of autonomy depending on the rate of
exchanged information, and the control signals can be
seen as commands to be obeyed strictly or as advice that
can sometimes be ignored [53]. Coalitions can be formed,
and there can be cooperation within those coalitions and
competition between the coalitions. This kind of hybrid
architecture has a weak central agent to obtain a general
view, leading to loose coupling. The lack of a general
view is a major challenge of decentralized and distributed
systems, bringing unpredictability to global behavior and
hindering global optimization of the system [53]. On the
other hand, a hybrid system has high flexibility since it
can implement different degrees of centralization, from
centralized to decentralized, depending on the situation in the
environment.

In many systems, resilience is an important requirement.
Resilience is the ‘‘degree to which a service recovers its
operational condition quickly after a failure occurs’’ [68].
The best resilience can be achieved with decentralized and
distributed systems. Self-organizing biological ecosystems of
organisms are typically highly resilient since they are not
organisms as a whole [69]. The central agent in centrally
controlled systems introduces a single point that may fail.

A typical solution in our society is to use redundancy in
the form of a deputy agent with all the central agent’s
information. In hybrid control architectures, the lower-level
agents can operate without the central agent. Thus, if the
central agent fails to perform its tasks or is even destroyed,
the hybrid control system can continue its operation although
with a lower performance, which is impossible in ordinary
centrally controlled systems.

To summarize, in a distributed system, the operation is
locally optimal and resilient, the changes can be fast, and
stability is improved. In a centralized system, a global goal
improves stability. Since a general view is available, the
system can be globally optimal, although the higher layers
operate at a slower rate than the local optimization at lower
levels because of the delays. A hybrid system realizes loose
coupling and combines the benefits of both systems.

8) HISTORY OF DEGREES OF CENTRALIZATION
The term centralization was first used in 1801, and decen-
tralization in 1839 [23]. The term centralization is from
Napoleonic France, meaning ‘‘concentration of administra-
tive power in the central government at the expense of
local self-government.’’ Decentralization was later defined as
‘‘act or principle of removing local or special functions of
government from immediate control of central authority.’’
Subsidiarity combines centralized and local control. Sub-

sidiarity originates from social sciences [70] and is an
efficient method of organizing hierarchy [71]. Subsidiarity
is ‘‘the principle that a central authority should have a sub-
sidiary function, performing only those tasks which cannot
be performed at a more local level’’ [72]. A good example
of subsidiarity is municipalities within a country where the
municipalities are almost autonomous agents. Higher-level
agents, such as countries, have a subsidiary role in the system;
lower-level autonomy should be maximized to the point
beyond which it would become harmful. Subsidiarity is a
form of loose coupling and has similarities with the hybrid
control architecture used in H-SONs. However, distributed
control is not explicitly used in subsidiarity, although seen
desirable as in the heterarchy [59].

Subsidiarity has been used with different terms for
centuries [70]. Already Aristotle (300s BCE) discussed
subsidiarity. Althusius (1603) had the idea of sovereignty
related to federalism and subsidiarity. The subsidiarity
concept was used in the constitutions of the USA (1787) and
EU (1992). The term subsidiarity (Subsidiarität) was first
used in German legal literature (1809) [73]. The term comes
from the Latin verb ‘subsidio’ (to aid or help) and the related
noun ‘subsidium’ (aid or assistance). Pope Pius IX (1931)
selected subsidiarity as one of the three basic principles of the
Catholic church, and the idea became well-known. A similar
idea was presented for general social systems in [74] but with
different terms. Boulding emphasized that power must be
well specified, and central control should not interfere with
local or an individual’s problems.

The heterarchy concept was first developed in the modern
context by McCulloch (1945) for cognitive sciences as the

59462 VOLUME 11, 2023



A. Mämmelä et al.: Loose Coupling: An Invisible Thread in the History of Technology

opposite of hierarchy [59]. Heterarchy corresponds with a
distributed control architecture.

Theoretical research on different degrees of centralization
started in the 1960s, first in the areas of communications
and distributed computing [49], [75], [76], [77], [78]. One
of the first attempts to define the degrees of centralization
in communications is in [75]. In that paper, a centralized
network is a star network, a decentralized network is
a hierarchical network with a central controller, and a
distributed network is a mesh network. However, in [49],
the decentralized control is assumed to be completely
decentralizedwithout any central controller. A hybrid system,
i.e., a combination of hierarchical centralized and distributed
control, was presented in Fig. 2.10 [48].

The paper [79] describes one of the first distributed
computing systems, but Dijkstra had started the whole field
already in 1965 [80]. The opposite of distributed computing
is local computing. Computing, in general, is divided
into sequential and concurrent computing, and the latter
is divided into parallel and distributed computing [81].
A shared memory, a global clock, and tight coupling between
computing units characterize parallel computing. Distributed
computing, in turn, is defined by a distributed memory using
message passing, local clocks, and loose coupling between
computing units. A special property in distributed computing
is independent failures of computing units [77]. Honeywell
developed the first distributed control system in 1975 [82].
In some disciplines, the hybrid form is called a holonic
architecture [53].

9) OPEN SYSTEMS
Open system forms a unifying concept in systems thinking:
thinking of wholes [83]. Hence, understanding open systems
is crucial when developing complex systems. Interactions
between systems and between subsystems are possible only
if they are open systems; thus, open systems are closely
related to the emergence concept through nonlinear coupling.
A system is open if it exchanges matter, energy, and
information with the environment [21]. Information is carried
by matter or energy, for example, in the form of mail, sound,
or radio waves.

If there is no exchange of matter and energy between a
system and its environment, the system is called an isolated
system [84], [85]. If there is an exchange of energy but no
exchange of matter between a system and its environment, the
system is called a closed system. Energy can be transferred by
conduction or convection in a matter or by radiation without
anymatter [86]. Energy can also be transferred using different
forces, such as gravitation.

All biological and technical systems are open, but most
conventional physics focuses on isolated systems to simplify
the analysis. In a closed system, the internal energy will
decrease towards a minimum value at equilibrium [87], [88].
The second law of thermodynamics follows the principle
of minimum energy in closed systems and the principle of
maximum entropy in isolated systems. Biological systems
are not isolated. Hence, they do not follow two of the most

important laws of physics, namely Newtonian mechanics and
the entropy law [89].

The term system of systems describes systems made of
loosely coupled systems with a common goal [90]. Multi-
agent agent systems realizing feedback loops in uncertain
and dynamic environments are open in the sense that they
exchange information with their environment [21].

10) HISTORY OF OPEN SYSTEMS
Open systems were at least implicitly used in early celestial
mechanics. Newton (1687) used a simplified model for our
solar system where the Sun and each planet, respectively,
form an isolated two-body system [89], which corresponds
to a second-order feedback loop [27]. The model is additive
which makes analysis simple. Higher-order effects appear
when the two-body systems are open, and each planet affects
every other. The interactions cause some perturbations to the
idealized model. Laplace (1786) developed his perturbation
theory to explain the higher-order effects [91]. The theory is
now used in satellites where wemust consider that the Earth is
not a complete globe and is inhomogeneous. The model must
include the attraction of the Moon, solar radiation pressure,
and aerodynamic drag.

Henderson (1913) observed that in living systems, there
must always be an exchange of matter and energy with the
environment [92], but he did not use the term ‘‘open system.’’
He might be one of the first to describe the concept of open
systems.

Lotka (1922) observed that biological processes generally
improve their energy efficiency and simultaneously increase
the total use of energy [93], which often happens also
in technical systems: they become more popular when
their energy efficiency is improved. According to [94],
it was Lotka (1925) who introduced the open system
concept, influenced by Boltzmann’s statistical mechanics
(1877) [95], [96], developed earlier by Maxwell (1866).

In his two-part paper (1875, 1878), Gibbs used the
idea of open systems, but only for defining the chemical
potential in statistical mechanics [84], [85], [97]. At about
the same time as Lotka, also Bauer studied open systems
independently [98]. Inspired by Lotka, von Bertalaffy (1932)
further developed the open system concept. He published his
results in English in 1950 [99], but in this paper, he defined
open systems with the exchange of matter only; that is, the
exchange of energy was not included in the definition. This is
the paper from which the open system concept is best known,
although the idea is 25 years older.

Prigogine (1955) developed a theory explaining why
biological systems do not follow Newtonian mechanics or
the entropy law [89]. Prigogine developed thermodynamics
of open systems called nonequilibrium thermodynamics and
showed that as open systems, biological systems are far from
their equilibrium.

