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ABSTRACT The Internet of Things (IoT) has revolutionized the world with its diverse applications and
smart connected devices. These IoT devices communicate with each other without human intervention
and make life easier in many ways. However, the independence of these devices raises several significant
concerns, such as security and privacy preservation due to malicious and compromised nodes within the
network. Trust management has been introduced as a less computationally intensive alternative to traditional
approaches such as cryptography. The proposed FedTrust approach addresses these challenges by designing
a method for identifying malicious and compromised nodes using federated learning. FedTrust trains edge
nodes with a provided dataset and forms a global model to predict the abnormal behavior of IoT nodes.
The proposed approach utilizes a novel trust dataset consisting of 19 trust parameters from three major
components: knowledge, experience, and reputation. To reduce the computational burden, FedTrust employs
the concept of communities with dedicated servers to divide the dataset into smaller parts for more efficient
training. The proposed approach is extensively evaluated in comparison to existing approaches in terms
of accuracy, precision, and other metrics to validate its performance in IoT networks. Simulation results
demonstrate the effectiveness of FedTrust by achieving a higher rate of detection and prediction of malicious
and compromised nodes.

INDEX TERMS Internet of Things, federated learning, trust management, deep learning, malicious nodes,
security, privacy preservation, trustworthiness.

I. INTRODUCTION
The Internet of Things (IoT) [1] is an emerging concept where
everyday objects are connected to the internet. The intercon-
nection allows these devices to share data independently over
the Internet. This has caused a profusion of new services
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and applications, which is altering how we work and live.
However, the security and privacy of the data produced by
these devices raise vulnerabilities due to independent connec-
tivity [2]. To maintain the secure and dependable operation of
IoT networks, it is imperative to solve crucial issues including
the security and privacy of sensitive data and the integrity
of the communication performed between devices. In order
to protect IoT networks, trust management [3] is essential
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since it guarantees the dependability and legitimacy of the
participating devices and their data. A secure communica-
tion route between devices and the prevention of malev-
olent devices from jeopardizing network security are both
made possible by trust management. Detection of malevolent
nodes [4], that can compromise network security by engaging
in malicious activities including eavesdropping [5], tamper-
ing with data [6], and launching denial-of-service attacks [7],
is one of the primary issues in trust management for IoT net-
works [8]. Numerous trust management strategies, including
reputation-based systems [9], cryptographic methods [10],
and machine learning-based methods, have been proposed as
solutions to these research challenges.

The majority of the existing methods of managing trust
in IoT contexts frequently include aspects of Blockchain
and federated learning [11]. Through federated learning,
many nodes can work together to build a machine-learning
model [12] without sharing any of their private data.
To achieve this, the model is trained using locally aggre-
gated gradients, which are then added together to update
the shared model. This approach not only assures that the
model is trained on a more varied set of data, but it also
improves the privacy and efficiency of the model. Further-
more, Blockchain technologies offer a safe and impenetrable
ledger of all network transactions [13]. Blockchain can be
used in an IoT setting to keep track of all device interac-
tions [14], including the execution of smart contracts and the
transfer of assets [15]. It is possible to create a transparent and
safe trust management mechanism that can provide robust
security against attacks [16] by integrating Blockchain into
trust management systems. However, utilizing Blockchain in
IoT environment may increase the security but also increases
the computational complexity due to which becomes difficult
to implement for less-capable nodes.

Most current approaches utilize machine learning, fed-
erated learning, and blockchain technologies to maintain
trustworthiness, as discussed in Section II. Because of the
widespread significance of IoT devices, it is vital that they be
safeguarded against compromised andmalicious nodes. Stan-
dard security measures, such as encryption, may not be suit-
able for resource-constrained IoT systems due to their com-
putationally expensive nature. Because of these shortcom-
ings, current approaches to IoT trust management are vul-
nerable to attacks such as whitewashing and bad-mouthing.
A more robust, private, and scalable approach to protecting
IoT networks frommalicious and compromised nodesmay be
achieved by combining deep learningwith federated learning.
While the use of these approaches may provide security, their
implementation on a large scale [17] becomes impossible,
making them unsuitable for real-world IoT solutions. In the
proposed approach, we address these challenges by reducing
computational complexity through the use of communities
and domains. The proposed approach modifies federated
learning by dividing the dataset into chunks controlled by
dedicated servers as illustrated by Figure 1, which then

allocate smaller portions of the dataset to IoT nodes for
training purposes. This reduces computational complexity
and increases device efficiency. The major contribution of the
proposed approach can be summarized as:

1) The proposed technique utilizes Deep Federated Learn-
ing to identifymalicious and compromised nodes based
on trust management in IoT. The FedTrust combines
the strengths of both Federated Learning and Deep
Learning to efficiently and accurately identify mali-
cious and compromised nodes.

2) The proposed technique addresses the limitations of
traditional trust management techniques in IoT, which
can be vulnerable to attacks such as whitewashing and
bad-mouthing by using a novel dataset consisting of
trust parameters to predict the abnormal behavior of
nodes.

3) The proposed technique also reduces the extensive
capabilities required for training purposes and opti-
mizes the process to make it efficient for the Green IoT
environment and makes real-time security.

