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ABSTRACT This article proposes a novel blood volume pulse (BVP) signal extraction method for heart
rate (HR) estimation that incorporates medical knowledge of the spatio-temporal BVP dynamics. Previous
methodsmerely exploited the spatial similarity of BVPs observed frommultiple facial patches and performed
the low-rank approximation to extract BVP signals. If noise components are superimposed over the entire
face, the previous methods have difficulty distinguishing between the BVP component and noise even in the
low-rank subspace. The main novelty of the proposed method is the exploitation of the BVP characteristics
in the spatial and temporal domains in a unified manner based on a dynamic mode decomposition (DMD)
framework, which is used to extract spatio-temporal structures from multidimensional time-series signals.
To analyze the BVP dynamics that exhibit nonlinearity and quasi-periodicity, physics-informed DMD was
performed on the time-series signals extracted from facial patches in a time-delay coordinate system.
This approach enables the estimation of the DMD modes, which effectively represent the spatio-temporal
structures of the BVP dynamics. The other novelty of the proposed method is the incorporation of medical
knowledge of the HR frequency band to select the optimal DMD mode. By incorporating this medical
knowledge of HR into the proposed framework, the proposed method can accurately estimate the BVP signal
andHR. The experimental results obtained using three publicly available datasets yielded a root-mean-square
error of the HR estimation results of 6.37 bpm, a 36.5 % improvement over the state-of-the-art methods.

INDEX TERMS Non-contact heart rate estimation, blood volume pulse, dynamic mode decomposition.

I. INTRODUCTION
A. BACKGROUND AND OBJECTIVE
Heart rate (HR), defined as the number of cardiac pulses
in a given period, provides insights into the physiological
and emotional state of humans [1], [2], [3], [4]. HR can be
measured by counting the number of cardiac pulses appearing
within a certain time window.

The associate editor coordinating the review of this manuscript and
approving it for publication was Gina Tourassi.

Conventional HRmeasurement methods have used oxime-
try sensors that require physical contact with a subject [5], [6].
However, such contact-type sensors may cause discomfort or
dermatitis to the subject [6]. Therefore, developing a method
for non-contact HR estimation is desirable.

In the last decade, many researchers have proposed meth-
ods of non-contact HR estimation using cameras [6], [7], [8].
The blood volume pulse (BVP) associated with the cardiac
pulse causes subtle temporal skin color changes in facial
videos. By analyzing the temporal changes in skin color
arising from the BVP, HR can be estimated. However, the
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FIGURE 1. Problems of BVP signal extraction for HR estimation under
varying illumination scenes. We constructed an observation matrix by
stacking time-series signals from each patch region (white circular
regions in each RGB facial video). We estimated the BVP signal using a
low-rank approximation of the observation matrix in the spatial-domain.
(a) In a stable illumination scene, a similar periodic characteristic
attributable to BVP in each facial patch can be observed from the
observation matrix and patch signal examples (second and third rows).
Thus, the low-rank approximation in the spatial domain effectively works
to extract the BVP signal. (b) In a varying illumination scene, many facial
patches are subjected to illumination fluctuation (second and third rows),
making it difficult to differentiate BVP and varying illumination
components in the low-rank subspace in the spatial domain. This
degrades the performance of the BVP signal extraction.

temporal variation of skin color owing to the cardiac pulse is
quite small, which is less than 2 bits of the analog-to-digital
converter of the camera [9]. Therefore, when noise is added
to facial videos owing to the facial movements of the subject
(e.g., facial expressions) and ambient illumination variations,
the HR estimation performance is significantly degraded [9].

To overcome these problems, many methods have been
proposed to exploit the spatial similarity of temporal changes
in skin color attributable to the latent BVP signals on the
face based on multiple facial patch representations [9], [10],
[11], [12]. These methods assumed that the BVP signal can
be observed similarly in neighboring facial patches because
blood flows over the facial region at approximately the same
time. Based on this assumption, they have claimed that the
BVP signals can be represented in a low-rank subspace in
the spatial domain. However, when many facial patches are
subjected to similar noise due to movements of the subject
or fluctuations in ambient illumination, accurate BVP signal
extraction using these methods becomes difficult [9], [10],
[11], [12]. This challenge arises primarily because such noise
component exhibits similar characteristics throughout the
facial region, indicating that they are also projected into the
low-rank subspace in the spatial domain. Namely, even in a
low-rank subspace, distinguishing between the BVP signal
and noise is difficult.

Examples of BVP signals estimated using the low-rank
approximation-based method [11] under a stable and vary-
ing illumination scene are shown in Fig. 1. In Fig. 1,
(i) input RGB video sequences are presented in the first row,
(ii) the second row shows the observation matrices for these

RGB videos, (iii) the third row plots the time-series signals
extracted from some of facial patches, (iv) the low-rank
approximation results are presented in the fourth row, and
(v) the last row presents the outcomes of the estimated and the
corresponding reference HRs. In a stable scene ((a) in Fig. 1),
periodic components arising from the BVP can be observed in
every patch signal as well as in the entire observation matrix.
Thus, the BVP signal can be accurately extracted using the
spatial low-rank approximation. Conversely, the performance
of BVP signal extraction is degraded in a varying illumination
scene (Fig. 1 (b)). As mentioned earlier, the temporal color
changes arising from the BVP are quite small; thus, accurate
BVP signal extraction is difficult even when the illumination
variation is small. Further, the entire face is subjected to
illumination variation in this scene. Hence, similar charac-
teristics owing to the noise component can be found in many
facial patch signals and the observation matrix (second and
third rows). Therefore, the noise component is dominant in
the low-rank subspace in the spatial domain, making the
spatial low-rank approximation method [11] inaccurate.

To address these problems, we exploit the BVP charac-
teristics in the time domain. The medical field has widely
agreed that the BVPs exhibit quasi-periodic characteristics
in the time domain [13], [14]. As noise does not usually
exhibit such a particular periodic behavior, if such quasi-
periodic properties of the BVP can be extracted and exploited,
the BVP component will be accurately distinguished from
observations with noise artifacts.

In this study, we propose a novel method for BVP signal
extraction based on spatio-temporal structure analysis using
dynamic mode decomposition (DMD), a method for extract-
ing the underlying spatio-temporal dynamics of a system
from multi-dimensional time-series signals.

According to previous literature in the physics field [15],
[16], [17], DMD operates well when the temporal behavior
of the observed multi-dimensional signal can be modeled as
a linear dynamical system. However, the direct application
of DMD to the estimation of the BVP signal is ineffective
because the propagation characteristics of the blood generally
result in nonlinear temporal characteristics [18].

To address this problem, our method models the BVP
dynamics exhibiting nonlinearity and quasi-periodicity, and
incorporates them into the DMD framework, which is
the main novelty of this study. According to previous
research [15], [16], [17], a nonlinear signal can be modeled as
a linear dynamical system in a time-delay coordinate system.
Therefore, the BVP nonlinear dynamics can be modeled as
linear dynamics in a time-delay coordinate system. Based
on the quasi-periodicity of the BVP, we model the BVP
dynamics as a conservative dynamical system, which is a
physical system that oscillates without losing energy during
the time range under consideration. Based on this model-
ing, we employ physics-informed DMD, a variant of DMD
analysis that can incorporate the physical structure of con-
servative dynamical systems. The physics-informed DMD
can restrict estimations that violate the physics law, making
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it less sensitive to noise. By performing physics-informed
DMD in time-delay coordinates, the BVP component exhibit-
ing nonlinearity and quasi-periodicity can be extracted from
multidimensional time-series signals.

The other novelty of our method is the incorporation of
medical knowledge of the frequency range of HR. Based
on this knowledge, our method adaptively selects the opti-
mal spatio-temporal structure that represents the latent BVP
signal from those estimated by our physics-informed DMD-
based framework.

By inverse time-delay embedding of the estimated best
spatio-temporal structure, the BVP signal can be extracted.
Finally, the HR is estimated from the extracted BVP signal
by beat-to-beat peak period analysis.

The major contributions of this study can be summarized
as follows.

‚ We propose a novel method for extracting the spatio-
temporal structure of the BVP based on the physics-
informed DMD in a time-delay coordinate system. This
framework can model the BVP dynamics exhibiting
nonlinearity and quasi-periodicity, enabling accurate
BVP signal extraction that is less sensitive to noise.

‚ We present a scheme of adaptively selecting the plau-
sible spatio-temporal structure attributable to the BVP
signal from among those estimated with our physics-
informed DMD framework based on the medical knowl-
edge of the HR frequency range.

The remainder of this paper is organized as follows.
Section I-C provides a comprehensive review of the related
literature. Section I-D provides an overview of the proposed
method. Section II describes the preprocessing of the input
signals and the naïve DMD framework, as preliminaries.
Section III presents the details of the proposedmethod. In par-
ticular, it describes the procedure for the observation matrix
construction in time-delay coordinates and the details of
the spatio-temporal structure analysis based on the physics-
informed DMD framework. Section IV reports the experi-
mental results obtained using publicly available datasets [10],
[19], [20] to demonstrate the effectiveness of the proposed
method. Finally, the conclusions and scope for future studies
are provided in Section V.

B. NEW CONTRIBUTIONS TO OUR PREVIOUS STUDY
This study is an extension of our previous study, presented
in [21]. Herein, we provide a brief explanation of [21] and
present the new contributions of the present study.