Eventually, information was included in the definition
of open systems in addition to matter and energy [21].
In cybernetics, Wiener (1948) defined information as the
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quantity that can increase order and reduce uncertainty [83].
Information is related to patterns; thus, communication may
be interpreted as exchanging patterns to improve order. This
quantity should not be mixed with the statistical information
defined by Shannon (1948) since the latter has no semantic
content. The importance of information became obvious after
the invention of the modern model of deoxyribonucleic acid
(DNA) (1953).

A definition of automation, including the terms mate-
rials, energy, and information, was published in a Report
of Automation Committee A, Radio-Electronics-Television
Manufacturers Association, in 1955 [100]. The term open
system was not used. Finally, Hall presented a clear and
complete definition of open systems in [21]. Miller bridged
the natural and social sciences with the open system
concept [101]. He started the work in 1965 and published it
in book form in 1978, presenting a comprehensive hierarchy
of natural and social systems.

The first to recognize that human management organiza-
tions are open systems were March and Simon (1958) [102].
Later Katz and Kahn (1966) presented a detailed analysis.

11) EMERGENCE
Emergence means that the high-level properties cannot
be derived from the low-level properties, and the global
behavior of a system cannot be predicted from the local
behavior [53], [78], [103]. Emergence often arises from
nonlinear unintentional coupling and can even cause chaotic
behavior.

Nonlinearity is a prerequisite for emergence, but simple
nonlinear systems do not produce emergence [24], [25],
[99], [104], [105]. In nonlinear systems, the principle of
superposition fails; that is, the net response of a system
to multiple stimuli is no longer equal to the sum of
the responses to each stimulus individually. In complex
nonlinear systems, the conventional analytical approach must
be replaced with the systems approach, which covers the
emergent phenomena [19], [106]. Emergence is a major
reason why designing distributed self-organizing systems is
not easy.

A rather new concept is complexity engineering, also called
emergent engineering [28], [107]. In complexity engineering,
which is not yet well developed, the goal is to manage
emergent properties for our benefit by using strategies from
biological evolution and free markets.

12) HISTORY OF EMERGENCE
Already Aristotle noticed that a whole is more than the sum
of its parts. Mills (1843) and Lewes (1875) developed the
emergence concept [24], [108] although Mills did not yet use
the term emergence. It was further discussed by Broad (1923)
and Morgan (1923) [83], [108].

B. RATIONAL AGENTS AND GAME THEORY
The challenges introduced by system complexity can be
managed with rational agents [7] that are loosely coupled

FIGURE 5. The general structure of a rational agent is based on a
feedback loop.

and realize feedback loops in uncertain and dynamic envi-
ronments. The environment in controlling communication
networks is the network and its environment. In the physical
layer, the environment is the physical channel. As will be
seen later in this paper, many disciplines have converged
independently to the multi-agent model and recognized the
need for a weak central agent, for example, [41], [109].
Multiobjective or joint optimization can be used in the
presence of incommensurate resources and objectives (see the
section on optimal systems).

In this paper, we do not discuss the details of multi-agent
systems that are thoroughly described, for example,
in [5], [6], and [110]. We focus on an agent-based control
architecture realizing feedback loops and loose coupling.
We use a broad definition of an agent: An agent is any
system, implemented in whatever means, that forms a sense-
decide-act feedback loop to control the environment and
has in general an externally defined goal [3]. Agents
may be, for example, human agents, robots, or software
agents. The rational agent contains (1) optimization and
robustification [111], (2) decision making, and according to
the Conant-Ashby theorem, (3) a model of the environment
in its memory [112], see FIGURE 5.

The separation of control and estimation of the model
parameters is possible if the environment is linear, the
metric is quadratic, and the noise is additive and Gaus-
sian [113]. This is called the separation theorem. In wireless
communications, a similar separation theorem is valid with
similar assumptions for Kailath’s estimator-correlator [114],
where the correlator works as an optimized demodulator,
and the estimator estimates the channel which forms the
environment.

The model includes information on the earlier states of
the environment to make the proactive operation possible.
In optimization, the best possible solutions are selected based
on certain objectives or criteria. If many objectives are to be
maximized, the optimum is not unique, and separate decision
making is needed. Optimal solutions are not always robust
since they work optimally only in a certain environment. The
term robustification or robust design is used to complement
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optimization [111], but it can also be interpreted as a form
of optimization. In robustification, we look for systems
that work well even when the conditions change. A robust
system can function correctly in stressful environments or
invalid inputs [68]. Decision making selects one of the many
optima to provide fairness. Usually, the selection is made on
subjective grounds. In computer science, an agent is often
an IF-THEN structure where IF selects one of the stimuli
(corresponding to sense operation) and THEN defines the
response (corresponding to act operation) [7].

Often intelligence and rationality are synonymous [3],
but in modern psychology, rationality is seen as a broader
concept that includes intelligence [115]. The latter refers to
algorithmic abilities. A rational agent is an intelligent agent
that is able to reach its goals efficiently with the available
resources in an uncertain environment [115], [116].

In communication networks, agents include network man-
agers, transmitters, and receivers. For example, a transmitter
forms an agent in the form of a transmitter power control
loop. A receiver forms an agent in the form of a channel
estimator. However, the term ‘‘agent’’ is not often used in
present communication networks, although feedback is used
in most layers [37], [38], [39].

Agents have lately been used to model programmable
networks [117] and especially SONs [41], [118], [119].
Still, loose coupling is not covered in detail, and because
of possible coupling between feedback loops, there is a
danger that the networks become unstable [12]. Moreover,
agents have been used to provide intelligence in the
form of cross-layer design using feedback; see, for exam-
ple, [14], [41], [120]. Feedback is also used in ETSI Zero
Touch Network and Service Management (ZSM) and ETSI
Experiential Networked Intelligence (ENI) networks, devel-
oping material for prestandardization in the form of Group
Specifications (GSs). Other similar efforts are summarized
in [121].

1) HISTORY OF AGENTS
Originally AI focused on self-organizing systems, and
according to [122], even a book was published in 1962. The
approach was too optimistic, and researchers had to select
more focused topics since they understood that high-level
concepts could not be learned without any knowledge at all,
and a bottom-up approach is needed. The first successful
AI applications were expert systems that were rule-based
systems imitating the decision-making process of human
experts. Hewitt developed the idea of a software agent
(originally an ‘‘actor’’) in 1977 [123].

At about the same time, the research on distributed
artificial intelligence started [124], [125], [126]. This new
field was divided into multi-agent systems and distributed
problem solving. Around 1987, AI became a theory of
rational agents, which unified the whole discipline [3].

In addition to AI, interacting agents were taken as the
central concept also in complexity theory that focuses on
self-organizing systems called complex adaptive systems
(CASs) [7], [8], [127], see the section on self-organizing

systems. Thus, AI research has traveled a full circle
since 1962, but now self-organizing systems are studied with
more focused ideas.

The holonic multi-agent system is mentioned in [6],
[55], and [56] among agent organizations. In [54], the
author considers agent-oriented and holonic manufacturing
paradigms, which had received much attention in industry
and academia at that time. The paper shows that both
paradigms have different views on manufacturing control.
A combination is beneficial to both paradigms.

The holon has been compared with an agent also in [56].
Originally holons were recursive structures as implied by
the nested hierarchy, but this property is not characteristic
of agents. Holons form holarchies generally represented as
dynamic hierarchical structures, but agent architectures form
horizontal and vertical organizations. A holonic manufac-
turing system (HMS) has been standardized in the IEC
61499 standard (2005) [109]. The standard has also been
applied in smart grids [128].

C. OPTIMAL SYSTEMS
In the future smart and sustainable world, efficient use of
scarce basic resources calls for optimality [19], [83], [129].
Basic resources can be divided into materials, energy,
information (data and control), frequency (bandwidth), time
(delay), and space (size). Even when the available resources
are sufficient, sustainability calls for minimizing their use.
The end of Moore’s law [130] is an example of approaching
the fundamental limits of nature [19], [131] and hence
illustrates the importance of resource efficiency.

Optimizing resource usage prevents the tragedy of com-
mons [132], that is, the overuse of limited resources or
commons when everyone can freely compete in their use, but
the costs are divided equally, usually with some delay. The
three basic solutions to the tragedy of the commons are to
educate and exhort, privatize, and regulate [65]. Eventually,
some form of cooperation is needed to solve the problem,
as has been done for radio frequencies by the International
Telecommunication Union - Radiocommunication Sector
(ITU-R). In complex systems, cooperation is achieved by
weak commands from the higher layer agents.