The structure of the rest of the article is as follows: Sec-
tion II discusses existing approaches, elaborates on their con-
tributions and limitations. Section III provides an extensive
discussion of the proposed methodology, dataset, splitting,
and model training. Section IV illustrates a comparative anal-
ysis of the proposed approach with existing approaches in
terms of metrics such as Precision, Accuracy, and F1 Score.
Finally, Section V concludes the article.

II. BACKGROUND STUDY
The identification of such nodes that can affect the trust-
worthiness of the IoT environment is a notable challenge.
Several existing approaches use traditional methods to main-
tain trustworthiness but are unable to adequately fulfilled the
need by efficiently predicting the behavior while maintaining
low energy consumption. This section illustrates the existing
approaches and identifies the limitation of those approaches.

In [18], a decentralized-based trust management approach
is proposed that utilizes blockchain and federated learning
to maintain trustworthiness in an IoT environment. The pro-
posed approach protocol consists of trust scores, trust devi-
ation, and trust consistency values to perform computations
in the blockchain. The proposed architecture consists of an
aggregator, selected group leaders, and a coalition group.
The major contribution of the proposed mechanism is the
utilization of federated learning to train the decentralized
nodes, however, required extensive computational capabil-
ities to perform computations in the blockchain that may
reduce throughput [19]. In [20], another trust-driven approach
is proposed that uses a reinforcement selection strategy with a
double deep Q-Learning algorithm [21] along with federated
learning for the identification of malicious and compromised
nodes. The proposed model consists of an edge server that
process and creates the global model, the weights uploading
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FIGURE 1. The training process of the deep federated learning model.

and model updating process, and the local layers in which
IoT devices are used to train the model. The significant
contribution of the proposed mechanism is the utilization
of Q-Learning along with selection strategy, and federated
learning. However, the proposed is computationally intensive
and can raise the overhead ratio to complete the computation
in real-time [22].

In [23], a trust-augmented-based deep reinforcement learn-
ing approach is proposed for client selection using federated
learning. Along with the client selection component, the pro-
posed approach also utilizes transfer learning to handle the
data and to address the vulnerabilities caused by low efficient
training. The working architecture of the approach consists
of three major layers which are the edge cloud layer, IoT
layer, and public environment. The edge cloud layer performs
the knowledge transfer to the aggregation server for global
and local model formulation. The IoT layer consists of IoT
devices that locally trained the model. Furthermore, the pub-
lic environment consists of individuals for COVID-19 [24]
detection using camera sensors. In [25], a hierarchical-based
blockchain framework is proposed for IoT intrusion detec-
tion using federated learning. The data flow in the proposed
approach consists of three major components i.e., global
model aggregator, local model aggregator, and IoT edge
nodes to locally train the model. The communication among
these nodes is performed for two major purposes which are
uploadingmodel weights and downloading aggregatedmodel
weights.

Another trust-based approach is proposed to aggregate
the trusted features using federated learning for attack

detection [26]. The approach stores the training process of
the model on the blockchain whereas the intrusion alarm is
set to the cloud for global prediction. The proposed approach
architecture consists of four layers i.e., the Blockchain layer,
chain-code layer, federated layer, and application layer. The
significant contribution of the proposed approach is the filter
the false alerts using semi-supervised learning. However, the
approach may face issues to handle intrusion accurately due
to bandwidth limitations. In [27], an approach is proposed to
maintain end-to-end device trustworthiness by securing the
IoT infrastructures with federated learning and Blockchain.
The proposed model consists of 4 major components i.e.,
cloud, blockchain, fog server, and edge nodes. The trusted
devices are appended to the Blockchain whereas fog performs
the federated aggregation process received by the edge IoT
nodes.

III. PROPOSED FedTrust METHODOLOGY
The proposed FedTrust approach utilizes the concept of
federated learning and communities to efficiently maintain
trustworthiness. The proposed approach trained the model
using edge nodes with modified federated learning imple-
mentation architecture. This section will elaborate on the
proposed approach architecture, along with dataset features,
splitting, and the training process of deep federated learning.
Federated learning is used in our approach, which frees edge
nodes from sharing data as they train their models. Unlike
with some other available options, this one guarantees that
no private data will be disclosed. The proposed solution is
well-suited to dealing with large-scale IoT networks because
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TABLE 1. Analysis of current state-of-the-art methods.

to deep federated learning’s ability to distribute the compu-
tational burden across edge nodes. This saves a lot of time
and money compared to traditional, centralized educational
models. Defense against external forces: Our novel trust
dataset with trust parameters makes the proposed approach
more resilient to common attacks like whitewashing and bad-
mouthing. We will demonstrate how FedTrust performs in
comparison to other solutions under various forms of assault.
Thanks to its ability to continuously learn and adapt to the
changing behavior of IoT nodes, our technique is particularly
well-suited for dynamic and heterogeneous IoT networks.

A. OVERVIEW OF THE PROPOSED TECHNIQUE
The proposed approach is based on the modified implemen-
tation of federated learning by employing the domain server
that handles the communities and training themodel by divid-
ing the dataset. The proposed approach architecture consists
of four major components, i.e., global dataset, global model,
domain server, and communities that contain edge IoT nodes
as illustrated by Figure 2.