In [21], the BVP signal was extracted by exploiting the
spatial and temporal characteristics of the BVP in a hierar-
chical estimation manner. First, the BVP signal candidates
are estimated by low-rank approximation in the time domain,
where the quasi-periodic temporal behavior of the BVP is
modeled using an autoregressive process. Then, the BVP
signal is estimated by low-rank approximation in the spatial
domain.

However, this approach has two limitations. First, the hier-
archical estimationmanner in [21] makes it difficult to exploit

fully the spatio-temporal characteristics of BVP in estimating
the BVP signal, which is primarily because the method [21]
estimates the BVP candidate using an autoregressive model
independently from each patch, indicating that the spatial
characteristics of the BVP are discarded during this process.
Thus, we consider that this process degrades the estimation
accuracy of the BVP candidates, leading to performance
degradation in the final BVP signal extraction. In contrast,
this work ensures a unified spatio-temporal analysis, enabling
the simultaneous exploitation of the spatio-temporal charac-
teristics of the BVP.

The second limitation in [21] lies in the use of an autore-
gressive model to represent the quasi-periodic characteristics
of the BVP. By definition, the autoregressive model expresses
the temporal dependence of the latent BVP signal, as well as
that of the noise components. Owing to this characteristic,
BVP component and noise cannot easily be distinguished.
In contrast, our current method can model the periodicity of
the latent BVP signal based on a linear dynamical system
in a time-delay coordinate system, enabling to distinction
between BVP and noise components. To observe these claims
experimentally, we compare our method with a hierarchical
method [21] in Section IV-C2.

C. RELATED WORK
The framework for HR estimation from videos primarily
comprises BVP signal extraction and HR estimation from the
extracted BVP signal [7], [12], [13], [22], [23], [24], [25],
[26], [27], [28], [29]. Once an accurate BVP signal has been
extracted, an accurate HR outcome can be obtained. Thus,
many researchers have focused on BVP signal extraction
schemes for accurate HR estimation. The following section
provides a comprehensive review of the related literature.

1) TEMPORAL SKIN-COLOR ANALYSIS
Verkruysse et al. [7] showed that the BVP signal can be
extracted from temporal skin color changes arising from
blood volume changes. They estimated the BVP signal using
the green components extracted from the skin patches that
were manually selected [7]. Poh et al. [30] modeled BVP
signal extraction as a blind signal separation problem from
the observed RGB signals. Haan and Jeanne [27] introduced
novel chrominance features based on the analysis of a skin
reflection model to eliminate specular reflection components
that were unrelated to the HR.

2) LOW-RANK APPROXIMATION IN SPATIAL DOMAIN
Several studies have used the spatial characteristics of the
BVP. BVPs observed from neighboring patches are similar
because blood flows over the entire facial region at approxi-
mately the same time. Therefore, BVP signal estimation can
be performed using multiple facial patch observations.

Kumar et al. [9] proposed an adaptive skin-patch selec-
tion scheme based on the weighted average of multiple
patch observations. In this method [9], the weights for
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FIGURE 2. Overview of our method: (A) Preprocessing for our spatio-temporal structure analysis is performed. The chrominance matrix is
constructed using time-series signals extracted from multiple facial patches in an RGB facial video. (B) Spatio-temporal structure analysis of BVP is
conducted by physics-informed DMD in a time-delay coordinate system with the assumption that the BVP dynamics approximately follow a
conservative system. (C) DMD mode refinement is performed. Based on spatial characteristics of BVP over face region, regularized optimization is
conducted to refine DMD modes. (D) BVP matrix extraction is conducted by inverse time-delay embedding of the outcome obtained using adaptive
best DMD mode selection based on the medical knowledge of the frequency range of the BVP. (E) HR estimation in the time domain is performed by
beat-to-beat peak period analysis of the extracted BVP signal.

fusing multiple patch observations were determined based
on the assumption that the dominant frequency component
would be derived from the BVP signals if the patch sig-
nal contained components attributable to a cardiac pulse.
Tulyakov et al. [11] introduced a matrix completion scheme
for BVP signal extraction. They proposed a model in which
a set of BVP candidates extracted from multiple patches
could be represented in a spatial low-rank subspace. By using
this model, they constructed an observation matrix using
the observed patch signals and then performed a low-
rank approximation on the observation matrix in the spatial
domain. Nowara et al. [10] proposed a two-step method
consisting of spatial low-rank approximation of multiple
patch observations and noise reduction of the BVP candi-
dates in the frequency domain. They assumed that the BVP
candidates obtained from multiple facial patches contained
sparse frequency components derived from the cardiac pulse.
Based on this assumption, first, they performed a low-rank
approximation on multiple patch observations in the spatial
domain. Then, the BVP signal was extracted from the out-
comes obtained in the first step based on the framework of
the joint sparsity recovery in the frequency domain.

3) MACHINE-LEARNING APPROACH
In the last decade, many methods of BVP signal regression
using a deep-learning framework have been proposed [31],
[32], [33], [34], [35].

Niu et al. [31] constructed spatio-temporal maps using
multiple facial patch signals. They fed the constructed maps
into a regressor consisting of a convolutional neural network
and a recurrent neural network. In the methods [32], [33],
attention mechanisms were introduced for the regression of
the BVP signal. Specifically, the authors proposed motion
representation learning, which regresses the BVP signal
using the difference in the patch signals between consecutive
frames. They also introduced a facial appearance learning

network based on attention mechanisms to facilitate motion
representation learning. Yu et al. [34] proposed a transformer-
based method for BVP signal regression using the global
and local spatio-temporal features. The authors introduced a
temporal difference transformer block to represent effectively
the deep features attributable to the latent BVP signal.

4) ADVANTAGES OF PROPOSED METHOD
Herein, we summarize the primary differences between the
aforementioned existing methods and the proposed approach.

In the methods [7], [30], accurate HR estimation is diffi-
cult when the face is subjected to noise components caused
by lighting fluctuations or the movement of the face of
the subject. This is primarily because skin color changes
attributable to BVP are small, that is, less than 2 bit in
an 8-bit RGB video [9]. To address the above-mentioned
problems, methods based on low-rank approximation in the
spatial domain [9], [10], [11] have been proposed using the
spatial characteristics of the BVP. However, if many spatial
patches are subjected to similar noise, distinguishing the
noise component from the BVP is difficult because the noise
component also satisfies the spatial similarity among neigh-
boring patches.

In contrast to the above-mentioned existing methods, our
method exploits the characteristics of the BVP in the time
domain. Within the medical field, it is generally accepted that
the BVP exhibits quasi-periodic characteristics in the time
domain. As noise usually does not exhibit such a particular
periodic behavior, if such quasi-periodic properties of the
BVP can be extracted and exploited, the BVP component
between noise artifacts will be accurately distinguished from
the observations. To model the spatio-temporal characteris-
tics of the BVP in a unified manner, our method utilizes a
framework for spatio-temporal structure analysis of the BVP
based on the physics-informed DMD framework.
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Algorithm 1 Proposed HR Estimation Method
Input: RGB videos
1: Extract M time-series signals from facial image patches

using [21]
2: Construct chrominance matrix Y using [25]
3: Extract the DMD modes in the time-delay coordinate

system using Algorithm 2
4: Perform DMD mode refinement based on regularized

optimization using Algorithm 3
5: Extract the BVP matrixX by adaptive DMDmode selec-

tion using Algorithm 4
6: Estimate the HRH using beat-to-beat analysis

Output: Estimated HRH

Methods using deep learning frameworks exhibit
significant abilities to regress BVP signals [29], [31], [32],
[33], [34]. Our method differs from these deep learning-based
methods in that it relies on a model-based analysis. Further,
we consider that there are considerable problems with these
methods. In particular, we believe that they are prone to
overfitting the training datasets when building their BVP
regressors, suggesting that the accuracy of HR estimation
would be reduced in other situations that are different from
the training dataset. To observe this claim experimentally,
we compared our method with some of these deep learning-
based methods and report their results in Section IV.

D. OVERVIEW OF PROPOSED METHOD
An overview of the proposed method is presented in Fig. 2.
First, we construct a chrominance matrix using time-series
signals extracted from multiple facial patches in an RGB
facial video ((A) in Fig. 2). Then, physics-informed DMD
mode analysis in the time-delay coordinates is performed
on the observation matrix ((B) and (C) in Fig. 2). Based
on the medical knowledge of the frequency range of the
BVP, the best DMD mode corresponding to the BVP sig-
nal is selected from among those estimated by the physics-
informed DMD. The BVP signal can be extracted by inverse
time-delay embedding of the estimated best DMDmode ((D)
in Fig. 2). Finally, the HR is estimated by measuring the beat
peak position of the estimated BVP signal ((E) in Fig. 2).
We summarize the process of the proposed method compre-
hensively in Algorithm 1. The details of each subalgorithm
used in the overall process are described in the subsequent
sections.

II. PREPROCESSING AND PRELIMINARIES
This section describes the preprocessing procedure used to
construct the chrominance matrix and briefly provides the
fundamentals of the DMD framework.

A. CHROMINANCE MATRIX CONSTRUCTION
1) FACIAL PATCH SELECTION
Following the method [23], we first extract and track multiple
facial patches over the input RGB video (the video length

is denoted as N ). By using the facial landmark positions
obtained using the method [36], the entire face region is
divided into M local patches in the first frame of the input
RGB video. Then, we track each patch by performing a pro-
jective transformation based on the detected facial landmark
positions between consecutive frames. By using the path
tracking outcomes, M time-series RGB signals are obtained
by averaging the pixel values within each patch. We denote a
set of extracted RGB signals as O = tomum=1,2,...,M , where
om = tocmucPtR,G,Bu represents the m-th RGB signal. For
more details, refer to [23].