System complexity challenges the efficient use of
resources. Hence we suggest accompanying optimization
with simplified solutions and optimized hierarchy to tackle
the complexity challenges. That is, in addition to optimization
by individual agents in decision making, system structure
needs to be optimized. These both are considered in
loose coupling - the responsibilities of agents at different
levels are defined. Self-organization, in turn, optimizes
system structure while the system operates in a changing
environment. Complex systems are hierarchical and modular.
This structure has demonstrated many benefits in evolution
and engineering. Architectural solutions can also improve
resilience and robustness, but this section focuses on
optimization methods.

Schoemaker noticed the central role of optimization in var-
ious disciplines [129], including natural and social sciences.
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In engineering, the objectives are in practice efficiency
metrics [22], such as energy efficiency in bit/J. In the case
of time, the objective is delay in milliseconds. Multiobjective
optimization (MOO) is required to make decisions when
the goals can be conflicting or even incommensurate, and
constraints limit the solutions.

Decision making may be satisficing rather than optimiz-
ing [133]. Several aspects prevent full optimization. Firstly,
finding the global optimum by exhaustive search is a problem
with exponential complexity, and some heuristic methods
must be used [61], usually hierarchically and iteratively, using
feedback. Furthermore, convergence may be a problem, and
an iterative optimization processmay lead to a local optimum.
Bellman (1957) called the complexity problem the curse of
dimensionality. Loose coupling can significantly alleviate
the problem [134]. When considering optimization, loose
coupling is an example of a more general concept called
optimization decomposition using separation principles [31].
Secondly, optimal systems imply lack of redundancywhich

imply lack of robustness. When robustness is improved
through robustification, the system is not optimal anymore.
Thirdly, many complex systems are distributed systems that
generally cannot achieve optimum because of emergence.
Resilient systems, in nature, are distributed systems, sug-
gesting that distributing system components forms a basis
for resilience. In more detail, distributed systems generally
cannot obtain a Pareto optimum, but in the best case, they
achieve Nash equilibrium as in game theory [135], [136], see
multiobjective optimization below.
Fourthly, different resources are incommensurate; there-

fore, the trade-off depends on the availability of those
resources, which may also depend on time. Pareto optimum
cannot be objectively defined for incommensurate resources.
The free market economy provides an example of satisficing
decision making with incommensurate resources that can be
applied also in allocating resources in complex ICT systems.

The free market economy can be seen as a self-organizing
social system where the law of supply and demand finds
the prices for products and services [69]. The relative
prices are found in an evolutionary approach based on
survivability. The process is a kind of game; hence game
theory (see below) was originally applied to describe decision
making in free markets. For example, the price of energy
is defined by competing power producers, and the price of
radio frequencies may be defined at an auction between
operators organized by the state. Even in a free market,
the system tends to drift toward monopolies and centralized
control (e.g., the state government) must intervene to the
benefit of the citizens. In a society, perfect competition (i.e.,
decentralization) tends to drift toward partial cooperation, and
perfect cooperation (i.e., centralization) tends to drift toward
partial competition [137]. Thus, both of these extremes are
somewhat unstable situations. The drift towards monopolies
is called theMatthew effect.

Optimization is a broad area, and we refer to the
books [61], [135], [138] for further details.

1) MULTIOBJECTIVE OPTIMIZATION (MOO)
Multi-objective optimization is the joint optimization of
many objectives, also called criteria or metrics [30]. The
game theory is a theoretical framework for studying MOO.
Instead of agents, the term players is commonly used in the
literature. A game can be non-cooperative or cooperative.
A non-cooperative game with rational players leads in an
evolutionary way to a Nash equilibrium (1950), which is a
situation where players cannot gain anything by changing
their strategy [135], [136].

If the objectives are commensurate, the ideal solution is
the Pareto optimum [30], [139]. A solution is Pareto optimal
if no objective can be improved without making some other
objective worse. The Pareto optimum is generally neither
unique nor fair. Convergence to the Pareto optimum generally
requires that all players cooperate. Cooperation corresponds
to a single player game [30] and the use of centralized control.
Pareto optima are only stable if they are Nash equilibria.
In general, a Nash equilibrium is not Pareto optimal.

A Pareto optimum can be obtained in a free market,
but only with strict conditions [140]. For example, all
the market participants must have perfect information, and
the market must be perfectly competitive, but in practice,
much of the information is confidential. The problem with
incomplete information can be modeled as a Bayesian
probability distribution [135], [136]. This is equivalent to a
Bayesian game with complete information, and the resulting
equilibrium is Bayesian equilibrium.

Since many Pareto optimal solutions may exist, we need
additional criteria to select the final solution [141]. A possible
criterion is fairness. Nash Bargaining Solution (NBS) forms
a Pareto optimal, unique, and fair solution to multiobjective
problems using a cooperative game [135], [136], [142].
NBS is a distributed solution that can be obtained when
everyone negotiates with everyone else. However, in practice,
not all players can or want to negotiate. In geographically
distributed and dynamical situations with limited control
information, the solution must be approximated since the cost
of negotiation can be significant, but this cost is ignored in
optimization.

An alternative to the free market is coordination done
by an arbitrator or leader, who can send private or public
signals to the players [135], [136]. The resulting equilibrium
is correlated equilibrium. In centralized systems, all players
are coordinated and have a global perspective, which helps
achieve a social optimum. A social optimum is a situation
where the sum of the utilities is maximized. This optimum
is efficient, i.e., optimal for a social group, but, in many
cases, unfair for the individuals in the group. An example
of the sum utility used for the social optimum is the sum of
journey times and the sum of users’ bit rates [143]. A rather
new idea in social sciences is nonequilibrium economics by
Georgescu-Roegen (1971) [144], inspired by a similar theory
by Prigogine and further developed by Arthur (2015) and
Ayres (2016). The idea has not yet been used in technical self-
organizing systems.
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An interesting, coordinated game is the Stackelberg game
(1934), which includes a leader and a set of followers
that compete with each other on certain resources [145],
thus forming a hybrid solution combining centralized and
distributed decision making. It has been applied in wireless
networks since 2011 [146]. Stackelberg game can be made
either optimal [147] or fair [148].

Multiobjective optimization algorithms include scalar-
ization which searches for a single optimal solution, and
multipolicy algorithms, which search for a set of optimal
solutions in a single run [149]. A conventional reinforcement
learning algorithm receives a scalar feedback signal for its
behavior, but more generally, a multiobjective reinforcement
algorithm called Pareto Q-learning (PQL) is needed.
In scalarization, a multiobjective problem is reduced to

a single-objective problem by combining the objectives, for
example, using a weighted sum or product [30]. This works
well if the multiple objectives are monotonic and almost
independent, and the set of all possible solutions is curving
out, i.e., convex [31]. Scalarization has the same limitation
with the incommensurate resources since we must somehow
define the weights of the efficiency metrics. Those weights
depend on the prices, which are assumed to be known in
engineering design as a starting point. Furthermore, we can
only find all possible Pareto optima for convex problems by
selecting suitable weights.

The original idea regarding favorable properties of utility
functions is from Kelly (1998), and the idea resulted in
the NUM theory, see Section II-A. The selection of the
utility function and the weights is not a scientific problem;
thus, if available, the scientific solution is a set of Pareto
optima, not a single optimum, unless, for example, fairness
is used as an additional criterion. A form of optimization is
constrained MOO, where most objectives form constraints,
and only one objective is used for actual optimization.
For example, the constraints may include minimum bit
rate and maximum delay, and the energy consumption is
minimized.

Recently, large multilayer neural networks have been used
in the form of deep learning [150]. Such networks can beat
humans in perfectly known fixed environments, such as
in the Go game [151]. However, humans can usually beat
machines in uncertain dynamic environments like the real
world. Some new results on AI in uncertain environments
are in [152], showing that AI can be successful also in the
Stratego game. Large neural networks are tightly coupled and
complex systems and may need lengthy learning times due
to the generality of the structure [153]. The neural network
operation is not easily understandable since hierarchy and
modularity are not used. A neural network is flexible because
it can provide a model of many kinds of environments, even
nonlinear.

2) HISTORY OF OPTIMAL SYSTEMS
In [137], the author defined the basic resources listed above,
except the bandwidth, as limiting factors of production.
Moreover, the author called information know-how and

knowledge. Bandwidth is a specific resource used in com-
munications and distributed computing.

Smith (1776) proposed the free market economy. The
tragedy of commons was first outlined by Lloyd (1833) and
later by Gordon (1954), Scott (1955), and Hardin (1968)
[65], [154]. Edgeworth (1881) developed the idea of the
Pareto optimum 25 years before Pareto (1906); hence the
optimum could be called the Edgeworth-Pareto optimum.
Debreu (1959), Arrow (1964), and Greenwald and Stiglitz
(1986) developed the theorems for welfare economics for
obtaining a Pareto optimum in a free market [140]. The
desirable properties of a utility function are commented on
in [30] and [32]. Kelly’s (1998) discussion on utility functions
led to the NUM theory [31].