The global dataset in the proposed model consists of sev-
eral distinct features of trust that are gathered based on three
trust components which are knowledge, reputation, and expe-
rience whereas the detail of the dataset is illustrated in Section
III-B. The global dataset is split into several parts based on
the available domain servers and delivered to each domain
server. Further, the domain server selected the nodes from
the communities based on the capabilities, and competency to
train the received global dataset. After that, the domain server
further split the dataset into the number of selected nodes and
each part to the specific nodes for training purposes. After

Algorithm 1 The Working Flow of the Trust Assess-
ment in IoT for Node n
Input: Node n, weights ω1, ω2, ω3, α, τ , ζ , υ1, υ2,

and wi
1 d Output: Trust value T for node n
2 Knowledge Component:
3 Normalize the parameters using Equation 23.
4 Assign weightsWi to the parameters.
5 Compute the knowledge metric K using Equation 10 -

16.
6 Reputation Component:
7 Collect feedback and ratings (Pf , Nf ), social proof

(Ep, Nn), transparency rating (TI , TImax), data
breaches and security vulnerabilities (DBn, SVn,
DBmax , SVmax), user engagement (Ii, n), and
responsiveness of node (RT , Rh) for node n.

8 Compute the reputation metric parameters using
Equations 17 - 22.

9 Normalize the parameters using Equation 23.
10 Assign weightsWi to the parameters.
11 Compute the reputation metric R using Equation 24.
12 Experience Component:
13 Collect interaction frequency (n, Ti, wi), transaction

success rate (Sti, vi, Tti), time taken to complete
transactions (ti, ui), communication quality (SNR,
BER, α), data sharing behavior (pij), cooperation
level (Cn, Cmax), and end-to-end packet delivery
(PDRi, z) for node n.

14 Compute the experience metric parameters using
Equations 25 - 31.

15 Normalize the parameters using Equation 23.
16 Assign weightsWi to the parameters.
17 Compute the experience metric E using Equation 32.
18 Aggregating the Metrics:
19 Compute the trust value T for node n using Equation

32 and the weights ω1, ω2, and ω3 to combine the
knowledge metric K , the reputation metric R, and the
experience metric E .

the training process, these nodes transmit the trained model
to the domain server where the domain server merges all the
received datasets and labeled them as the communities train
model, and transmits it back to the central server to merge all
the communities train model and formulate the global model.

The formulated global dataset is then transmitted back
to the domain server and then the trained model will be
shared with the edge nodes. Another major aspect of the
proposed mechanism is that the dataset splitting and training
is a time-driven process and it performs after a pre-defined
time interval so that the model gets trained with real-time
changes to maintain robustness. Furthermore, the splitting
of dataset by the domain server will help to minimize the
computational burden on the edge nodes which will also have
a significant impact to minimize energy consumption. As the
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FIGURE 2. The proposed FedTrust working architecture.

splitting is performed by the central and domain server also
has a notable impact to optimize the training process.

B. TRUST MANAGEMENT MATRICES
The dataset of the proposed approach is comprised of dis-
tinct features of trust components whereas these features are
selected to provide nodes with the intelligence to predict the
behavior as well as the patterns of different IoT potential
attacks to maintain trustworthiness. The dataset is consist of
90788 values of each parameter with multiple observations.
This section extensively explains the features utilizes in the
training process and the mathematical computational model
that has been utilized in the creation of the dataset whereas
the complete working flow of the proposed mechanism is
illustrated by Algorithm 1.

1) KNOWLEDGE METRIC
The knowledge component of trust is an important element of
node trustworthiness because it determines nodes’ confidence
in neighboring nodes. The knowledge component of trust in
the context of IoT networks refers to nodes’ understanding of
the network’s and connected devices’ security and privacy.
To establish and maintain a high level of trustworthiness
in an IoT network, it is critical that users have access to
reliable and up-to-date knowledge about the network’s pri-
vacy and security measures. The knowledge of the nodes
is based on prior observations that will help in the identi-
fication of whitewashing attacks. In this trust component,

a novel combination of seven trust parameters has been imple-
mented which are credibility, accuracy, reliability, compli-
ance, capabilities, availability, and responsiveness. In cre-
ation of the data, the first step is to initialize variables for
the trust parameters with default values set to 0.0. Second
step is to calculate the credibility of the node provider by
evaluating its expertise. Third, the evaluate of the security
and privacy of the node is calculated using accuracy and
reliability. The accuracy and reliability is calculated using
performance metrics and data validation methods. Fourth, the
assess level of compliance is calculated by evaluating the
node against established standards such as ISO and NIST.
Each parameter of knowledge components is evaluated and
calculated as:

• To describe a node’s credibility (C), we may add
together its previous performance (P), its expertise (E),
and a time decay factor (delta) to account for the credi-
bility drop over time:

C = αP+ βE + γ δt (1)

where alpha, beta, and gamma are weights adding
up to 1 that represent the relative relevance of track
record, competence, and the decaying influence of time,
respectively.