2) CHROMINANCE TRANSFORM
Next, we project om onto a color-difference space, primarily
because analysis in a color-difference space enhances the
BVP signal estimation performance [27].

Following the method [27], we first perform bandpass
filtering (0.5–8 Hz) on om based on the knowledge of the
HR range of a person [37]. For the m-th patch, we denote
the bandpass-filtered RGB signal by fm = tf cmucPtR,G,Bu =

BPF(om), where BPF(¨) represents an operator for the band-
pass filter of the input time-series signals. Then, we perform
color-space conversion on the filtered signal fm as

tp1m = 3fRm ´ 2fGm , (1)

tp2m = 1.5fRm + fGm ´ 1.5fBm . (2)

By using the projected components tp1m and tp2m , the chromi-
nance signal for the m-th patch, denoted as ym =

(y(1)m , . . . , y(N )
m ) P R1ˆN , is obtained as

ym = tp1m +
Std(tp1m )

Std(tp2m )
tp2m , (3)

where Std(¨) denotes an operator that computes the standard
deviation of an input time-series signal.

Finally, we construct the chrominance matrix Y P RMˆN

by stacking all chrominance signals tymuMm=1 in the row
dimension as

Y =

»

—

—

—

—

—

—

—

–

y(1)1 ¨ ¨ ¨ y(N )
1

...

y(1)m ¨ ¨ ¨ y(N )
m

...

y(1)M ¨ ¨ ¨ y(N )
M

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (4)

B. FUNDAMENTALS OF DMD
Here, we provide a brief review of the fundamentals of DMD.

Suppose a discrete time-series signal Z1:e = (z1, z2, . . . ,
ze) P Rlˆe with e time length, where each element zk has a
l-dimensional component, that is, zk P Rlˆ1. DMD seeks
the dominant dynamical component of Z1:e based on the
following linear discrete dynamical model:

Z2:e « AZ1:e´1 , (5)

VOLUME 11, 2023 59085



K. Kurihara et al.: Spatio-Temporal Structure Extraction of BVP Using DMD for HR Estimation

where A represents a state-transition matrix characterized
by a linear dynamical system. Notably, the time evolution
of a linear discrete dynamical system can be determined by
applying A at each time step.
Mathematically, A is given by

A = arg min
A

}Z2:e ´ AZ1:e´1}2F (6)

= Z2:e(Z1:e´1)† , (7)

where } ¨ }F represents the Frobenius norm and † denotes the
pseudo-inverse operator of the matrix.

The (1+k)-th time step signal modeled by a linear discrete
dynamical system, i.e., z1+k « Akz1, can be represented by
d DMD modes by applying eigendecomposition to A:

z1+k « Akz1 = 93kb =

d
ÿ

j=1

bjψ jλ
k
j . (8)

In Eq. (8), the matrix 9 = (ψ1,ψ2, . . . ,ψd ) P Clˆd com-
prises d column vectors, where each vector denotes the eigen-
vector (termed normalized DMD modes), and 3 denotes the
corresponding DMD eigenvalues represented by the diagonal
matrix form: 3 = diag (λ1, . . . , λd ) P Cdˆd . Additionally,
b = (b1, b2, . . . , bd )T = 9†z1 P Cdˆ1 represents a vector
comprising the amplitude of each DMD mode (termed DMD
amplitude). Based on the DMD theory, the eigenvectors and
eigenvalues, 9 and 3, represent the spatio-temporal struc-
tures of the input signal, respectively. As shown in Eq. (8),
the time evolution of each DMD mode from the 1st to the
(1 + k)-th time step can be represented by corresponding
eigenvalue λj to the power of k .

Based on the above-described DMD mode decomposition
procedure, Z1:e = (z1, . . . , ze) is decomposed into spectral
components in the DMD basis. To obtain these outcomes,
Eq. (8) can be reformulated as

z1+k « 93kb = 9Bλk ” 4λk , (9)

where λk = (λk1, . . . , λ
k
d )

T denotes the vector comprising the
d eigenvalues, and B denotes the diagonal matrix form of b,
that is, B = diag[b].

By using the representation in Eq. (9), the outcome of the
DMD of Z1:e can be represented as

Z1:e « 4

»

–λ0¨ ¨ ¨ λe´1

fi

fl

” 40

=

»

–ξ 1̈ ¨ ¨ξd

fi

fl

looooomooooon

4

»

—

–

γ T
1
...

γ T
d

fi

ffi

fl

loooooomoooooon

0

=

d
ÿ

j=1

ξ jγ
T
j , (10)

where ξ j P Clˆ1 and γ j P Ceˆ1 represent the spatial and
temporal structure of the j-th mode, respectively (ξ j is termed

DMD mode). Notably, γ j characterizes the time evolution of
the j-th DMD mode from the 1st to the e-th time step. It can
be represented as γ j = (λ0j , . . . , λ

e´1
j )T.

By converting a dynamical system from a discrete domain
into a continuous time domainwith sampling frequency fs, the
temporal frequency of the j-th DMD mode can be obtained.
In particular, Eq. (8) can be represented in the continuous time
domain as

z(t) «

d
ÿ

j=1

bjψ j exp(ωjt) =

d
ÿ

j=1

bjψ j exp(αjt) exp(iβjt) ,

(11)

where i =
?

´1 denotes the imaginary number, and t rep-
resents continuous time. In Eq. (11), ωj = fs ln(λj) P C
characterizes the temporal behavior of the j-th DMD mode.
Specifically, the real component of ωj, denoted by αj, repre-
sents the exponential growth and decay rate of the j-th mode,
and the imaginary component ofωj, denoted by βj, represents
the temporal frequency of the j-th mode.

III. SPATIO-TEMPORAL STRUCTURE EXTRACTION
OF BVP DYNAMICS
This section details the primary novelty of this study,
a scheme for extracting the spatio-temporal structure of
BVP based on the physics-informed DMD that can incor-
porate the BVP dynamics exhibiting nonlinearity and
quasi-periodicity.

A. MODELING BVP DYNAMICS
First, we discuss the modeling of the nonlinear and quasi-
periodic dynamics of the BVP to apply our physics-informed
DMD framework.

1) NONLINEAR BVP DYNAMICS
The spatio-temporal structures estimated using DMD provide
the dominant dynamical behaviors of the input time-series
signal. However, DMD assumes that the input time-series
signals can be modeled using a linear dynamical system.
Therefore, the direct application of DMD to the estimation of
the BVP signal is ineffective because the propagation char-
acteristics of the blood generally result in nonlinear temporal
characteristics [18].

In contrast, some studies have reported that nonlinear sig-
nals can be modeled using a linear dynamical system in a
time-delay coordinate system [15], [16], [17]. Based on these
findings, we consider that the spatio-temporal structures of
the BVP dynamics can be estimated by the DMD in the time-
delay coordinate system.

2) QUASI-PERIODIC BVP DYNAMICS
As described earlier, the medical field has agreed that the
BVP exhibits quasi-periodic dynamical behavior. We con-
sider that the quasi-periodicity of BVP enables the BVP
dynamics to be approximately modeled as an oscillating
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FIGURE 3. Illustration of time-delay embedding scheme.

physical systemwithout exponential growth and decay ampli-
tude components during the time range under considera-
tion. On the other hand, in the literature on physics theory,
dynamics modeled as a conservative system, in which the
total amount of energy remains constant over time, exhibits
periodic dynamical behaviors without exponential growth
and decay amplitude components [38]. Therefore, the BVP
dynamics can be approximately modeled as a conservative
system.

Based on this modeling, we employ a physics-informed
DMD, a variant of DMD analysis that can incorpo-
rate the physical structure of conservative dynamical sys-
tems. The physics-informed DMD can restrict estimations
that violate the physics law, making it less sensitive to
noise. On the basis of the above-mentioned knowledge,
we estimate the spatio-temporal structure of BVP exhibit-
ing quasi-periodically based on a physics-informed DMD
framework.

B. DMD MODE ESTIMATION OF BVP IN TIME-DELAY
COORDINATE SYSTEM
1) OBSERVATION MATRIX CONSTRUCTION BY
TIME-DELAY EMBEDDING
To perform DMD analysis in the time-delay coordinate sys-
tem, we construct observation matrices using time-delay
embedding.

First, we compose the submatrices of Y, defined as pY P

RMˆN´1 and qY P RMˆN´1, by extracting from the 1st to
the (N ´ 1)-th, and from the 2nd to the N -th column vectors
ofY, respectively. Then, we embedY, pY, and qY into the time-
delay coordinate system, and use them as the input signals to
our physics-informed DMD framework.

We describe the time-delay embedding procedure step by
step as in [39]. For clarity, this process is illustrated in Fig. 3.
We compose the submatrix ofY by extracting from the τ th to
the τ+N´D th column vectors ofY.We denote obtained sub-
matrix as Yτ :τ+N´D, where D denotes the dimension param-
eter of the time-delay embedding. By performing above
procedure while changing τ from 1 to D, we obtain a set
of submatrices tYτ :τ+N´DuDτ=1. Then, we stack each of
tYτ :τ+N´DuDτ=1 in the row dimension. This stacked matrix
is defined as the observation matrix H P RDMˆ(1+N´D); it is

Algorithm 2 DMD Mode Estimation in Time-Delay
Coordinate System
Input: Chrominance matrix Y
1: Compute H, pH, and qH using Eq. (12)
2: Compute F using Eq. (13)
3: Compute ĂW and V by using eigendecomposition to F

Output: DMD modes ĂW and DMD eigenvalues V

represented as

H =

»

—

—

—

—

—

—

–

Y1:1+N´D
...