Game theory was developed in economics by von Neu-
mann andMorgenstern (1944) [135], [136]. Game theory pre-
ceded artificial intelligence but is now part of it [3]. The Nash
equilibrium and Nash Bargaining Solution were introduced
by Nash (1950). In communication networks, it was first
applied to network optimization by Mazumdar et al. (1991),
to bandwidth allocation by Yaiche et al. (2000), and to
radio resource management by Boche and Schubert (2009)
[136], [142].

III. LOOSELY COUPLED SYSTEMS
A. VERTICAL AND HORIZONTAL LOOSE COUPLING
1) LOOSELY COUPLED SYSTEMS
As mentioned in the introduction, loose coupling has been
independently used in many disciplines with different terms.
In loose coupling, all relationships between layers and
subsystems in the same layer are minimized. Regarding
control, centralized and local control are balanced, making
the system also resilient. Loose coupling has a solid
theoretical basis in the NUM theory [31], [46], [47]. The
authors in these references show that clean-slate optimization
naturally results in a vertically loosely coupled cross-layer
solution.

Unintentional and harmful horizontal coupling often
occurs in the lowest physical layer through the environ-
ment. In addition to optimizing the system, loose coupling
facilitates avoiding unintended coupling. Loose coupling
is the general rule of systems and systems of systems to
improve stability [63], as stated by the system separability
principle: ‘‘System stability increases as the mean strength
of interaction between components is decreased.’’ Thus,
stability can be improved by separating the parts of a system
from each other, thus decreasing failure propagation.

When the size of a connected system increases, the
likelihood of the system being stable decreases. The stability
analysis of a complex system is, in general, a demanding task.
Thus, loose coupling is a practical approach to obtaining a
stable network. This is known as the golden rule of system
design [155].
The degree of vertical coupling at high hierarchy levels

should be loose, and the speed slow according to time-scale
separation (see below). The lowest hierarchy levels are the
opposite: the degree of coupling should be tight, and the speed
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FIGURE 6. Time-scale separation and interference avoidance for
decoupling of feedback loops.

high since there is no other level below the lowest level.
In other words, an agent at higher hierarchy levels should
control the next lower level weakly and roughly, but an agent
at lower levels works more accurately and tightly. Ignoring
these guidelines can lead to conflicts (see below).

Loose coupling facilitates the analysis of complex systems.
Similarly, analysis is simplified if the interactions between
subsystems are nonexistent, weak, or linear [99]. When the
interactions between subsystems are nonlinear, the system
may be intractable.

2) VERTICAL AND HORIZONTAL COUPLING
As described above, loose vertical coupling refers to loose
connections between different levels, and loose horizontal
coupling refers to loose connections between different
subsystems at the same level of hierarchy.
Interference avoidance targets minimizing the interference

between feedback loops at the same hierarchy level, i.e.,
unintended horizontal coupling, see FIGURE 6. This is loose
horizontal coupling. Interference avoidance through signal
design [13] is an important approach in communication
networks. The signals of different users should be orthogonal.

In time-scale separation, the lower or inner hierarchy
level of a system is assumed to be operating fast enough
compared to the higher or outer level so that the lower level
has reached a steady state between consecutive commands
from the higher level [12], [156]. For the lower level, the
changes from the higher level are slow, and because of the
slowness of the higher level, it sees the changes of the lower
level in an averaged form. This is vertical loose coupling
used to improve the stability of the system when different
hierarchy levels control the same variable, such as transmitter
power [12], [48], [49], [156], see FIGURE 6. At least some
vertical loose coupling is needed because otherwise, there
would be no control. Different time scales may allow the use
of complex algorithms at higher levels where the time scale
can sometimes beminutes or even hours [157]. A requisite for
time-scale separation is that phenomena have different time
scales in the network.

The difference between hierarchy levels in terms of speed
is ideally several orders of magnitude so that the levels
are decoupled from each other. The whole hierarchical
system achieves a steady state from bottom up. In wireless
communications, the changes in a physical channel form a
hierarchy where the changes in the path loss are the slowest,
shadowing is faster, and multipath fading is the fastest [114].

The range (sometimes called scope) in amplitude, time,
frequency, and spatial domains should be broad and the
resolution low at high hierarchy levels [116]. The opposite
is valid at low hierarchy levels. The resolution or quantizing
interval is the smallest measurable change within the range in
each domain [158]. The range should increase geometrically,
and the resolution decrease geometrically when one moves
upwards in the hierarchy so that the complexity is reasonable
at each level and the energy consumption is balanced. The
ratio of resolutions at adjacent levels can be optimized to
minimize computational complexity [116], often measured
with energy consumption. In general, the ratio of range
and resolution is roughly constant at each level [116]. The
ratio can be called the number of resolution bins within the
range [159].

Unintended coupling may result in conflicts. A conflict
between hierarchy levels is called an interlevel conflict,
and at the same hierarchy level, an intralevel conflict [48].
These conflicts are related to unintended tight vertical and
horizontal coupling, respectively.

Unintended vertical coupling arises, e.g., if an upper level
controls the environment at the same speed as a lower level.
Such behavior may lead to conflict since the levels may
control the environment (i.e., network) in different directions,
implying instability and chaos. This conflict can be avoided
with time-scale separation. Unintended horizontal coupling
leads to interference between feedback loops and possibly
instability [160], [161]. Eventually, chaotic behavior may
appear. Such conflicts can be avoided with interference
avoidance.

A deadlock means that the system reaches a state where
it cannot continue. Deadlocks and different conflicts are
commonly found in distributed systems [77], [162], [163].
Conflicts appear easily since there may be conflicting
objectives between different network users. An obvious
conflict comes from using common resources such as
energy and bandwidth. The common resources are sometimes
called ‘‘commons,’’ as in the expression ‘‘tragedy of the
commons’’ [65]. In a hierarchical system, prioritizing the
upper levels over the lower levels helps avoid deadlocks [48].

In control theory, chaos can be avoided in two parallel
interfering loops by using the complex decoupling multivari-
able controller developed by Falb and Wolovich [40], [85].
This controller is based on a similar idea as in the recursive
least-squares (RLS) algorithm developed by Gauss (1826)
and Plackett (1950), in the Kalman filter by Swerling (1958)
and Kalman (1960) [164], [165], and in the orthogonalized
least-mean square (LMS) algorithm [166] where the simple
LMS algorithm would have tight coupling in the form of
high correlation. Orthogonality means that subsystems are
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isolated so that the used signals do not interfere with each
other since they have zero cross-correlation [114], [167]. The
convergence rate of the orthogonalized LMS algorithm is the
fastest of all adaptive algorithms, similar to that of the RLS
algorithm.

3) DEGREE OF COUPLING
The degree of coupling is usually defined only qualitatively,
but in network theory, it has been defined quantitatively
to have values between zero and unity [168]. The degree
can be classified as uncoupled, loosely coupled, tightly
coupled, and fully coupled [10], [153], [169]. In the
uncoupled case, also called decoupled or noninteracting,
the subsystems are isolated, there are no interconnections,
and no real system is formed as defined by [21]. In the
loosely coupled case, interconnections are loose or slow.
In the tightly coupled case, the interconnections are strong,
as well as in the fully coupled case, also called interleaved.
In distributed software systems, loose coupling corresponds
with information exchange via message passing, tight
couplingwith sharedmemory, and full couplingwith function
calls [124], [170].

In communication networks, the horizontal degree of
coupling in the physical layer can be defined as the inverse
of the received signal-to-interference ratio (SIR) [121]. Loose
coupling implies that the degree of coupling is close to zero
(i.e., the SIR is high), and tight coupling implies that the
degree of coupling is close to unity (i.e., the SIR is low).
In vertical coupling, the degree of coupling is the ratio of the
speed of the higher layer and the speed of the lower layer.
The speed corresponds to the bandwidth of the corresponding
changes. In loose coupling, the feedback loops in the different
layers and the same layer work as if the other loops do not
exist. Coupling metrics for layered and modular software
design are discussed in [171].

Pautasso describes the degree of coupling as amulti-faceted
phenomenon and presents 12 facets [10]. Few systems are
tightly or loosely coupled according to all the facets. For
example, one of the facets is interaction, which can be
synchronous, i.e., tight coupling, or asynchronous, i.e., loose
coupling. In asynchronous systems, a lower-level system does
not wait for responses from the higher level. For service-
oriented architectures, loose coupling means that software
modules and services share only a small set of assumptions.
Therefore, the impact of change is limited, and the software
modules and services can evolve independently and rapidly
and scale easily.