• Taking into account a weight factor (omega) to reg-
ulate the balance between precision and recall, accu-
racy (A) may be computed as the harmonic mean of
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precision (Pr ) and recall (Rc):

A =
(1+ ω2) · Pr · Rc
(ω2 · Pr )+ Rc

(2)

• Combining a node’s performance stability (T ) with a
confidence factor (CF) that takes into account the node’s
historical performance variation yields reliability (R):

R =

∑T
t=1 Pt
T

· CF (3)

where CF = 1

1+e−λ(

∑T
t=1 Pt
T −µ)

is a sigmoid function that

considers the average performance and a threshold (µ)
with a steepness factor (λ).

• One way to express compliance (Com) is as a weighted
sum of the node’s adherence to best practices (BP) and
the number of standards attained (Sachieved)

Com =
ηSachieved + (1− η)BP

Stotal
(4)

where eta is a weight between 0 and 1 that indicates
how significant meeting standards and following best
practices really are.

• The capabilities of a node (Cap), when weighted appro-
priately, are the sum of its computing power (CP), stor-
age capacity (SC), and energy efficiency (EE)

Cap = θ1
CP

CPmax
+ θ2

SC
SCmax

+ θ3
EE

EEmax
(5)

Maximum values of CP, SC, and EE are denoted by
CPmax, SCmax, and EEmax, respectively; the weights
theta1, theta2, and theta3 add up to 1, showing the
significance of each factor.

• Assuming a decay factor (deltaav) that compensates for
the decline in availability over time, Availability (Av)
may be determined as a function of the Uptime (U ) of
the node and the Total Time (Ttotal) of the Network:

Av =
U
Ttotal

· e−δavt (6)

• Response time (RT ) and requests handled (Rh) may
be combined to describe responsiveness (Res), with a
weighted value assigned to each component.

Res =
φ1

1+ ek1(RT−RTth)
+ φ2

Rh
Rmax

(7)

where RTth is the response time threshold, k1 is the
steepness factor, and Rmax is the maximum number of
requests handled by the network; the weights phi1 and
phi2 add up to 1, reflecting the proportional significance
of each component.

Let’s say that C stands for credibility, A for accuracy, R for
reliability, Com for compliance, Cap for capabilities, Av for
availability, and Res for responsiveness, and so on. Following
is a working definition of the component of knowledge:

K = f (C,A,R,Com,Cap,Av,Res) (8)

The following are the stages of data creation:
• Trust parameter variables should be initialized at 0.0.

C = A = R = Com = Cap = Av = Res = 0.0 (9)

• Determine the node provider’s trustworthiness (in C) by
its level of competence. A node’s reputation is equal
to the product of its previous performance (P) and its
expertise (E), with P being more heavily weighted than
E .

C = αP+ βE (10)

where alpha and beta are weights adding up to 1, show-
ing the significance of proven results and specialized
knowledge in establishing trustworthiness.

• Assess the node’s privacy and security using a measure
of precision (A) and trustworthiness (R). The accuracy
can be determined by dividing the number of right deci-
sions by the total number of choices (Dcorrect/Dtotal),
and the reliability can be determined by measuring the
stability of a node’s output over time (T ):

A =
Dcorrect
Dtotal

(11)

R =

∑T
t=1 Pt
T

(12)

• Determine the node’s compliance (Com) bymeasuring it
against industry benchmarks like ISO and NIST guide-
lines. A higher score implies more compliance, and this
may be expressed as a compliance score between 0 and
1:

Com =
Sachieved
Stotal

(13)

in where Sachieved is the total number of met standards
and Stotal is the total number of standards.

Assess the node’s privacy and security using a measure of
precision (A) and trustworthiness (R). The accuracy can be
determined by dividing the number of right decisions by the
total number of choices (Dcorrect/Dtotal), and the reliability
can be determined by measuring the stability of a node’s
output over time (T ):

A =
Dcorrect
Dtotal

(14)

R =

∑T
t=1 Pt
T

(15)

Determine the node’s compliance (Com) by measuring it
against industry benchmarks like ISO and NIST guidelines.
A higher score implies more compliance, and this may be
expressed as a compliance score between 0 and 1:

Com =
Sachieved
Stotal

(16)

in where Sachieved is the total number of met standards
and Stotal is the total number of standards.
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2) REPUTATION METRIC
The reputation component of trust in the IoT environment
refers to the evaluation of node’s trust degree based on its
previous behaviour and performance in the network being
recognized by neighboring nodes. This evaluation is critical
for the secure and efficient operation in IoT environment
because it provides equal opportunity in comparison with
the knowledge components for the identification of malicious
and compromised nodes and prevents them from interfering
with network operations. The reputation parameter dataset
consists of several distinct trust parameters i.e., feedback
and ratings from previous node/devices, social proof by the
provider node, level of transparency rating related to func-
tioning, data breaches incidence level and security vulnerabil-
ities, user engagement, responsiveness of node. The parame-
ters of the reputationmeasure are calculated and implemented
as described below:

• Positive feedback (Pf ) is more weighted than negative
feedback (Nf ), hence the total of the two may be used to
indicate ratings and feedback (F):

F =
ω1Pf − ω2Nf
Pf + Nf

(17)

When the positive and negative feedback are given
equal weight by the sum of their respective weights,
omega1 and omega2.

• To determine social proof (SP), divide the number of
nodes endorsing the provider node (Ep) by the number
of nodes in the immediate vicinity (Nn) and multiply by
a weighting factor.