Yτ :τ+N´D
...

YD:N

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

” (h1,h2, . . . ,h1+N´D) , (12)

where hκ P RDMˆ1 denotes the κ-th column vector of H.
We apply the above-described time-delay embedding proce-
dure to pY and qY, where the embedded submatrices are defined
as pH P RDMˆ(N´D) and qH P RDMˆ(N´D), respectively.

2) PHYSICS-INFORMED DMD IN TIME-DELAY
COORDINATE SYSTEM
By using the embedded matrices H, pH, and qH, physics-
informed DMD is performed to estimate the spatio-temporal
structures of the BVP.

According to physics-informed DMD theory, a state-
transition matrix in a conservative system can be modeled in
a unitary matrix form [38]. Based on this finding, the state-
transition matrix, denoted by F, can be estimated as

F = arg min
F

}qH ´ FpH}2F s.t. FF˚
= I , (13)

where ˚ denotes a Hermitian transpose operator, and I repre-
sents the identity matrix. In Eq. (13), the constraint, FF˚

= I,
imposes that F must satisfy a unitary matrix form.

The outcome from the physics-informed DMD for the
κ-th time step component, modeled as hκ « Fκ´1h1, can
be obtained by applying eigendecomposition to F as

hκ «

p
ÿ

j=1

rwjη
κ´1
j = ĂWηκ´1 , (14)

where rwj P CDMˆ1 denotes the j-th DMD mode, and ηj
denotes the corresponding j-th DMD eigenvalue. In addition,
ĂW = (rw1, . . . , rwp) P CDMˆp represents the matrix com-
prising p DMD modes, and ηκ

= (ηκ
1 , . . . , η

κ
p )

T P Cpˆ1

represents the vector form of the eigenvalues of the DMD
modes at the κ-th time step.
In a matrix form, the outcome from the DMD of H can be

obtained, resulting in the extraction of the DMD modes ĂW
and the corresponding DMD eigenvalues V. Mathematically,
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it can be represented as

H =

»

–

rw1¨ ¨ ¨ rwp

fi

fl

loooooomoooooon

rW

»

—

–

vT
1
...

vT
p

fi

ffi

fl

looooomooooon

V

=

p
ÿ

j=1

rwjvT
j , (15)

where vj P C(1+N´D)ˆ1 represents the vector comprising the
state-transitioned eigenvalues of the j-th DMD eigenvalue:
vj = (η0j , . . . , η

N´D
j )T. We summarize our DMD mode

estimation scheme in Algorithm 2.

C. DMD MODE REFINEMENT BY REGULARIZED
OPTIMIZATION
To suppress the noise components that still remain in the
extracted DMD modes ĂW, we refine ĂW based on an energy
minimization process regularized with the above-mentioned
spatial characteristics of the BVP. We denote the refined
DMD mode to estimate asW P CDMˆp.

1) REPRESENTATION IN POLAR COORDINATE SYSTEM
To perform the DMD mode refinement, we first representW
in a polar coordinate system. In the polar coordinate system,
the (u, v)-th component of W, denoted by rWsu,v, can be
represented as

rWsu,v = qu,v exp(iθu,v) , (16)

where qu,v P R and exp(iθu,v) P C denote the magnitude and
phase components of rWsu,v, respectively. In matrix form,W
can be represented using an elementwise product as

W = Q d2 , (17)

where d denotes the Hadamard product operator. The matri-
ces Q = (qu,v) and 2 = (exp(iθu,v)) contain the magnitude
and phase components ofW, respectively.

By using the magnitude and phase components of j-th
DMD mode (i.e., the j-th column vectors of Q and 2),
respectively denoted as qj and θ j, the DMD outcome of the
observation matrix H can be represented as

H = (Q d2)V =

p
ÿ

j=1

(qj d θ j) vT
j . (18)

2) REGULARIZED OPTIMIZATION
To obtain the refined magnitude and phase components of the
DMD modes, we solve the following regularized optimiza-
tion problem

min
Q,2

1
2

}H ´ (Q d2)V}2F

+ µ1}DQ}1 + µ2}2´ G}2F , (19)

where the second and third terms represent the regularization
terms, D denotes the matrix used for gradient computation in
the spatial (i.e., column) direction of Q, and } ¨ }1 represents

the L1 norm. In addition, µ1 and µ2 are control parameters
for each regularization term.

We explain the operation of each regularization term to
compensate for the spatio-temporal structures estimated in
the DMD process. The first regularization term }DQ}1 reg-
ularizes the spatial gradient of each mode wj contained inW.
By using the L1 norm, our method regularizes the solution of
Eq. (19) to be sparse, indicating that other noise components
can be suppressed to nearly zero. Conversely, the second
regularization term }2´G}2F facilitates the alignment of the
phase component of each DMD mode2, with the assistance
of the guidance phase prior G.

Because Eq. (19) can be formed as a block multiconvex
function composed of multiple variables to be estimated (i.e.,
Q and2), we adopt an alternating iterative minimization pro-
cedure to solve this objective. Specifically, we numerically
solve the following sub-problems alternately and iteratively.
The solutions of Q and 2 at the (r + 1)-th iteration, repre-
sented as Q(r+1) and2(r+1), can be obtained as

Q(r+1)
= arg min

Q

1
2

}H ´ (Q d2(r))V}2F + µ1}DQ}1 ,

(20)

2(r+1)
= arg min

2

1
2

}H ´ (Q(r+1) d2)V}2F+µ2}2´G}2F .

(21)

To solve the above convex problems (Eqs. (20) and (21)),
we use the linear solver, the primal-dual interior-point (PDIP)
method. As an initial solution ofQ and2 (i.e.,Q(0) and2(0)),
we utilize rQ and r2 obtained from ĂW, respectively.

3) PHASE GUIDANCE CONSTRUCTION
Here, we describe a scheme for constructing G P CDMˆp.
Generally, blood flows over the face at approximately the
same time. This property suggests that the phase information
of BVP waves tends to be aligned across allM facial patches.
We exploit this property for the guidance construction for
each DMD mode.

To construct the phase guidance for the j-th DMD mode
θ j, denoted by gj P CDMˆ1, we calculate the average phase
component ofM patch signals of the initial solution of the j-th
DMD mode used for the optimization (Eq. (19)). We denote
the phase component of each patch signal as tθ̃

(m)
j um=1,2,...,M .

Notably, the averaging process enables noise reduction in the
signal and thus facilitates reliable guidance construction for
the phase alignment. Specifically, the average phase compo-
nent of θ̃ j, denoted by ζj, is given by

ζj =
1
M

M
ÿ

m=1

θ̃
(m)
j . (22)

By using ζj, we compose gj. As described in Sec-
tion III-B1, time-delay embedding involves creating a higher-
dimensional space by shifting and stacking multiple copies
of the M -dimensional facial patch time-series signals, with
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Algorithm 3 DMD Mode Refinement

Input: DMD modes ĂW
1: Compute rQ and r2 from ĂW using Eq. (17)
2: Compute G using Eqs. (22), (23), and (24)
3: Initialize:

r Ð 0
Q(0) Ð rQ
2(0) Ð r2

4: repeat
5: Estimate Q(r+1) by solving Eq. (20) with PDIP
6: Estimate2(r+1) by solving Eq. (21) with PDIP
7: r Ð r + 1
8: until Convergence
9: ComputeW using obtained Q and2 using Eq. (17)

Output: Refined DMD modesW

each copy offset by a fixed time delay. Therefore, the phase
component of each DMD mode θ j also has such shifted and
stacking structure. Furthermore, in the j-th DMD modes, the
time evolution (i.e., shift) can be expressed by multiplying
ηj, as can be seen in Eq. (14). Based on such properties of
DMD and the time-delay coordinate system, we construct
gj P CDMˆ1 as

gj ”

»

—

—

—

–

ζ j
ηjζ j

...

ηDj ζ j

fi

ffi

ffi

ffi

fl

, (23)

where ζ j is defined as ζ j = ζj(1, 1, . . . , 1)T P CMˆ1.
We perform this processing for each DMD mode and then

obtain the set tgju
p
j=1. By using tgju

p
j=1, the guidance phase

prior G P CDMˆp can be obtained as

G = [g1 g2 ¨ ¨ ¨ gp] . (24)

We summarize our DMD mode refinement scheme in
Algorithm 3.

D. BVP MATRIX ESTIMATION BASED ON
ADAPTIVE MODE SELECTION
We extract the BVPmatrixP, which is expected to contain the
BVP signal to be estimated, from the spatio-temporal struc-
tures estimated using our framework. To this end, we need to
determine the spatio-temporal structure from W and V that
corresponds to P.

1) ADAPTIVE MODE SELECTION FOR BVP DYNAMICS
Our method selects the best DMD mode that represents the
spatio-temporal structures of BVP fromW andV. In this pro-
cess, we consider that (i) the most-dominant spatio-temporal
structure represents the BVP matrix P and (ii) P should
be within the temporal frequency range of the BVP [37].
Based on these assumptions, we first calculate the j-th DMD

FIGURE 4. Illustration of inverse time-delay embedding scheme.