Software agents can be analyzed based on the 12 facets [10].
Shared or distributed agent memory and partial isolation of
control loops are two examples of facets of hierarchical multi-
agent systems. According to [171], the types of coupling in
software design can be compactly classified into parameter
coupling, external medium coupling, inheritance coupling,
and common coupling. Two modules have parameter
coupling if one module passes a parameter to another. Two
modules have external medium coupling if they access the
same external medium, for example, a file. Twomodules have

inheritance coupling if one module descends from another
module. This type of coupling is typical of object-oriented
software systems. Two modules have common coupling if
they use the same global variable.

In self-organization, a system must be neither too tightly
nor too loosely coupled [85]. In communication networks,
vertical loose coupling can be implemented with time-scale
separation [12] and horizontal loose coupling with inter-
ference avoidance [13]. Orthogonality has been used in
interference avoidance, which needs additional control but
improves capacity [13]. This is a form of loose horizontal
coupling. In a decentralized system, we must take care that
there is no interference between different agents.

4) HISTORY OF LOOSE COUPLING
After inventing the pendulum clock, Huygens observed the
resonance (1665) because of loose coupling between two
clocks [172]. Later it was observed that rotating parts might
have flexible mechanical couplings, providing a physical
model of stable loose coupling [173]. If in a multi-body
system, the distances of the bodies are large enough and one
of the bodies is much larger in mass than the others, as in our
solar system, a form of loose coupling is formed using mass
hierarchy, and the system is highly stable.

Orthogonal signals became popular in communications
after the work of Peterson et al. [174] and Gabor [175].
Packet-switched networks are based on loose coupling [176].
Loose coupling is also used in network roaming in interwork-
ing architectures [177].

Poincare (1890) was the first to study chaotic phenomena
in three-body systems, which is, in practice, an intractable
problem, although Sundman (1912) found an infinite series
solution with slow convergence [91]. Deterministic chaos
is easily produced by a feedback loop that includes a
nonlinearity [27]. In meteorology, time-scale separation can
be observed between climate and weather [178].

Loosely coupled systems were first studied scientifically
in [1] and [179] using first the descriptive term near
decomposability, a term that has been since then used
in biology [179]. The term decomposition is used in
mathematical optimization [31]. The term decomposition has
been used since 1762, meaning ‘‘act or process of separating
the constituent elements of a compound body; state of being
decomposed’’ [23]. After [45],Milne (1965) analyzed loosely
coupled dynamical systems [49], [180]. Since then, such
systems have had many applications in control theory.

Simon described the principle of loose coupling in phys-
ical, biological, and social systems. All multicell biological
organisms use this principle because only such systems with
their stable intermediate forms could succeed in evolving in
the available time. They have survived since they have a fast
adaptation rate.

Simon defined the vertical and horizontal loose cou-
pling in [1]. Time-scale separation has been observed
in biological systems since the work by Michaelis and
Menten (1913) [156], [179].
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FIGURE 7. System model in simulations. Moving average introduces
correlation or coupling between signal samples, and the correlation can
be reduced by orthogonalization.

Thompson was one of the first to use the term loose
coupling in organizations in 1967 [10], [102]. Klir defined
loose coupling in general systems [181]. Independently of
Thompson and Simon and referring to Klir, Glassman used
the term loose coupling in biology [173]. Weick (1976)
referred to the work of Glassman [173] and used the term
loose coupling in educational organizations [9]. In this form
of coupling, the coupled subsystems respond to each other,
but each subsystem also has its own identity and logical or
physical separateness.

Loose coupling has been used in computing to support
modularity [79], [182]. Constantine developed structured
software design in the 1960s, and the results were later pub-
lished in the paper [183] and the book [169]. The book [169]
includes a separate chapter on loose coupling. In addition, the
idea of loose coupling is widely used in modular design [51]
and service-oriented architectures [10], [184], [185].

Hoare (1978) developed the idea of message passing,
motivated by its use in the 1960s in the design of operating
systems [170]. In tight coupling, shared memory is used
in information exchange in the blackboard architecture.
An example of message passing and shared memory is a
cognitive radio system proposed by Mitola (1999) [186].
An example of tight coupling is federated learning by
McMahan et al. [187].

In control systems, weak coupling between parallel feed-
back loops is preferred [180]. Similarly, different decision
intervals in different hierarchy levels are a form of time-scale
separation [48], [49]. Conflicts are avoided and resolved
using different self-coordination methods [48], [163]. Con-
flicts were already discussed by March and Simon (1958) in
human organizations.

In [188], the author suggests that the term subsidiarity is
more prescriptive than the term loose coupling. The term
subsidiarity includes the idea of loose centralized control.
Subsidiarity and loose coupling are discussed in parallel only
in a few papers, such as in [188], which shows that they were
developed independently.

Holonic systems combine the beneficial properties of
hierarchical, centrally controlled, and distributed systems

and loose coupling [109], [128] as in H-SONs. In the
holonic architecture, the lower-level agents are almost
autonomous [53], just as the subsidiarity principle defines.
However, hybrid solutions are not usually explicitly men-
tioned.

In addition to subsidiarity and holonic control, locality or
local interaction is used in cellular automata and systolic
arrays. Cellular automata were developed by von Neumann
(1948, 1963) to simulate self-reproducing systems [189].
Systolic arrays were originally used in the Mark 2 Colossus
computer (1944) for massively parallel computing and
regular data flow, and Kung and Leiserson (1979) elaborated
on the idea [190]. Locality is used for minimizing energy
consumption and delays. Edge computing (1999) uses the
same idea near the terminals at a network’s edge [191].
Edge computing was originally called content delivery. Since
edge computing reduces delays, the stability of the network
is improved compared to the older concept called cloud
computing, whose origin can be traced back to 1961 [192].
A cloud is a platform for distributed computing.

B. SIMULATIONS
In the simulations, we estimate an unknown system using an
adaptive filter. Additional details of simulations with adaptive
filters can be found in [165]. All the signals and models are
real. The system model is shown in FIGURE 7. The effect
of correlation or coupling is demonstrated with a moving
average (MA) process. The MA process of order q is given
by

xk = (x ′
k + x ′

k−1 + x ′

k−2 + . . . + x ′
k−q)/(q+ 1).

The original signal x ′
k is an uncorrelated zero-mean random

signal with Gaussian distribution and power equal to unity.
Division by q + 1 in the MA process is needed so that
the power of the signal is not changed. The samples xk
and xk−1 are correlated because the values depend on
the previous samples. In the simulations, we used the
value q = 3.
The unknown system is modeled as a finite impulse

response (FIR) filter whose output is corrupted by additive
white Gaussian noise (AWGN) [166].Wemodel the unknown
system as a low-pass filter. We have used the first example
in [193] for the filter. The number of taps for both adaptive
and low-pass filters is N = 13, although they do not
have to be equal.1 To focus on the functionality of adaptive
algorithms, a very high signal-to-noise ratio (SNR) is
assumed to ignore the effect of noise.

The objective of the adaptive filter with N weights is
to minimize the error signal ek between the outputs of the
adaptive filter yk and the unknown system dk . The signals
are assumed to be real. The delayed LMS algorithm with
a delay is given as W k+1 = W k + 2µek−DXk−D where
the weight and input sample vectors areW = (w1, . . . ,wN )T

and Xk = (xk , . . . , xk−N+1)T , respectively [166], [194]. The

1The low-pass filter has the weights (0.0164, 0.1031, 0.0632, −0.0907,
0.0467, 0.3139, 0.4526, 0.3139, 0.0467,−0.0907,−0.0632, 0.1031, 0.0164).
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delay is D, and the delayed error signal is ek−D = dk−D −

yk−D. The ordinary LMS algorithm is obtained when D = 0.
A common simpler alternative to the LMS algorithm is
the clipped LMS algorithm [195] where ek is replaced by
sign(ek ), and sgn(x) = 1 for x > 0, sgn(x) = −1 for x < 0,
and sgn(x) = 0 for x = 0.

The step size parameter µ controls stability and conver-
gence rate: the larger the value, the faster the convergence
rate, but too large a step size causes instability. In the
simulations, the fixed step size µ is 0.04. For a stationary
process, the autocorrelation matrix is R = E

[
XkXT

k

]
.

If the process is uncorrelated, the matrix has constant values
in the main diagonal and the other elements are zero.
However, for correlated processes, the LMS and clipped
LMS algorithms are associated with a deterioration in
performance.