SP =
τEp
Nn

(18)

where tau is a weight between 0 and 1 indicating how
much reliance one should place on social evidence when
assessing reputation.

• The Transparency Rating (TR) is equal to the maximum
Transparency Index (TImax) divided by the transparency
index (TI ), which measures the openness of the node’s
operation and data sharing.

TR =
TI

TImax
(19)

• Considering the relative relevance of data breaches
(DBn) and security vulnerabilities (SVn), the total num-
ber of data breaches and security vulnerabilities (DB)
may be expressed as a weighted sum of the two quan-
tities.

DB =
υ1DBn + υ2SVn
DBmax + SVmax

(20)

where the highest values of the parameters in the net-
work are denoted byDBmax and SVmax, and the weights
upsilon1 and upsilon2 add up to 1, showing the relative
significance of each factor.

• Average interactions (I ) per nodemay be used as a proxy
for user engagement (UE).

UE =

∑n
i=1 Ii
n

(21)

for every given size n of network nodes.
• Node responsiveness (RN ) may be expressed as the har-
monic mean of response time (RT ) and requests handled
(Rh), with a weight factor (zeta) regulating the relative
importance of these two metrics.

RN =
(1+ ζ 2) · 1

RT · Rh

ζ 2 · 1
RT + Rh

(22)

The formulation of a dataset starts with a numerical rep-
resentation of the parameters, having values between 0 and
1. Parameters are normalized by calculating their normalized
values, or NRi; for each parameter, Ri, as illustrated in Equa-
tion 23:

NRi = (Ri − Rmin)/(Rmax − Rmin) (23)

In Equation 23, Rmin and Rmax are the minimum and
maximum possible values for Ri, respectively. In the next
phase, weight is allocated to each parameters of the reputation
components whereas the assign weights (Wi) ranges from 0 to
1 and the sum of all weights is 1. Further, a computation is
performed to evaluate the reputation (R) as illustration by
Equation 24.

R =
∑

(ωi ∗ NRi) (24)

3) EXPERIENCE METRIC
The experience component of trust parameter is the most
significant as it contain those ratings that are provided by
the user after the completion of the task. The proposed
approach dataset implements several parameters to perform
effectively and identify malicious and compromised nodes
with enhanced prediction rate. The experience components
trust parameters are: (i) interaction frequency (ii) transaction
success rate (TSR) (iii) time taken to complete transactions
(iv) Communication quality (v) Resource utilization (vi) Data
sharing behavior (v) Cooperation level (vi) end-to-end packet
delivery.

In the proposed approach, the interaction frequency com-
putation is performed by counting the number of interactions
between two nodes over a certain period of time. The equation
used to perform the computation is by using the number of
interactions n by the total time period T. The TSR parameter is
computed by dividing the number of successful transactions
by the total number of transactions. The time taken to com-
plete transactions is implemented by measuring the average
time taken to complete all transactions. The communication
quality in the dataset creation is implemented by measuring
the quality of communication between two nodes. The data
sharing behavior parameter is implemented and performs the
computation by analyzing the behavior of nodes in terms of
data sharing. The cooperation level parameter is measured
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by analyzing the cooperation level between two nodes during
interactions. The End-to-End packet delivery is computed by
measuring the delivery ratio of packets between two nodes.
Listed below are descriptions of the specific ways in which
the suggested method makes use of experience metric param-
eters:
• The number of interactions (n) between two nodes
across many time intervals (T1,T2, cdots,Tk ) is aver-
aged and then weighted to get the interaction frequency
(IF):

IF =

∑k
i=1 wini∑k
i=1 wiTi

(25)

where wi is the value used to quantify the significance
of each interval.

• The Transaction Success Rate (TSR) is calculated by
averaging the success rates of individual transactions
(St1, St2, cdots, Stp) based on their relative importance.

TSR =

∑p
i=1 viSti∑p
i=1 viTti

(26)

where vi is the value allocated to transaction type i and
Tt i is the sum of all transactions of type i.

• As a weighted harmonic mean of the times it takes to
complete each transaction, the Time Taken to Complete
Transactions (TTCT ) is determined.

TTCT =

∑m
i=1 ui∑m
i=1

ui
ti

(27)

where ui is the value placed on transaction i and ti is the
time it took to finish i.

• Signal-to-noise ratio (SNR) and bit error rate (BER) are
used to calculate communication quality (CQ), which is
then weighted geometrically.

CQ = α
√
SNRα(1− BER)1−α (28)

where alpha is a non-negative integer weighting factor.
• Normalized mutual information (NMI ) between the
shared data and the whole data is used to quantify data
sharing behavior (DSB):

DSB =

∑r
i=1

∑c
j=1 pij log

pij
pi·p·j

√
H (Ds)H (Dt )

(29)

where pij is the probability distribution of both the
shared data Ds and the total data Dt , picdot and pcdotj
are themarginal probability distributions, andH (Ds) and
H (Dt ) are the entropy values forDs andDt , respectively.

• The Jaccard similarity index (JSI ) is used to determine
the threshold (CL) at which two sets of cooperative inter-
actions (Cn) are more similar than the greatest feasible
set of cooperative interactions (Cmax):

CL =
|Cn ∩ Cmax |
|Cn ∪ Cmax |

(30)

• Harmonic mean of packet delivery ratios (PDR) over
multiple pathways is used to determine end-to-end
packet delivery (E2EPD).