Algorithm 4 BVP Matrix Estimation
Input: DMD modesW and DMD eigenvalues V
1: Compute tχju

p
j=1 and tρju

p
j=1 using Eqs. (25) and (26)

2: Determine ς based on Eq. (27)
3: Compute C from χς and ρς using Eq. (28)
4: Compute P from C using Eqs. (29) and (30)

Output: BVP matrix P

amplitude χj and temporal frequency ρj as

χj = }wj}
2
2 , (25)

ρj = fs ln(ηj) , (26)

where fs denotes the frame rate of the video.
By using χj and ρj, we estimate the index number of the

DMD mode that best represents P, defined as ς , as

ς = arg max
j

(χj) s.t. νl ă ρj ă νh , (27)

where νl and νh denote parameters determined based on the
temporal frequency range of the BVP.

We extract the BVP component C P RDMˆ(1+N´D) using
the selected ς -th DMD mode. Because the BVP component
must comprise the real parts of the expanded components,
C is obtained as

C = Real(wςvT
ς ) , (28)

where Real(¨) denotes an operator that extracts the real com-
ponents of the input complex matrix.

2) INVERSE TIME-DELAY EMBEDDING
We perform inverse time-delay embedding on C P

CDMˆ(1+N´D) to obtain the BVP matrix P P RMˆN . This
procedure is illustrated in Fig. 4.

First, we representC usingM -dimensional column vectors
tcε,δuε=1,2,...,D, δ=1,2,...,(1+N´D) as

C =

»

—

—

—

–

c1,1 c1,2 ¨ ¨ ¨ c1,1+N´D
c2,1 c2,2 ¨ ¨ ¨ c2,1+N´D

. . .
. . .

cD,1 cD,2 ¨ ¨ ¨ cD,1+N´D

fi

ffi

ffi

ffi

fl

, (29)
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where cε,δ is defined as ([C](ε´1)M+1,δ , . . . , [C]εM ,δ)T

(i.e., the sub-vector of the δ-th column vector ofC that is com-
prised of the row components ranging from the (ε´1)M+1 to
εM -th ones).

We explain how the time evolution of the dynamics in
the inverse time-delay (i.e., real space-time) coordinate sys-
tem can be obtained from those represented in the time-
delay coordinate system. Theoretically, the ε-th anti-diagonal
components (i.e., c1,ε, c2,ε´1, . . . , cε´1,2, cε,1) correspond to
the M patch signals at the ε-th time step in the real space-
time coordinate system. Thus, the ε-th time component of P,
denoted by Pε, can be obtained by averaging the ε-th anti-
diagonal components of C and represented as

Pε =
1

|�ε(C)|

ÿ

(u,v)P�ε(C)

cu,v , (30)

where�ε(C) represents the index set of the ε-th anti-diagonal
components in C. Additionally, |�ε(C)| represents the oper-
ator for calculating the number of elements in �ε(C).

We summarize our scheme for BVP matrix estimation in
Algorithm 4.

E. HR ESTIMATION IN TIME DOMAIN
In our method, the HR is estimated based on the beat-to-beat
peak period analysis of the estimated BVP signal.

1) BVP SIGNAL EXTRACTION
First, we extract the BVP signal from the estimated BVP
matrix P. As P is expected to represent the same BVP
dynamics in its all row vectors (i.e., throughout the facial
patches), the rank-1 approximation of P encourages further
noise removal of the BVP signal to be estimated. Specifically,
the refined BVP matrix, denoted by X, can be obtained by
solving the following energy minimization problem:

min
X

}X ´ P}2F s.t. rank(X) = 1 . (31)

As the rank ofX becomes 1, the BVP signal x can be obtained
by extracting the arbitrary row component of X.

2) BEAT-TO-BEAT PEAK PERIOD ANALYSIS
We perform peak detection on x to obtain the peak locations
tzhu

ϱ

h=1 (ϱ is the number of detected peaks in x). By using
tzhu

ϱ

h=1, we calculate the average inter-beat interval I as

I =

řϱ

h=2(zh ´ zh´1)

ϱ ´ 1
. (32)

Finally, we obtain the HR H by converting I to the beats-
per-minute (bpm) unit:

H = 60{I . (33)

IV. EXPERIMENT
A. EXPERIMENTAL SETTINGS
1) DATASET
To demonstrate the effectiveness of the proposed method,
we conducted experiments using the TokyoTech Remote

TABLE 1. Details of datasets used in experiments.

PPG dataset [20], MR-NIRP dataset [10], and UBFC-rPPG
dataset [19], termed ‘‘Tokyo,’’ ‘‘MR,’’ and ‘‘UBFC,’’ respec-
tively. The details of these datasets are summarized in Table 1.

We briefly describe all the datasets used in this experiment.
‘‘Tokyo’’ dataset:This dataset contained RGBvideos of nine
participants, who were instructed to sit still and perform a
handgrip exercise for approximately 1 min in a room. To cre-
ate this dataset, two studio lights were used; thus, the lighting
environment of this dataset was stable. The RGB videos were
captured for 3 min at 30 fps with 640 ˆ 480 resolution with
10-bit depth in an uncompressed format. Ground truth BVP
signals were recorded by a finger pulse oximeter at 2048 fps.
‘‘MR’’ dataset: This dataset contained RGB videos of eight
participants, who were asked to sit still under controlled
illumination. The RGB videos were captured for 3 min using
an RGB camera at 30 fps with 640 ˆ 640 resolution and
10-bit depth in an uncompressed format. Ground truth BVP
signals were recorded by a finger pulse oximeter at 60 fps.
‘‘UBFC’’ dataset: This dataset contained 50 RGB videos
from 47 participants. The participants sat and played a time-
sensitive mathematical game indoors with varying amounts
of natural ambient illumination. This dataset was obtained in
a more realistic lighting environment than the other datasets
because each participant was captured without any special-
ized lighting systems. Each video was recorded for 1 min
using an RGB camera at 30 fps with a 640 ˆ 480 resolution
in an uncompressed 8-bit RGB format. Ground truth BVP
signals were recorded by a finger pulse oximeter at 30 fps.
We utilized 49 RGB videos in this dataset for the experiments
because one video file could not be read.

2) COMPARISON METHODS
We compared the proposed method with the following BVP
signal extractionmethods: DistancePPG [9], SparsePPG [10],
SAMC [11], Hierarchical [21], MTTS-CAN [33], and
PhysFormer [34]. The DistancePPG [9], SparsePPG [10],
and SAMC [11] methods are based on the spatial low-
rank approximation approach. Although the SparsePPG
method [10] uses a near-infrared video, we used RGB video
as the input for [10] to make a fair comparison in this exper-
iment. The Hierarchical method, which was proposed in our
previous study [21], is based on a hierarchical estimation
manner using the spatial and temporal characteristics of BVP.
The MTTS-CAN [33] and PhysFormer [34] methods are

59090 VOLUME 11, 2023



K. Kurihara et al.: Spatio-Temporal Structure Extraction of BVP Using DMD for HR Estimation

TABLE 2. Quantitative results for mean absolute error (MAE) [bpm], root-mean-square error (RMSE) [bpm], success rate (SR) [%], and Pearson correlation
coefficient (PCC). The best and second best scores are represented in bold and, respectively.

deep-learning-based methods that regress the BVP signal
from the input RGB video. In each method, the HR was
estimated using beat-to-beat peak period analysis in the time
domain.

In this comparison, we set the size of the time window N
as 5 s. The time window was moved such that it overlapped
its neighbors by 4 s. For the deep learning-based meth-
ods [33], [34], we used pre-trained models published by these
authors1,2, for fair comparison. By conducting preliminary
experiments, we set the parameters for the proposed method
as µ1 = 4, µ2 = 1, νl = 0.7 Hz, νh = 4 Hz, and
D = 100. We also ensured that the control parameters of the
other methods were optimal.

3) EVALUATION METRICS
Similar to prior works [9], [10], [11], [21], [33], [34],
we quantitatively evaluated the results using the root-mean-
square error (RMSE), mean absolute error (MAE), and Pear-
son correlation coefficient (PCC) between the estimated
and ground truth HRs. To obtain the ground truth HRs,
we resampled the ground truth BVP signal to match the frame
rate of the captured RGB video and performed beat-to-beat
peak period analysis, similar to the approach described in
Section III-E. In addition, we evaluated the success rate
(SR) of HR estimation, which is the proportion of the num-
ber of successful HR estimation results to the total number
of results. Following previous methods [12], [23], the HR
estimation was considered successful if the HR estimation
error was below a certain threshold (˘5 bpm). Further-
more, we assessed the HR estimation performance using
Bland–Altman analysis [40], [41], a data-plotting method for
evaluating the agreement between the estimated and ground
truth HRs, where the plots in which the measurements are
narrowly distributed around zero exhibit better performance.

B. RESULTS
1) RESULTS FOR HR ESTIMATION
Table 2 shows the quantitative results for the MAE, RMSE,
SR, and PCC for all datasets. It can be seen that our method
exhibited higher accuracy than the comparison methods.

1https://github.com/ZitongYu/PhysFormer
2https://github.com/xliucs/MTTS-CAN

Fig. 5 presents the Bland–Altman plots of these methods. The
proposed method showed better accuracy than the compari-
son methods because the plots for the proposed method are
narrowly distributed around zero.