The LMS algorithm slows downwhen there is a correlation
between the samples. In addition to slowing down the
convergence, the coupling also causes instability. To elim-
inate a potential deficiency of the LMS algorithm due to
the correlation, in the orthogonalized LMS algorithm we
multiply the input vector Xk using equation

X†
k = R−1/2Xk

so that the correlation is reduced [166]. Coupling is lack of
orthogonality, and in the orthogonalized LMS algorithm, the
correlation is reduced by the R−1/2 operation. Thus loose
coupling can be implemented by using the orthogonalized
LMS algorithm.

In the figures, the ensemble average mean-square error
(MSE) is presented as E

[
e2k

]
≈ (1/L)

∑L
i=1 e

2
k,i where L is

the number of independent simulations. The convergence of
the algorithms is demonstrated by using the learning curves
as in [196].

In FIGURE 8, we compare the LMS and clipped LMS
algorithms (FIGURE 8a) and demonstrate the effect of
coupling (FIGURE 8b) and delays (FIGURE 8c). The clipped
LMS algorithm does not even converge in this case. If we
used a smaller step size, the algorithm would converge
but very slowly. Because of the coupling in the form of
correlation, the LMS algorithm converges, but eventually
it becomes unstable and starts to behave chaotically. The
orthogonalized LMS algorithm has reduced the coupling and
improved the stability. The same happens with the delay.
The orthogonalization compensates for the degradations
caused by delay, but if the delay increases sufficiently, the
orthogonalized LMS algorithm also becomes unstable.

In hierarchical systems, the delays are caused by geo-
graphical distances. In loosely coupled systems, coupling is
minimized by using time-scale separation and interference
avoidance, and thus stability is improved. The simulation
example shows that coupling and delays may produce
instability and chaos in feedback loops. Similarly, the
coupling may cause a cocktail party effect in power control
loops [159].

FIGURE 8. Effect of coupling and delay on the stability of a feedback loop
using learning curves. a) Comparison of LMS and clipped LMS algorithms.
The latter algorithm does not converge in this case. b) Effect of coupling
without delay. c) Effect of coupling with different delays.
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IV. SELF-ORGANIZING SYSTEMS
A. SELF-ORGANIZING AND HYBRID SELF-ORGANIZING
SYSTEMS
In self-organization, individual subsystems’ cooperative
behavior forms some organization, structure, or pattern
autonomously without any external control and with or
without internal centralized control [5]. The degree of self-
organization is determined by the ratio of inside control
vs. total control [197]. Self-organizing systems are the least
mature systems since they are the highest in the hierarchy of
human-made systems [19], [106].

Self-organization provides many benefits but is not widely
exploited in technical systems since it can become the
primary source of failure [103]. In fact, many distributed
self-organizing systems have failed due to emergence that
may even produce chaotic phenomena. Even when the arising
emergence can be managed, local optimization rarely results
in global optimization, as explained in the suboptimization
principle [63]. Hybrid systems with loose coupling tackle this
problem.

Much information on self-organization is available, but the
literature is disconnected, and different terms for similar con-
cepts are used. General discussions on different self-∗ terms
are included in [198], [199], and [200]. We focus on SONs.
Earlier general surveys on SONs include [58], [163], [201].
They offer a good state of the art survey, but the history
presented in these papers is mainly limited to the work after
the change of the millennium, although the SONs have a
much longer history, as we explained in [121]. Earlier surveys
cover distributed SONs [202] and ad hoc networks [203].
Emergence is rarely discussed in papers on SONs.

In the available literature, SONs are often defined to
be distributed without any centralized control [204], [205],
probably because natural self-organizing systems are often
distributed. The need for central control has recently been
observed but is usually not studied in detail [5]. Centralized
control introduces a hierarchy missing from distributed
systems [6].
Hybrid self-organizing networks (H-SONs) combine the

ideas of C-SONs and D-SONs [58] and thus form a universal
model for different SONs. An H-SON can act as a general
solution for stability problems and the tragedy of the
commons [65] in SONs.

In communication networks, packet switching realizes
self-organization [206]. The network selects the route of each
data packet autonomously from one of the predetermined
routes. If one route is blocked, another route is selected.
In communications, self-organizing networks that, in the
beginning, have separate parts and form connections as they
operate are commonly called ad hoc networks.

Generally, a self-organizing communication network
improves the quality of service (QoS) of all users by changing
its topology and routing and by adapting its transmitters in
each link [58], [201]. The QoS is measured by bit rate (often
called throughput), reliability (one minus error rate), and
delay, implemented with minimum energy.

B. SELF-ORGANIZATION USING A MULTI-AGENT SYSTEM
Self-organizing systems can be implemented as loosely
coupled systems in the form of interacting agents, as in
complexity theory, where such systems are called complex
adaptive systems (CAS) [4], [7], [8], [127]. Systems where
the interactions between the parts of the system do not
change, have an analytical description [207]. The analysis
becomes difficult in such complex systems where the
interactions change over time. Such systems have an algo-
rithmic description. This corresponds with self-organization.
CAS concept has been extended to complex, adaptive, and
evolvable systems (CAES) [8].

An obvious approach to implementing a self-organizing,
loosely coupled system is thus a multi-agent system.
Automatic and autonomous systems are, in general, stable
because they have an externally given goal, which may be
a set-point value, a reference signal, a reference trajectory,
or performance [11], [116], [196]. The goal acts like a
handlebar in a bicycle to steer the system in the right direction
unless there are convergence problems. If there is no given
goal, this may lead to unpredictable behavior and stability
problems.

In biology, self-organization is called morphogenesis [99].
Biological systems generally do not have any set-point
value or target performance [34]. In fact, biological systems
need a new set of fundamental explanatory principles [208].
Organisms are optimizing fitness [209], but energy efficiency
is an important part of fitness because of the scarcity of
resources.

We focus on self-organizing multi-agent systems. In [6],
the multi-agent systems are divided into leaderless (i.e.,
distributed) and leader-follow (i.e., centralized) systems, but
self-organization is not discussed in detail. Self-coordination
has been proposed to avoid and resolve emergent conflicts
in SONs in 3GPP Rel. 11 (2011) [163], but hierarchy and
vertical and horizontal loose coupling as the most obvious
methods for self-coordination.

With a multi-agent H-SON, local decisions can be made by
agents, and global decisions through agent collaboration in a
hierarchical way. More specifically, we interpret an H-SON
as a group of loosely coupled interacting agents where both
time-scale separation [12] and interference avoidance [13] are
used to decouple the feedback loops and avoid instability and
chaotic phenomena. Harmful interactions between loops are
difficult to analyze and should be avoided [160], [161].

Hybrid loosely coupled systems combine centralized and
distributed control and therefore have various beneficial
properties, including generality, simplicity, stability, scalabil-
ity, efficiency, fairness, reliability, comprehensibility, flexi-
bility, locality, and agility [4], [10], [76], [124], [183], [210].
Most of these properties come directly from the hierarchical
and modular structure, which can be shown to be optimal for
a given utility function [31].

H-SONs are general and universal since they can adapt to
all degrees of centralization, implying flexibility. Hierarchy,
modularity, and loose coupling result in systems that are
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simple and easy to comprehend. Stability is improved since
large delays are managed at high levels with the slow
operation, and at lower levels, the delays are smaller due
to locality. Small delays help to avoid instability [35].
In addition, the feedback loops are decoupled at the same
hierarchy level.

Scalability means that the system can easily be adapted to
meet greater needs in the future, i.e., the systems are allowed
to grow and adapt to new user requirements. H-SONs have
good scalability as well as flexibility since they can adapt to
completely centralized and distributed control depending on
the available resources for decision making and the situation
in the environment. The loose centralized control somewhat
limits scalability, but the problem can be minimized by using
more hierarchy levels. A weakly centrally controlled system
can offer efficiency and fairness using basic resources. Loose
coupling improves reliability since local failures are less
likely to propagate [10]. The purpose of locality at the edge of
the network near users is to minimize delays. The network is
agile because of the separation of feedback loops from each
other. Evolution has had a finite, although a long time, but has
benefited from stable, loosely coupled intermediate forms to
speed up the development [45], [52], thus showing agility.

Recent papers on self-organization focus on using machine
learning [211]. The capability to achieve the planned macro-
scopic behavior through emergence, that is, by controlling
only local interactions, would enable the engineering of
highly robust technical systems. However, methods for devel-
oping self-organization using multi-agent systems are still in
progress [5]. Especially the proper solution of the trade-off
between centralized and distributed self-organization and
managing emergence are open problems [28], [212].

In general, automatic, autonomous, and self-organizing
systems need a goal for their stable operation. These systems
were defined in [19], forming a hierarchy in FIGURE 9. Thus,
all self-organizing systems are autonomous systems, and all
autonomous systems are automatic. Since automatic systems
usually need a goal, as also observed in [213], this implies
that for stable and reliable operation and rapid convergence,
autonomous and self-organizing systems also need a similar
more general goal using a desired state to be attained or
performance criterion to be maximized [29].