E2EPD =
z∑z

i=1
1

PDRi

(31)

In this case, PDRi is the packet delivery ratio for route i,
and z is the total number of pathways.

The decision of trustworthy or malicious node within a
network is taken based on the threshold value for which a
single trust degree is utilized. To formulate a single trust
value by combining the reputation component (R), with the
other components of trust such as knowledge and experience.
The proposed approach utilize a weighted sum method. The
weighted summethod for aggregating knowledge, reputation,
and experience parameters is represented by the Equation 32
whereas output the single trust value (T) denote the overall
trust degree of particular IoT node.

T = ω1 ∗ K + ω2 ∗ R+ ω3 ∗ E (32)

C. DEEP FEDERATED LEARNING MODEL
The proposed FedTrust approach utilizes the ANN model to
train the model by modifying the federated learning concept
and employing the domain, and communities to train the edge
node with small parts of dataset to increase efficiency and
duration of training. The complete working process of the
proposed mechanism is illustrated by Algorithm 2.

The process of FedTrust begins by domain creation and
allocation of global dataset D by splitting it into n parts, with
each part being allocated to a dedicated server (Si) by creating
n domains (Di). Edge node is allocated a small part of dataset
by the domain server that contain high computational power.
The selected edge nodes are then begins training using the
provided dataset as local model training. After the creation
of the local model the local model (Mij) are transmitted to
the corresponding domain server. Each domain server then
merged these trained local model of edge node to formulate
the domain trained mode (DMi). After merging, the domain
trained model is transmitted to the central server to formu-
late global model that is further distributed towards domain
servers and shared with the edge node to provide prediction
capabilities.

IV. EXPERIMENTAL SIMULATION AND ANALYSIS
We propose an ensemble learning approach for trust-based
intrusion detection in IoT environment using knowledge,
reputation, and experience as trust management components.
Our approach is compared with two existing approaches,
PoTC [18] and DDQN-Trust [20], for a comprehensive eval-
uation of its performance. The dataset consists of 19 trust
features, and we employ an ANN as the base model. The
parameters used to build the dataset were both randomly
chosen and pre-established. The dataset was produced by
doing the following steps:
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Algorithm 2 FedTrust Federated Training Workflow
Input: Global dataset (Dtrust )
Output: Global Model (GMtrust )

1: procedure Environment Creation
2: Create domains: Di (i=1, 2, . . . , n)
3: Create dedicated servers: Sd=s=1, 2, . . . , n
4: Domain communities: Cij, (j=1, 2, . . . , n)
5: Communities edge nodes: Eij=e=1, 2, . . . ,n

6: procedure Dataset Splitting & Allocation
7: Split Dtrust into n parts: Di = D/n
8: Dtrust allocation,: Si← Di
9: Edge nodes selection: Eij: SPij, for training: Eij(Pij > threshold)

10: Split Di into chunks: Di = dij where dij=Di/m
11: Allocate of each dataset chunk: dij, to selected edge nodes, Eij: Eij← dij
12: procedure Training & Communities Trained Model Formulation
13: Training of edge nodes: Eij, to formulate a local model, Mij : Mij = train(Eij, dij)
14: Local trained models transmission:Mij, to domain server, Si: Si←Mij
15: Merging of local trained models:Mij, to formulate a domain model, DMi: DMi = merge(Mij)
16: Transmission of domain model: DMi, to central server: CS← DMi

17: procedure Global Model Formulation
18: For each domain: i, receive all the community trained models, TMj
19: i. DMi = merge(TMj)

20: procedure Global Model Transmission
21: Transmit global model: GMtrust , to domain servers, Si: Si← GMtrust
22: Received global model: GMtrust , by the central server CS
23: For each community node: Eij, in the community do
24: i. Update Eij with GMtrust: Eij← GMtrust
25: Confirmation from edge nodes: Eij, have received updated global model, GMtrust
26: Exit.

• The number of nodes and edges, as well as the network’s
overall size, were created at random.

• Each node was given an arbitrary value based on its
knowledge, reputation, and experience.

• The weights for each metric were assigned random val-
ues within the range of 0 to 1.

• All of the factors that make up the knowledge metric-
how credible, accurate, reliable, compliant, capable,
available, and responsive-were given arbitrary values
between 0 and 1 to make up a single score.

• Parameters of nodes, such as their ratings, user engage-
ment, and responsiveness, as well as the number of data
breaches and security vulnerabilities, were given arbi-
trary values between 0 and 1 for the reputation measure.

• Random values between 0 and 1 were assigned to the
parameters of interaction frequency, transaction success
rate, transaction time, communication quality, resource
utilization, data sharing behavior, cooperation level, and
end-to-end packet delivery to calculate the experience
metric.

• To guarantee that all parameters were between 0 and 1,
the dataset was normalized using the min-max normal-
ization method.

• Finally, the dataset was split into training and testing sets
with a 70:30 ratio.

The studies may be carried out in a controlled setting
with known ground truth thanks to the synthetic dataset.
The dataset’s diversity and ability to capture the range of
practical situations was assured by randomly generating its
parameters. The suggested method was assessed and com-
pared to preexisting trust models using the synthetic dataset.
The simulation results showed that the suggested method
successfully identified malicious nodes in the network with
high accuracy.