Herein, we discuss the results for each dataset. For the
Tokyo and MR datasets, which were constructed in stable
illumination environments, the other methods [9], [11], [21],
especially the hierarchical method [21], were comparable
to our method. We conjecture that in a stable illumination
scene, the BVP propagation could be clearly observed in
every facial patch at the same time. Therefore, the spatial low-
rank approximation [9], [11] or hierarchical estimation [21]
worked well, leading to accurate HR estimation. Conversely,
the HR estimation performance realized using the deep
learning-based methods [33], [34] was less accurate than
that obtained using the above-mentioned methods. We reason
that these methods regressed the BVP signals using their
trained model; if the input sequences differ from those used
to train their models, the BVP regression performance was
significantly degraded due to the overfitting to the training
dataset.

In the UBFC dataset, which was acquired in a realis-
tic scene with varying illumination components, the perfor-
mance of the spatial low-rank approximation methods and
hierarchical method [9], [11], [21] was less accurate, primar-
ily because they failed to distinguish between noise and the
BVP component. Conversely, the proposed method outper-
formed the other methods, indicating that our spatio-temporal
analysis based on physics-informed DMD contributed to
improving the HR estimation performance.

2) COMPARISON IN TIME-SERIES HR ESTIMATION RESULTS
Examples of the time-series HR estimation results are shown
in Fig. 6. The results for the stable illumination scene
(Fig. 6 (a) and (b)) demonstrated that both our method and
the compared methods achieved accurate performance (third
row) because patch signals were temporally stable without
fluctuating noise components (second row). On the other
hand, when an illumination fluctuation occurs, as in the
sequences depicted in Fig. 6 (c), the compared methods
produced inconsistent and less accurate HR estimation out-
comes. In contrast, the proposed method achieved consistent
and accurate HR estimation. These results indicate that our

VOLUME 11, 2023 59091



K. Kurihara et al.: Spatio-Temporal Structure Extraction of BVP Using DMD for HR Estimation

FIGURE 5. Quantitative comparisons using bland–altman plots for all of the participants in all the datasets. In each figure, the solid line shows the mean
error and the dashed line indicates the 95 % limits of agreement between the estimated and ground truth HRs.

FIGURE 6. Comparison results for time-series variations in estimated HR: The top row depicts RGB video sequences with selected patches (shown as
colored circles); the middle row represents time-series signals extracted from selected patches, as indicated by the circles with the corresponding colors
in the top row; and the bottom row represents the time-series variations in the estimated HRs (‘‘GT’’ indicates ground truth HR).

unified spatio-temporal analysis scheme operated well for
estimating the BVP signal and HR even in varying illumi-
nation scenes.

C. ANALYSIS
1) SIGNIFICANCE AND COMPLEXITY OF EACH MODULE
We investigated the significance and complexity of eachmod-
ule employed in the proposed framework. We list the details
of the methods used for this analysis as follows.

(i) Naïve DMD: First, we directly applied naïve DMD to
the chrominance matrix Y and selected the most-dominant
DMD mode as the BVP component, i.e., P. Then, we esti-
mated the HR by beat-to-beat peak period analysis as
described in Section III-E. We refer to this method as
‘‘Baseline.’’

(ii) Physics-informed DMD in Time-Delay Coordinate
System: Second, we applied physics-informed DMD to the
observation matrix H in the time-delay coordinate system
(Section III-B) to investigate the effects of modeling BVP
dynamics exhibiting nonlinearity and quasi-periodicity in the
time domain. The HR was estimated using beat-to-beat peak
period analysis, the same approach as that used in the ‘‘Base-
line’’ method. We refer to this method as ‘‘w/ M.’’

(iii) (ii) +Mode Refinement: Third, we added the DMD
mode refinement scheme (Section III-C) to ‘‘w/ M’’ to inves-
tigate the effect of DMD mode refinement on BVP signal
extraction. We refer to this method as ‘‘w/ M+R.’’

(iv) (iii) +Adaptive Mode Selection: Finally, we added
the adaptive mode selection scheme (Section III-D1) to
‘‘w/ M+R’’ to investigate the effect of incorporating knowl-
edge of the temporal frequency range of BVP.We refer to this
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TABLE 3. Impact of each module employed in our framework.
We evaluated the performance using the MAE [bpm]. The best scores are
represented in bold.

FIGURE 7. Impact of each module employed in our framework in each
dataset. We evaluated the performance using the SR curve.

method as ‘‘w/M+R+S.’’Note that this approach is equivalent
to the proposed full framework.
A) Significance:We investigated the impact of each mod-

ule on the HR estimation performance. Table 3 presents the
comparison results obtained using the MAE metric. It can be
seen that the estimation performance was improved as more
modules were equipped.

Fig. 7 presents the SR curve, an SR plot obtained by
varying the SR threshold from ˘1 to ˘10 bpm for each
method. The horizontal and vertical axes represent the SR
threshold and corresponding SR obtained, respectively. For
each dataset, each scheme contributed to improving the
HR estimation performance. In particular, in the UBFC
dataset, the comparison of ‘‘Baseline’’ and ‘‘w/M’’ indicates
that our BVP dynamics modeling significantly contributed
to performance improvement. In the UBFC dataset, which
contains many scenes with varying illumination components,
the ‘‘Baseline’’ approach was found to have difficulty esti-
mating the HR accurately, regardless of how the SR threshold
was set. According to these results, our modeling of BVP
dynamics exhibiting nonlinearity and quasi-periodicity con-
tributed significantly to HR estimation performance.

Fig. 8 presents comparison results obtained using box plot
analysis of the RMSE values of each subject in each dataset.
Table 4 shows the median and interquartile range (IQR) of the
RMSE values obtained with each method. The red horizontal
bar in each box plot represents the median of RMSE values.
The bottom and top ends of each box, denoted as Q1 and Q3,
indicate the 25th and 75th percentiles of the RMSE values,
respectively. Each vertical dot line (whisker) reaches from

FIGURE 8. Impact analysis of each module employed in our framework in
each dataset. We evaluated the performance using box plot analysis.
Note that each vertical axis in each figure has a different scale.

TABLE 4. Impact analysis of each module using median (denoted as
Med.) and IQR of RMSE values obtained from box plot analysis. The best
scores are represented in bold.

FIGURE 9. Examples of estimated BVP matrices.

the minimum to the maximum RMSE values in the range
from Q1 + 1.5(Q3 ´ Q1) to Q3 + 1.5(Q3 ´ Q1). Note that
Q3´Q1 means IQR. The red plus signs represent outliers out-
side the boundaries of the whiskers. The green circle mark-
ers represent the individual data points (i.e., RMSE values).
A narrower IQR and lower median of RMSE indicate better
precision and accuracy, respectively. Note that the results for
‘‘Baseline’’ are not shown because the RMSEs obtained with
this method are considerably higher than the others, making
it difficult to plot them on the same scale.

Fig. 8 and Table 4 demonstrated that the median of RMSE
obtained with our full framework was the lowest among
those obtained using the considered methods. Furthermore,
the IQR obtained with our full framework was narrower
than those resulting from the other methods for all datasets.
These results indicate that our BVP dynamics modeling,
DMDmode refinement, and adaptive mode selection scheme

VOLUME 11, 2023 59093



K. Kurihara et al.: Spatio-Temporal Structure Extraction of BVP Using DMD for HR Estimation

TABLE 5. Example of computation time comparison results for subject
#41 in UBFC. The difference in computation time from the left-adjacent
method is shown in parentheses.

contribute to improving the precision and accuracy of HR
estimation.

Fig. 9 provides examples of the input chrominance
matrix Y and estimated BVP matrix P for visual comparison.
The quasi-periodic temporal characteristics of the BVP can
be observed in Pmore clearly, as more modules are equipped.

Consequently, each module employed in the proposed
framework contributed to the performance enhancement of
BVP signal extraction, leading to accurate HR estimation.
B) Complexity: We investigated the computational com-

plexity of our method by measuring the computation time
required to execute each module employed in the proposed
framework. In fact, because our method solves an alter-
nating iterative optimization problem, rigorously evaluat-
ing the computational complexity by analyzing the number
of elementary operations using big-o notation is difficult.
Therefore, we evaluated the complexity of our method by
measuring the computation time to process each method.
This analysis was run on MATLAB R2021a installed on a
Windows PC with an Intel Core i9-10980XE 3.00 GHz and
64GBRAM. Considering variations in the computation time,
we ran this analysis five times and calculated the average
computation time.

Table 5 shows an example of the computation time com-
parison results. It can be seen that the computation time
increased as the number of equipped modules increased.
In particular, the difference in computation time between
‘‘w/M’’ and ‘‘w/M+R’’ indicates that the DMD mode
refinement scheme was the most computationally inten-
sive among all the modules. In this scheme, as described
in Section III-C, we solve alternating iterative optimization
problems (Eqs. (20) and (21)) by using a linear solver
(i.e., PDIP method), which operates with polynomial com-
plexity [42]. However, because our DMD mode refine-
ment scheme is performed in the high-dimensional space
(i.e., time-delay coordinate system), the PDIP method would
require expensive computations. This is primarily because
the PDIP is a second-order optimization technique involving
large Hessian matrix multiplications.

In the future, we plan to adopt a first-order optimization
technique that can solve the problem with less computa-
tional complexity, such as an iterative shrinkage/thresholding
algorithm or the alternating direction method of multipliers.