The lack of an externally defined goal may be the reason
why many distributed self-organizing systems fail. Some
form of centralized control is needed as goalless progressmay
lead to staggering behavior similar to a random walk process
and eventually to instability. In self-organizing systems, the
goals provided to the loose centralized control can define
constraints for using basic resources. Such goals guide the
system towards efficient resource usage and help avoid the
tragedy of the commons.

1) HISTORY OF SELF-ORGANIZATION
Summaries of the history of self-organization are included
in [85] and [105], and a history of multi-agent systems is
in [125]. Surveys on self-organizing and multi-agent systems
are presented in [5], [6], [204], and [205].

FIGURE 9. Relationship between automatic, autonomous, and
self-organizing systems. Autonomous systems are advanced automatic
systems, and self-organizing systems are advanced autonomous systems
and, therefore, advanced automatic systems. Self-organizing systems are
on top of the hierarchy and, therefore, the most complex and least
mature.

Morphogenesis is the greatest problem in biology [99]. The
term was first used in 1863, meaning ‘‘the production of the
form or shape of an organism’’ [23]. Thompson (1917) and
Turing (1952) were the first to describe it scientifically [214].
Wiener used the negative feedback concept in his cybernetics
(1948) to describe control and communication in animals
and machines [83]. A related term to morphogenesis is
autopoiesis meaning self-producing [43]. The term was
proposed by Maturana (1974).

Ashby proposed the terms adaptive system and self-
organization in 1947 [43]. Two theoretical approaches have
been proposed to the problem of self-organization, using
either a combination of positive and negative feedback or
second-order cybernetics [215]. Maruyama (1963) first stud-
ied positive feedback in detail, and second-order cybernetics
by von Förster (1981). Such ideas have not been widely used
in technical self-organizing systems.

C. SELF-ORGANIZING COMMUNICATION NETWORKS
Agent theory can be applied to wireless communication
networks when we interpret the network manager and all
transmitters and receivers as rational agents. A bidirectional
link connects a transmitter and a receiver. In FIGURE 10,
a transmitter on the left is shown as an agent, which
receives sensing signals on the state of the channel from
the corresponding receiver on the right. An example of the
actions of the transmitter is power control based on a feedback
loop. The receiver is an agent since it includes feedback loops
in synchronization and channel estimation implementing
actions on the received signal. Hierarchically the receiver is
below the transmitter. In FIGURE 11, we show a network
using agents. They implement feedback loops, and thus the
term ‘‘agent,’’ commonly used in artificial intelligence within
computer science, a convenient and well-defined general
term [3], is also useful in communications. The network is
hierarchical, and the networkmanager implements the central
agent that controls the use of network resources such as
energy, time, bandwidth, and space.
Human network administrators supervise the whole

network [216] since automatic and autonomous systems
may sometimes have failures. The network may combine
centralized and distributed control, thus implementing the
hybrid SON architecture. The network must be loosely
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FIGURE 10. A bidirectional link connects a transmitter and a receiver.
Transmitters can be seen as rational agents. The sensing information
comes from the corresponding receiver, another agent hierarchically
below the transmitter agent, including synchronization and channel
estimation. A feedback loop often requires an externally given goal but is
ignored for brevity.

FIGURE 11. A hierarchy of agents in communications. The transmitters
and receivers are connected with bidirectional links. There is unintended
coupling between the transmitter agents through the environment.

coupled to avoid excessive control information: the network
manager should be weak, and interference should be avoided.
The network is thus based on time-scale separation and
interference avoidance. Each receiver is hierarchically below
the corresponding transmitter. Therefore the feedback loop in
the transmitter should be much slower than the loops in the
corresponding receiver to avoid conflicting behavior.

In the physical layer, the unintended coupling effect can
be seen clearly (FIGURE 11). The transmitter typically has
a power control loop that may interfere with other power
control loops since the signals are not completely orthogonal.
This is called coupling through additive interference and
can be classified as unintentional horizontal coupling at the
same hierarchy level (FIGURE 12a). Transmitter 1 (Agent
1) typically has a power control loop that may interfere with
other power control loops (Agent 2) since the transmitted
radio waves propagate in all directions.

Vertical coupling between hierarchy levels corresponds
to multiplicative interference [217] (FIGURE 12b and c).
If we consider hierarchical power control, the transmitted
signal in the physical layer is multiplied or modulated by
the act signal from a higher-level agent (Agent 1). In this
way, the transmitted power is changed with a slower time
scale than inAgent 2. This scheme resembles Brooks’s (1986)
subsumption robot architecture [34].

In communication networks, links are generally open
systems and interfere with each other because the radio waves
spread in all directions. The energy consumption is large
because of the high attenuation. In [180], the authors explain
that in mobile wireless communications, each mobile user

is loosely coupled with every other mobile user that uses
the same communication channel. The idea is not developed
further in the book.

Understanding the information requirements to describe
the network is crucial for efficient operation. In an H-SON,
the information is contained in the state of the network.
The state includes bit rate, delay, availability, reliability, and
energy efficiency of the links and the whole network and
interference between the links [218], [219]. Interference is
usually measured using the signal-to-interference ratio (SIR).
More generally, the state of the network includes the impulse
responses and the noise and interference spectral density of
all links between nodes.

Examples of intelligent agents in communication networks
include transmitter power, frequency, and timing control,
and beamforming, which reduce interference in the receiver.
These are interference avoidance methods [13] needed for
loose coupling. When additive interference is reduced, the
required energy is reduced both in the transmitter (transmis-
sion energy reduced) and the receiver (simple processing).
Especially transmitter power control may easily lead to
instability in a network since many power control loops may
be coupled by interference, as in a cocktail party [159], [220].
NOMA [15] and code division multiple access (CDMA)
systems are based on nonorthogonal or quasi-orthogonal
signals between users, respectively. Such systems may need
complicated multiuser receivers to avoid the cocktail party
effect [114].

The European Telecommunications Standards Institute
(ETSI) has published a system called Generic Autonomic
Networking Architecture (GANA) representing the H-SON
architecture, a standard called Technical Specification (TS)
103 195-2, thus forming a holistic framework for SONs [41].
Similar ideas are now introduced also in the O-RAN system
that is under development [14]. The goal of O-RAN is to
implement its design principles on top of the 3rd Generation
Partnership Project (3GPP) Long-Term Evolution (LTE) and
New Radio (NR) RANs. H-SONs have also been suggested
in the literature [142], [146]. In [142], the authors noticed
that the resource allocation interval in centralized control is
a few minutes, in distributed control, typically milliseconds,
and in the H-SON, a few seconds. This numerical example of
the time scales shows the benefits of H-SONs compared to
C-SONs.

In the GANA architecture, the time scales of the fast
and slow control loops are left open. They are defined
in the implementation phase [41]. The number of control
loops depends on the number of relationships between
Decision Making Elements (DEs) and Managed Entities
(MEs). The hierarchy is nested hierarchy since the highest
layer can directly control the lowest layer, although at a slow
speed.

In the O-RAN architecture, the time scales are called loop
times. They exceed 1 s in the non-real-time control loop, vary
from 1 ms to 1 s in the near-real-time control loop, and are
below 1 ms in the real-time control loop [14]. The scales
have no clear time-scale separation; thus, stability problems
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FIGURE 12. Two forms of coupling. a) Unintentional horizontal or additive coupling, b) intentional vertical or multiplicative coupling, c) an
equivalent form of vertical coupling in b). For simplicity, interference in sensing signals is ignored.

may arise due to possible conflicts. Usually, such conflicts
can be avoided and resolved with self-coordination methods,
as summarized in [163].

C-SONs, D-SONs, and H-SONs differ regarding optimal-
ity, stability, energy consumption, and control or signaling
overhead [121]. C-SONs can be optimal, but the delays
and control overhead are large, and there may be stability
problems because of the long loop delays. In D-SONs, the
stability is improved with small control overhead, energy
consumption, and small delays. Still, the global behavior
cannot be predicted from local behavior, and a set of local
optima does not lead to a global optimum [53]. H-SONs
implement the advantages of C-SONs and D-SONs but have
only a few of their disadvantages. The advantages include
improved stability, reduced delays and control overhead,
improved energy efficiency compared to C-SONs, and
improved global optimality compared to D-SONs. The main
disadvantage of H-SONs results from the flexibility that
somewhat reduces global energy efficiency, but this is a
trade-off that must be made in all programmable solutions.

The number of configuration parameters illustrates the
complexity of communication networks. A typical 2G node

has 500 parameters to be configured and optimized, a 3G
node 1000, and a 4G node 1500 [221]. A typical 5G node
can be estimated to have 2000 parameters.