To optimize the model’s performance, we use the Keras
tuner to search for the optimal hyperparameters, including the
number of hidden layers, number of neurons in each layer,
activation function, optimizer, and learning rate. To simulate
our proposed approach, we generate a synthetic dataset with
varying numbers of nodes, ranging from 100 to 600 edge
nodes, to represent an IoT network. The simulation is per-
formed in Jupyter Notebook using Python language. We use
the scikit-learn library to preprocess the dataset by cleaning
and normalizing it. We then use the Keras tuner to optimize
the model’s hyperparameters and evaluate its performance on
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FIGURE 3. Accuracy comparison of the FedTrust with existing approaches.

the testing set, using accuracy, precision, recall, and F1-score
as evaluation metrics.

A. ACCURACY
The evaluation of the proposed model has been performed
using the accuracy metric. Accuracy is defined as the ratio of
the correctly classified data points to the total number of data
points in the dataset. The accuracy in the proposed model has
been created as illustrated:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(33)

where TP (True Positive) is the number of correctly clas-
sified malicious nodes, TN (True Negative) is the number
of correctly classified benign nodes, FP (False Positive) is
the number of benign nodes classified as malicious, and FN
(False Negative) is the number of malicious nodes classi-
fied as benign. According to the results shown in Figure 3,
the proposed approach, FedTrust, outperforms the other two
approaches, PoTC and DDQN-Trust, with an accuracy of
0.934. PoTC has an accuracy of 0.876, which is still a rel-
atively good performance, but it is lower than that of the
proposed approach. DDQN-Trust has an accuracy of 0.759,
which is the lowest among the three approaches. FedTrust
shows significant improvement in trust-based intrusion detec-
tion in the IoT context. The results suggest that the use of
a privacy-enhanced trust model can significantly increase
the accuracy of intrusion detection, making it a promising
approach for securing IoT networks.

B. F1 SCORE
The F1 Score is a measure of a model’s accuracy, which is
calculated as the harmonic mean of the model’s precision and
recall. It is a commonly used metric to evaluate the perfor-
mance of machine learningmodels, particularly in the context
of binary classification problems. In our study, we used the F1
Score to evaluate the performance of our proposed ensemble

FIGURE 4. F1 score comparative analysis of the FedTrust with existing
approaches.

learning approach, FedTrust, and compared it with two other
existing approaches, PoTC and DDQN-Trust.

Our proposed approach, FedTrust, outperformed the other
two approaches in terms of F1 Score, with a value of 0.80.
This indicates that our approach has a better balance of preci-
sion and recall when compared to the other two approaches.
PoTC had an F1 Score of 0.79, which is very close to our
proposed approach, indicating that it is also a viable solution.
DDQN-Trust had the lowest F1 Score, with a value of 0.76,
indicating that it has a lower accuracy than the other two
approaches. The FedTrust demonstrates its effectiveness in
detecting malicious nodes in an IoT environment, as shown
in Figure 4.

C. PRECISION
Precision is a performance metric that calculates the propor-
tion of true positive instances among the total instances pre-
dicted as positive. It is computed as the ratio of true positives
to the sum of true positives and false positives. Precision is
an important evaluation metric, especially in scenarios where
false positives can cause significant damage or false alarms.
The formula for precision is as follows:

Precision = TP/(TP+ FP) (34)

where TP is the number of true positive instances, and FP
is the number of false positive instances. The results of our
simulation show that the proposed approach outperforms the
existing approaches in terms of precision. The precision of
the proposed approach is 0.87, while the precision of PoTC
and DDQN-Trust is 0.81 and 0.74, respectively. These results
indicate that the proposed approach is more effective in
detectingmalicious nodeswith a lower false positive rate. The
results of our simulation demonstrate the effectiveness of the
proposed ensemble learning approach in detecting malicious
nodes in an IoT environment as illustrated by Figure 5. The

58910 VOLUME 11, 2023



K. A. Awan et al.: Securing IoT With Deep Federated Learning

FIGURE 5. Precision comparison of the FedTrust with existing approaches.

proposed approach outperforms the existing approaches in
terms of precision, indicating its potential for practical appli-
cations.

D. RECALL
Recall is a widely used performance metric in the evaluation
of machine learning models, particularly in classification
tasks. It is a measure of the ability of a model to identify all
relevant instances of a class, which is also known as sensitiv-
ity. In the context of trust management approaches, recall is
a relevant metric to evaluate the ability of a model to detect
all potentially malicious entities. In this study, we evaluated
the recall of three trust management approaches: FedTrust
(Proposed), PoTC, and DDQN-Trust. The recall is calculated
as the ratio of the true positives to the sum of true positives
and false negatives, as shown in the formula below:

Recall =
TP

TP+ FN
(35)

where TP (True Positive) is the number of instances correctly
classified as positive, and FN (False Negative) is the number
of instances incorrectly classified as negative. The simula-
tion results showed that the proposed approach achieved the
highest recall value of 0.85, followed by PoTC with a recall
value of 0.81, and DDQN-Trust with a recall value of 0.78 as
illustrated by Figure 6.