FIGURE 10. Comparison with the hierarchical method in each dataset
using box plot analysis. The symbol * indicates a significant difference
(i.e., p ă 0.05) based on the t-test results. Note that each vertical axis in
each figure has a different scale.

TABLE 6. Comparison with the hierarchical method using median
(denoted as Med.) and IQR of the RMSE values obtained from box plot
analysis. The symbol * indicates a significant difference (p ă 0.05) based
on the t-test results. n denotes the number of videos in each dataset
(i.e., sample size).

By reducing the computational complexity of estimating HR,
our method is expected to be applicable to real scenarios such
as health monitoring.

2) DETAILED COMPARISON WITH OUR EARLIER
STUDY ‘‘HIERARCHICAL’’
Here, we analyze the HR estimation performance of our
proposed method and our earlier method ‘‘Hierarchical’’ [21]
in greater detail. As shown in Section IV-B, our proposed
method performed accurate HR estimation. However, in some
datasets, the proposed method and ‘‘Hierarchical’’ produced
comparable results. To clarify the reason for this find-
ing, we conducted a more detailed analysis. Specifically,
we assessed the accuracy and precision of the ‘‘Hierarchical’’
and our method using a box plot analysis of the RMSEs
of each subject in each dataset. Furthermore, we conducted
Welch’s two-tailed t-test (significance level: p ă 0.05) on
the RMSE values of ‘‘Hierarchical’’ and our method to assess
whether there is a significant difference between them.

Fig. 10 shows the comparison results using a box plot
of RMSE values for each subject in each dataset. Table 6
lists the median and interquartile range (IQR) of RMSE and
p-value. In the Tokyo and MR datasets, we believe that the
performance of our method was comparable to that of ‘‘Hier-
archical’’ based on the comparison of the medians and IQRs
obtained with each method. According to the t-test results,
the difference between ‘‘Hierarchical’’ and our method is
insignificant (p = 0.01).
We discuss why ‘‘Hierarchical’’ performed comparably to

our method in the Tokyo and the MR datasets. In practice,
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the Tokyo and MR datasets were constructed in a stable
illumination scene, where the temporal characteristics of
the BVP could be clearly observed from each facial patch.
In such sceneswith less noise component, ‘‘Hierarchical’’ can
work accurately to model the temporal characteristics of the
BVP. Therefore, in the stable illumination scene, our method
and ‘‘Hierarchical’’ showed comparable HR estimation
performance.

Conversely, for the UBFC dataset, the median and IQR
obtained with our method are lower and narrower than those
of ‘‘Hierarchical,’’ indicating that our method achieved supe-
rior performance. Furthermore, the t-test results revealed a
significant difference between the RMSEs obtained from
‘‘Hierarchical’’ and our method. Based on the above results,
we can contend that our method produced quantitatively
better results than ‘‘Hierarchical.’’ In the UBFC dataset that
includes varying illumination scenes, extracting a reliable
BVP signal using the ‘‘Hierarchical’’ is difficult. This is
because in the first stage of ‘‘Hierarchical,’’ time-series mod-
eling of the BVP is performed, whereas the spatial similarity
of the BVP is discarded. Therefore, the estimation accuracy
of the BVP candidates in the first stage is degraded, leading
to performance degradation in the overall framework of
‘‘Hierarchical.’’ Furthermore, in varying illumination
scenes, the autoregressive time-series modeling utilized in
‘‘Hierarchical’’ is insufficient to extract reliable BVP sig-
nals. We reason that varying illumination components can
also be modeled by an autoregressive model. Thus, BVP
component and noise due to varying illuminations cannot
be distinguished by ‘‘Hierarchical.’’ By contrast, our method
is a spatio-temporal analysis approach incorporating quasi-
periodic and nonlinear dynamics of the BVP based on
physics-informed DMD framework. This framework enables
the unified spatio-temporal modeling of the BVP and thus
enables distinction between the BVP and noise components.
Therefore, our method showed better HR estimation perfor-
mance than ‘‘Hierarchical’’ in the UBFC dataset.

V. CONCLUSION
A. SUMMARY
We proposed a BVP signal extraction method for HR esti-
mation that incorporates medical knowledge of BVP dynam-
ics. Based on the DMD framework, we exploited the BVP
characteristics in the spatial and temporal domains in a
unified manner for HR estimation. To analyze the BVP
dynamics exhibiting nonlinear and quasi-periodic properties,
we performed physics-informed DMD on the time-series
signals in the time-delay coordinate system. The estimated
spatio-temporal structures attributable to the BVP signal were
refined using an optimization framework regularized with
the spatial similarity of the BVP. The BVP signal and HR
were estimated by inverse time-delay embedding of the out-
come obtained using our adaptive best DMD mode selection
based on the medical knowledge of the HR frequency range.
Through experiments using public datasets, we demonstrated
the effectiveness of the proposed method.

B. FUTURE WORK
In the proposed approach, the BVP signal is estimated based
on its quasi-periodicity in the time domain and spatial sim-
ilarity over the face region. If quasi-periodic illumination
variations, similar to those of the BVP, are subjected to the
face, our method may fail in HR estimation because this phe-
nomenon deviates from the assumption made in this study.
To address this remaining issue, we will investigate methods
of removing such noise component by incorporating multi-
spectral (such as ultraviolet and near-infrared) information,
as in [43], [44], [45], and [46].

REFERENCES
[1] D. McDuff, S. Gontarek, and R. Picard, ‘‘Remote measurement of cogni-

tive stress via heart rate variability,’’ in Proc. Annu. Int. Conf. IEEE Eng.
Med. Biol. Soc. (EMBC), Aug. 2014, pp. 2957–2960.

[2] M. Burzo, D. McDuff, R. Mihalcea, L.-P. Morency, A. Narvaez, and
V. Perez-Rosas, ‘‘Towards sensing the influence of visual narratives on
human affect,’’ in Proc. ACM Int. Conf. Multimodal Interact., Oct. 2012,
pp. 153–160.

[3] G. Valenza, L. Citi, A. Lanatá, E. P. Scilingo, and R. Barbieri, ‘‘Revealing
real-time emotional responses: A personalized assessment based on heart-
beat dynamics,’’ Sci. Rep., vol. 4, no. 1, pp. 1–10, May 2014.

[4] Nevermind. Accessed: Nov. 10, 2022. [Online]. Available: https://never
mindgame.com/

[5] J. Allen, ‘‘Photoplethysmography and its application in clinical physi-
ological measurement,’’ Physiolog. Meas., vol. 28, no. 3, pp. R1–R39,
Mar. 2007.

[6] Y. Sun and N. Thakor, ‘‘Photoplethysmography revisited: From contact to
noncontact, from point to imaging,’’ IEEE Trans. Biomed. Eng., vol. 63,
no. 3, pp. 463–477, Mar. 2016.

[7] W. Verkruysse, L. O. Svaasand, and J. S. Nelson, ‘‘Remote
plethysmographic imaging using ambient light,’’ Opt. Exp., vol. 16,
no. 26, pp. 21434–21445, 2008.

[8] X. Chen, J. Cheng, R. Song, Y. Liu, R. Ward, and Z. J. Wang, ‘‘Video-
based heart rate measurement: Recent advances and future prospects,’’
IEEE Trans. Instrum. Meas., vol. 68, no. 10, pp. 3600–3615, Oct. 2019.

[9] M. Kumar, A. Veeraraghavan, and A. Sabharwal, ‘‘DistancePPG: Robust
non-contact vital signs monitoring using a camera,’’ Biomed. Opt. Exp.,
vol. 6, no. 5, pp. 1565–1588, Apr. 2015.

[10] E. M. Nowara, T. K. Marks, H. Mansour, and A. Veeraraghavan,
‘‘SparsePPG: Towards driver monitoring using camera-based vital signs
estimation in near-infrared,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pat-
tern Recognit. Workshops (CVPRW), Jun. 2018, pp. 1272–1281.

[11] S. Tulyakov, X. Alameda-Pineda, E. Ricci, L. Yin, J. F. Cohn, and N. Sebe,
‘‘Self-adaptive matrix completion for heart rate estimation from face
videos under realistic conditions,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 2396–2404.

[12] A. Lam and Y. Kuno, ‘‘Robust heart rate measurement from video using
select random patches,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 3640–3648.

[13] W. B. Murray and P. A. Foster, ‘‘The peripheral pulse wave: Information
overlooked,’’ J. Clin. Monitor., vol. 12, no. 5, pp. 365–377, Sep. 1996.

[14] M. Elgendi, ‘‘On the analysis of fingertip photoplethysmogram signals,’’
Current Cardiol. Rev., vol. 8, no. 1, pp. 14–25, Jun. 2012.

[15] S. Pan and K. Duraisamy, ‘‘On the structure of time-delay embedding
in linear models of non-linear dynamical systems,’’ Chaos, Interdiscipl.
J. Nonlinear Sci., vol. 30, no. 7, pp. 073135-1–073135-29, 2020.

[16] K. P. Champion, S. L. Brunton, and J. N. Kutz, ‘‘Discovery of nonlinear
multiscale systems: Sampling strategies and embeddings,’’ SIAM J. Appl.
Dyn. Syst., vol. 18, no. 1, pp. 312–333, Jan. 2019.

[17] S. L. Brunton, B. W. Brunton, J. L. Proctor, E. Kaiser, and J. N. Kutz,
‘‘Chaos as an intermittently forced linear system,’’Nature Commun., vol. 8,
no. 1, pp. 1–15, May 2017.