1) HISTORY OF SONs
The first self-organizing networks in communications used
packet switching, invented by Kleinrock (1961) [206].
Baran proposed a distributed network to survive nuclear
attacks [75]. Independently of Baran’s work, Licklider, Klein-
rock, and Roberts developed the Arpanet (1969) as the first
self-organizing network, leading eventually to the Internet
(1983) as a distributed best-effort network [206], [222].
Arpanet was one of the first applications of loose coupling
in communications [176]. Its performance can be improved
using various techniques to look more like a dedicated
Internet for a user. Cherry (1953) observed the cocktail party
effect in social systems [220].
Packet radio networks have been developed in wireless

communications since 1972 [203]. The interest in distributed
self-organizing networks increased in the 1980s [202].
A special form of them is ad hoc networks. Although the
term ‘‘ad hoc network’’ is older, it was first recommended
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by the IEEE 802.11 subcommittee in 1993 [203], [223].
Beni and Wang (1993) invented swarm intelligence using
the concept of cellular automata [224]. Swarm intelligence
is based on the collective intelligence of simple agents. The
agents form a distributed self-organizing system, useful in ad
hoc networks [225], [226]. Swarm intelligence is a form of
evolutionary computing.

Self-organization can be realized with programmable
networks. They are divided into active and software-defined
(SDNs) networks [227]. Active networks are based on mobile
agents by Chess [117], [228]. The networks are active
because nodes can modify the packet contents. Mobile
agents are software agents that can roam between the
nodes. In general, the agents in modern networks are not
mobile since roaming may increase energy consumption, and
network management becomes complex. Chess’s paper [117]
is one of the first to use the agent concept in communication
networks. Later SDNs were defined as networks where the
data plane and control planes are separated. Now the more
general term network automation is preferred since one
can use application programming interfaces (APIs) [229]
in programmable networks. Using agents in SONs was
suggested in [118] and [119].

Already in [75], a mixture of central and distributed
control was mentioned as a practical form of communication
network. One of the first papers to discuss H-SONs in
communications is [230]. The concepts of C-SON, D-SON,
and H-SON were defined briefly without any details in 3GPP
Rel. 8 (2008) [58]. The GANA architecture was originally
proposed in [231] using the terminology developed for
autonomic computing in [232]. The ETSI published a GANA
white paper (2016), later becoming an ETSI standard [41].
Hybrid systems have been used in other disciplines with
different names, including multilevel, multigoal systems
in hierarchical control [48], and holonic control architec-
ture [53]. In social systems, subsidiarity is the closest to
hybrid systems [70].

2) RECENT TRENDS AND ROADMAP
Understanding of recent trends and the development of a
roadmapmust be based on deep knowledge on the history and
relevant literature. The GANA architecture represents one of
the first standardized H-SONs, and it is also using vertical
loose coupling in the form of time-scale separation. O-RAN,
ZSM, and ENI architectures are still under development,
and they must consider loose coupling to guarantee stability.
Loose coupling is still not very well known in the physical
and network layers of the OSI model [12], [14], [15],
although it is well known in the application layer since it
has a long history after the introduction of the structured
software design [10], [183]. SOA is now implemented
in the form of microservices (2011), which are a new
form of service-oriented computing (SOC) [233], [234].
The SOC is a computing paradigm that uses services as
fundamental elements. Microservice architectures consist of
small vertically and horizontally loosely coupled services

that can be independently replaced. We expect that H-SONs
with vertical and horizontal loose coupling will be widely
used in future networks because of their beneficial properties,
especially stability, and agility [17].

An open problem is whether AI can work reliably in
uncertain dynamical environments [151] although some
initial results exist [152]. Some fundamental limitations of
AI are discussed in detail in [235]. One important limitation
is that AI uses deductive, inductive, and statistical methods,
whereas humans are more versatile and creative and able to
use abduction or inference to the best explanation.

In engineering, we now need knowledge from biology
(especially systems biology [208]) and social sciences,
in addition to physics and chemistry. Biological systems are
known to be very resource efficient, which is mandatory
in sustainable development [19]. The use of biology in
engineering is called bionics or biomimetics [236]. For
example, our brain is the most complex system we know and,
therefore, a good model for us. The brain is known to form
a small-word network [237] and is based on reinforcement
learning [238]. A small-world network is both globally and
locally efficient [239], [240]. Applications already exist in
wireless networks [241]. A small-world network is formed
with shortcuts.

We expect that reinforcement learning will be com-
mon in multiobjective optimization in the form of Pareto
Q-learning [149]. It is also possible that Prigogine’s
nonequilibrium thermodynamics for open systems [89] will
find applications in SONs since it has been applied in
economics for decades [144]. Finally, complex adaptive
systems are sets of interacting agents and together with
the hierarchy concept lead naturally towards more advanced
self-organizing networks [8], [207].

V. CONCLUSION
We have presented a multidisciplinary history of loosely
coupled systems. Loose coupling has a long history in
structured software design but is not very well known in
physical and network layers of communication networks.
We have proposed a vertically and horizontally loosely
coupled hybrid SON as a universal solution for system
design to improve the performance of complex networks.
Coupling between layers and their subsystems may be
intentional or unintentional. Like feedback, loose coupling
has been ‘‘an invisible thread in the history of technology.’’
It is a simple form of self-coordination. Loose coupling
has a solid theoretical basis in optimization decomposition.
Furthermore, the need for weak centralized control can be
derived directly from welfare economics and game theory
in the form of the Stackelberg game, strengthening the
theoretical basis.

Hybrid SONs combine centralized SONs for global
optimization and distributed SONs for local optimization.
Hierarchy, modularity, and local interactions are used. The
principles of a loosely coupled hybrid SON are applied in the
ETSI GANA architecture for communications and the IEC
61499 standard for manufacturing systems.
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Harmful interactions between feedback loops are difficult
to analyze and should be avoided. To guarantee stability,
the feedback loops must be loosely coupled using time-scale
separation in vertical loose coupling and interference avoid-
ance in horizontal loose coupling. In a distributed system,
information exchange using sensing results is possible.
In communication networks, the central agent in the form
of a network manager must be much slower than the
transmitter agent, and the transmitter agent must act much
slower than the receiver agent. The possible interference
between the links must be avoided using orthogonal-
ity in different domains, including time, frequency, and
space.

When nonlinear relationships between the parts of a
system lead to emergence, the global behavior cannot be
predicted from the local behavior, and a set of local optima
does not lead to a global optimum. Presently there is no
theory for emergence; therefore, it is seen as a harmful
phenomenon to avoid using loosely coupled architectures.
Moreover, analysis of systems is, in practice, possible only
when the interactions between subsystems are linear, loose,
or nonexistent. However, in the last case, there is no system
to analyze but a set of parts.

The advantages of loosely coupled networks include stabil-
ity, scalability, efficiency, reliability, agility, and resilience.
Stability is achieved by using loose coupling between the
control loops. Weak centralized control may be useful
in avoiding deadlock situations. Scalability is improved
since the network can become either centrally controlled or
distributed depending on the requirements and the situation
in the environment. The network aims at using basic
resources efficiently. Resource efficiency can be improved
by applying the subsidiarity principle, which is a general
solution to the tragedy of the commons. Using the externally
given goal, a leader in agent theory, an arbitrator in game
theory, a network manager in communications, or a weak
central agent can prioritize and ration the use of basic
resources using constraints to improve fairness without too
much control information. However, efficiency is somewhat
reduced by the high flexibility of these systems, but this
is a trade-off that must be made in all programmable
solutions.

Reliability is improved since errors in loosely coupled
networks do not easily propagate because of loose coupling.
The network is agile because of the separation of feedback
loops from each other. The networks are resilient since
they can also act as distributed networks with lower per-
formance. There are various applications of loose coupling
in many disciplines, including structured software design,
modular electronics design, cross-layer design, service-
oriented architectures, and interworking architectures. Open
Radio Access Network (O-RAN) and nonorthogonal multiple
access (NOMA) systems are examples of state-of-the-
art communication technologies that would benefit from
loose coupling. Introducing such capabilities for H-SONs
facilitates building future communication networks fulfilling
their requirements and supporting sustainable development.

A recent trend is towards microservices based on loose
coupling as a form of service-oriented architecture. We need
further work on concrete algorithms for hierarchical dis-
tributedmultiobjective optimization and robustification of the
network. Good models can be found in biology since living
systems are highly resource efficient and thus support sus-
tainable development in engineering. For example, our brain
forms a small-world network and is based on reinforcement
learning. An open problem is whether AI can really work
reliably in uncertain dynamical environments.
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