The higher recall value of the proposed approach is indica-
tive of its superior performance in identifying all potentially
malicious entities, thus reducing the risk of allowing a mali-
cious entity into the system. The recall values of the PoTC and
DDQN-Trust approaches were close to that of the proposed
approach, indicating that they are also efficient in identi-
fying potentially malicious entities. However, the proposed
approach has a higher recall value, making it more reliable
in practice. The evaluation of recall performance metric in
the context of trust management approaches showed that the

FIGURE 6. Recall comparison of the FedTrust with existing approaches.

FIGURE 7. True positive and false negative values for the proposed
approach and other two approaches.

proposed approach achieved the highest recall value, making
it a more efficient approach to identify potentially malicious
entities.

E. CLASSIFICATION PERFORMANCE
The classification accuracy of the suggested method was
measured by True Positive (TP) and False Negative (FN)
rates. The True Positive count indicates the number of occur-
rences that were properly labeled as positive, whereas the
False Negative count indicates the number of occurrences
that were wrongly labeled as negative. Figure 7 displays the
simulation results for the proposed technique, together with
those for PoTC and DDQN-Trust. The figure shows that
across all three simulations, the suggested method yielded
the maximum number of True Positive occurrences (130,
118, and 107, respectively). To contrast, the False Negative
values for the suggested method ranged from 23 in the first
simulation to 27 in the second and 31 in the third.
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FIGURE 8. Comparison of detection rate.

When compared to the suggested method, PoTC and
DDQN-Trust both had lower True Positive values and greater
False Negative values. This suggests that the suggested
method is more adept at accurately categorizing positive
examples while reducing the number of wrongly categorized
negative examples. The success of a classification model
depends on a number of variables, including the size and
quality of the dataset, the features used, and the classification
technique used. In this research, we show that our suggested
method outperforms the other two methods in terms of True
Positive and False Negative rates of classification.

F. DETECTION RATE
The detection rate is a key performance indicator for how
well a technique can spot malicious nodes. Here, we show
the detection rate that FedTrust was able to accomplish
and compare it to the detection rates of PoTC and DDQN-
Trust, two competing methods. In Figure 8, based on the
simulation results, it was clear that the suggested FedTrust
method outperformed the other two in terms of detection
rate. The suggested method showed a higher detection rate
than both PoTC and DDQN-Trust (0.85 vs. 0.81 and 0.78,
respectively).

More accurately detecting malicious nodes with fewer
false positives is what we mean by a high detection rate.
Out of 130 cases tested, our suggested method successfully
categorized 23 as false negatives (FN) and true positives (TP).
That our method successfully identifies malicious nodes
while reducing false positives is a strong indicator of its
efficacy. The detection rates of the PoTC and DDQN-Trust
techniques were found to be lower in the comparison study.
A detection rate of 0.81 indicates that out of a total of
200 cases, PoTC properly recognized 118 as TP and wrongly
categorized 27 as FN. Among the three methods, DDQN-
Trust’s 0.78 detection rate was the lowest. Using this method,
we were able to accurately identify 107 cases as TP and
mistakenly label 31 cases as FN.

FIGURE 9. The energy consumption comparison of proposed approach
with existing approaches.

G. ENERGY CONSUMPTION
Trust and reputation management strategies for IoT systems
must take energy consumption into account throughout the
planning and implementation stages. Here, we compare the
FedTrust strategy’s energy use to that of the PoTC and
DDQN-Trust strategies, and draw conclusions about which
one is more efficient. The simulation results (Figure 9) shown
that our method, with a value of 24.7 mJ, used the least
amount of energy. The lowest energy usage was achieved by
PoTC (29.1 mJ), while the highest was achieved by DDQN-
Trust (35.2 mJ).

Our suggestedmethod uses less power since it makes better
use of available resources and employs optimized algorithms.
Our method is more efficient than the other two in terms of
energy usage and resource consumption since it relies less
on raw accuracy and detection rate. The energy consumption
figures for the PoTC andDDQN-Trust techniques were found
to be higher in the comparison study. The 29.1 mJ of energy
required by PoTC is more than our recommended method.
When compared to the other two methods, DDQN-Trust is
the least energy-efficient option, with a value of 35.2 mJ for
its energy usage.

V. CONCLUSION
A novel ensemble learning approach for detecting malicious
nodes in an IoT environment using trust management com-
ponents such as knowledge, reputation, and experience. The
proposed approach utilizes an ANN as a base model to
classify the nodes into malicious or benign. To optimize the
performance of the model, we will use the Keras tuner to
search for the optimal hyperparameters of the ANN, such
as the number of hidden layers, number of neurons in each
layer, activation function, optimizer, and learning rate. The
proposed architecture consists of three main components: the
data acquisition module, the trust management module, and
the decision-making module. The data acquisition module
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collects data from the IoT devices, which is then prepro-
cessed and fed into the trust management module. The trust
management module utilizes the ensemble learning approach
to identify malicious nodes based on their behavior, reputa-
tion, and experience. The decision-making module takes the
output of the trust management module and decides on the
action to be taken, such as isolating the malicious nodes or
increasing their security level. The proposed approach can be
further extended to investigate the scalability and robustness
of the proposed approach in real-world scenarios with a large
number of nodes and complex IoT architectures.
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