[18] N. Sviridova and K. Sakai, ‘‘Human photoplethysmogram: New insight
into chaotic characteristics,’’ Chaos, Solitons Fractals, vol. 77, pp. 53–63,
Aug. 2015.

VOLUME 11, 2023 59095



K. Kurihara et al.: Spatio-Temporal Structure Extraction of BVP Using DMD for HR Estimation

[19] S. Bobbia, R. Macwan, Y. Benezeth, A. Mansouri, and J. Dubois, ‘‘Unsu-
pervised skin tissue segmentation for remote photoplethysmography,’’ Pat-
tern Recognit. Lett., vol. 124, pp. 82–90, Jun. 2019.

[20] Y.Maki, Y.Monno, K. Yoshizaki, M. Tanaka, andM. Okutomi, ‘‘Inter-beat
interval estimation from facial video based on reliability of BVP signals,’’
in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2019,
pp. 6525–6528.

[21] K. Kurihara, Y. Maeda, D. Sugimura, and T. Hamamoto, ‘‘Blood volume
pulse signal extraction based on spatio-temporal low-rank approximation
for heart rate estimation,’’ in Proc. IEEE Int. Conf. Vis. Commun. Image
Process. (VCIP), Dec. 2022, pp. 1–5.

[22] X. Li, J. Chen, G. Zhao, and M. Pietikäinen, ‘‘Remote heart rate measure-
ment from face videos under realistic situations,’’ inProc. IEEE/CVFConf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2014, pp. 4264–4271.

[23] R. Spetlík, V. Franc, J. Cech, and J. Matas, ‘‘Visual heart rate estima-
tion with convolutional neural network,’’ in Proc. Brit. Mach. Vis. Conf.
(BMVC), Sep. 2018, pp. 3–6.

[24] W. Wang, A. C. den Brinker, S. Stuijk, and G. de Haan, ‘‘Algorithmic
principles of remote PPG,’’ IEEE Trans. Biomed. Eng., vol. 64, no. 7,
pp. 1479–1491, Jul. 2017.

[25] G. de Haan and V. Jeanne, ‘‘Robust pulse rate from chrominance-based
rPPG,’’ IEEE Trans. Biomed. Eng., vol. 60, no. 10, pp. 2878–2886,
Oct. 2013.

[26] L.Wei, Y. Tian, Y.Wang, T. Ebrahimi, and T. Huang, ‘‘Automatic webcam-
based human heart ratemeasurements using Laplacian eigenmap,’’ inProc.
Asian Conf. Comput. Vis. (ACCV), Nov. 2012, pp. 281–292.

[27] X. Niu, H. Han, S. Shan, andX. Chen, ‘‘VIPL-HR: Amulti-modal database
for pulse estimation from less-constrained face video,’’ in Proc. Asian
Conf. Comput. Vis. (ACCV), Dec. 2018, pp. 562–576.

[28] K. Kurihara, D. Sugimura, and T. Hamamoto, ‘‘Non-contact heart rate
estimation via adaptive RGB/NIR signal fusion,’’ IEEE Trans. Image
Process., vol. 30, pp. 6528–6543, 2021.

[29] J. Cheng, X. Chen, L. Xu, and Z. J. Wang, ‘‘Illumination variation-resistant
video-based heart rate measurement using joint blind source separation
and ensemble empirical mode decomposition,’’ IEEE J. Biomed. Health
Informat., vol. 21, no. 5, pp. 1422–1433, Sep. 2017.

[30] M.-Z. Poh, D. J. McDuff, and R. W. Picard, ‘‘Advancements in noncon-
tact, multiparameter physiological measurements using a webcam,’’ IEEE
Trans. Biomed. Eng., vol. 58, no. 1, pp. 7–11, Jan. 2011.

[31] X. Niu, S. Shan, H. Han, and X. Chen, ‘‘RhythmNet: End-to-end heart rate
estimation from face via spatial–temporal representation,’’ IEEE Trans.
Image Process., vol. 29, pp. 2409–2423, 2020.

[32] W. Chen andD.McDuff, ‘‘DeepPhys: Video-based physiological measure-
ment using convolutional attention networks,’’ in Proc. Eur. Conf. Comput.
Vis. (ECCV), Sep. 2018, pp. 349–365.

[33] X. Liu, J. Fromm, S. Patel, and D. McDuff, ‘‘Multi-task temporal shift
attention networks for on-device contactless vitals measurement,’’ in Proc.
Adv. Neural Inf. Process. Syst. (NeurIPS), vol. 33, 2020, pp. 19400–19411.

[34] Z. Yu, Y. Shen, J. Shi, H. Zhao, P. Torr, and G. Zhao, ‘‘PhysFormer:
Facial video-based physiological measurement with temporal difference
transformer,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2022, pp. 4176–4186.

[35] R. Song, H. Chen, J. Cheng, C. Li, Y. Liu, and X. Chen, ‘‘PulseGAN:
Learning to generate realistic pulse waveforms in remote photo-
plethysmography,’’ IEEE J. Biomed. Health Informat., vol. 25, no. 5,
pp. 1373–1384, May 2021.

[36] E. Sánchez-Lozano, G. Tzimiropoulos, B. Martinez, F. De la Torre, and
M.Valstar, ‘‘A functional regression approach to facial landmark tracking,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 9, pp. 2037–2050,
Sep. 2018.

[37] P. Palatini, ‘‘Need for a revision of the normal limits of resting heart rate,’’
Hypertension, vol. 33, no. 2, pp. 622–625, Feb. 1999.

[38] P. J. Baddoo, B. Herrmann, B. J. McKeon, J. N. Kutz, and S. L. Brunton,
‘‘Physics-informed dynamic mode decomposition,’’ Proc. Roy. Soc. A,
Math., Phys. Eng. Sci., vol. 479, no. 2271, Mar. 2023.

[39] B. W. Brunton, L. A. Johnson, J. G. Ojemann, and J. N. Kutz, ‘‘Extracting
spatial–temporal coherent patterns in large-scale neural recordings using
dynamic mode decomposition,’’ J. Neurosci. Methods, vol. 258, pp. 1–15,
Jan. 2016.

[40] J. M. Bland and D. Altman, ‘‘Statistical methods for assessing agreement
between twomethods of clinicalmeasurement,’’Lancet, vol. 327, no. 8476,
pp. 307–310, Feb. 1986.

[41] J. S. Krouwer, ‘‘Why Bland–Altman plots should use X , not (Y + X )/2
when X is a reference method,’’ Statist. Med., vol. 27, no. 5, pp. 778–780,
2008.

[42] L. G. Khachiyan, ‘‘Polynomial algorithms in linear programming,’’ USSR
Comput. Math. Math. Phys., vol. 20, no. 1, pp. 53–72, Jan. 1980.

[43] S. B. Park, G. Kim, H. J. Baek, J. H. Han, and J. H. Kim, ‘‘Remote pulse
rate measurement from near-infrared videos,’’ IEEE Signal Process. Lett.,
vol. 25, no. 8, pp. 1271–1275, Aug. 2018.

[44] W. Wang, A. C. den Brinker, and G. de Haan, ‘‘Discriminative sig-
natures for remote-PPG,’’ IEEE Trans. Biomed. Eng., vol. 67, no. 5,
pp. 1462–1473, May 2020.

[45] K. Kurihara, D. Sugimura, and T. Hamamoto, ‘‘Adaptive fusion of
RGB/NIR signals based on face/background cross-spectral analysis for
heart rate estimation,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP),
Sep. 2019, pp. 4534–4538.

[46] D. McDuff, S. Gontarek, and R. W. Picard, ‘‘Improvements in remote
cardiopulmonary measurement using a five band digital camera,’’ IEEE
Trans. Biomed. Eng., vol. 61, no. 10, pp. 2593–2601, Oct. 2014.

KOSUKE KURIHARA (Graduate Student Mem-
ber, IEEE) received the B.E. and M.E. degrees in
electrical engineering from the Tokyo University
of Science, Japan, in 2018 and 2020, respectively.
He is currently pursuing the Ph.D. degree. His
research interests include image processing and
biosignal processing.

YOSHIHIRO MAEDA (Member, IEEE) received
the B.E., M.E., and Ph.D. degrees in information
engineering from the Nagoya Institute of Technol-
ogy, Japan, in 2013, 2015, and 2019, respectively.
He became an Assistant Professor with the Tokyo
University of Science, Japan, in 2019. His research
interests include image processing and multispec-
tral sensing.

DAISUKE SUGIMURA (Member, IEEE) received
the B.S. degree in engineering science from Osaka
University, Osaka, Japan, in 2005, and the M.S.
and Ph.D. degrees in information science and tech-
nology from The University of Tokyo, Tokyo,
Japan, in 2007 and 2010, respectively. He is cur-
rently an Associate Professor with the Department
of Computer Science, Tsuda University, Tokyo.
His research interests include computer vision and
computational imaging.

TAKAYUKI HAMAMOTO (Member, IEEE)
received the B.E. and M.E. degrees in electrical
engineering from the Tokyo University of Science,
Tokyo, Japan, in 1992 and 1994, respectively, and
the Dr. (Eng.) degree in electrical engineering
from The University of Tokyo, Tokyo, in 1997.
He is currently a Professor with the Department
of Electrical Engineering, TokyoUniversity of Sci-
ence. His research interests include image process-
ing, computer vision, and computational image
sensors.

59096 VOLUME 11, 2023


