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ABSTRACT In smart power grids, smart meters (SMs) are deployed at the end side of customers to
report fine-grained power consumption readings periodically to the utility for energy management and
load monitoring. However, electricity theft cyber-attacks can be launched by fraudulent customers through
compromising their SMs to report false readings to pay less for their electricity usage. These attacks
harmfully affect the power sector since they cause substantial financial loss and degrade the grid performance
because the readings are used for energy management. Supervised machine learning approaches have been
used in the literature to detect the attacks, but to the best of our knowledge, the use of reinforcement learning
(RL) has not been investigated yet. RL can be better than the existing approaches because it can adapt
more efficiently with the dynamic nature of cyber-attacks and consumption patterns due to its capability
to learn by exploration and exploitation mechanisms and deciding optimal actions. In this article, a deep
reinforcement learning (DRL) approach is proposed as a promising solution to the electricity theft problem.
The samples of real dataset are employed as an environment and rewards are given based on detection
errors made during training. In particular, the proposed approach is presented in four different scenarios.
First, a global detection model is constructed using a deep Q network (DQN) and a double deep Q network
(DDQN) with different architectures of deep neural networks. Second, the global detector is used to build
a customized detection model for new customers to achieve high detection accuracy while preventing zero-
day attacks. Third, changing the consumption pattern of the existing customers is taken into consideration in
the third scenario. Fourth, the challenges of defending against newly launched cyber-attacks are addressed
in the fourth scenario. Extensive experiments have been conducted, and the results demonstrate that the
proposed DRL approach can boost the detection of electricity theft cyberattacks, and it can efficiently learn
new consumption patterns, changes in the consumption patterns of existing customers, and newly launched
cyber-attacks.

INDEX TERMS Security, electricity theft, false reading attacks, reinforcement learning, zero-day attacks,
smart power grids.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and The smart grid (SG) is a new vision for the traditional
approving it for publication was Neetesh Saxena . power grid that aims to regulate and optimize grid operation,
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facilitate reliable delivery of electricity, and keep track of the
performance of all the system components. The architecture
of SG includes different components, including electricity
production stations, advanced metering infrastructure (AMI)
network, system operator (SO), and transmission and distri-
bution systems as shown in FIGURE 1 [1], [2]. The function
of the AMI is to facilitate efficient bidirectional commu-
nications between the smart meters (SMs), installed at the
customers’ homes, and the SO [3], [4]. In contrast to the
traditional monthly billing method of electricity consump-
tion, in SG, fine-grained electricity consumption readings,
e.g., every few minutes, are measured periodically by SMs
and forwarded to the SO through AMI. Consequently, the SO
can utilize these readings for demand and response manage-
ment, load monitoring and forecasting purposes, calculating
the consumption bill using a dynamic pricing approach, and
managing the power generation efficiently [5], [6], [7], [8].

In traditional power grids, electricity theft can be con-
ducted by tampering with mechanical meters physically, e.g.,
by line hooking. In SGs, fraudulent customers can launch
cyber-attacks by hacking their SMs to manipulate the electric-
ity consumption readings and report false data. Comparing to
the traditional grids, the electricity theft is more severe in the
case of SG because the attacks not only cause hefty financial
losses but also may degrade the power grid’s performance
since the reported electricity consumption data are utilized
for the grid management [9], [10], [11], [12]. In world-
wide, electricity theft has a negative financial impact on both
developing and developed countries. According to the World
Bank’s report, the annual global loss caused by illegal elec-
tricity usage is estimated at approximately $89.3 billion [13],
[14], [15]. For developed countries, the loss is estimated at
$6 billion, $173 million, and $100 million per year in the
United States, United Kingdom, and Canada, respectively [1],
[2], [16], [17]. On the other hand, electricity theft is worse in
developing countries. For instance, India loses $17 billion per
year while Brazil and China lose around 16% and 6% of their
total electricity production, respectively [1], [15], [17].

Artificial intelligence (AI) has been incorporated in a
broad range of applications in the power industry to address
real-world challenges [18], [19]. Al is particularly useful in
the integration of more renewable energy generators in the
smart grid, as it can optimize electricity pricing and make
it adaptive to fluctuations in the power generation due to
unpredictable weather conditions. It can also be used to detect
equipment failures to enhance the reliability of the grid, and
forecast electricity demand and generation.

In recent years, machine learning (ML) has been used to
eliminate the harmful consequences of electricity theft cyber-
attacks [20], [21], [22]. Both supervised and unsupervised
ML approaches, such as DL approaches, have been employed
for electricity theft detection in SGs [3], [6], [11], [23].
However, these approaches have the following limitations.
First, DL models are trained on a fixed dataset and may over-
fit the training data. Consequently, they learn to recognize
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specific patterns and features rather than generalizing to a
broader range of patterns. Second, it is inefficient to adapt
to changes in consumption patterns and new cyberattacks,
requiring retraining the models on old and new data. This
process is time-consuming and computationally extensive,
especially for large datasets.

Over the last few years, AlphaGO and AlphaGO Zero,
introduced by Google, paid much attention to the appli-
cation of Al to solve difficult problems [24], [25]. Both
AlphaGO and AlphaGO Zero demonstrated the fact that
reinforcement learning (RL) is an emerging type of ML
that has similar features to human learning due to its abil-
ity to adapt to the surrounding environment and learn by
exploration and exploitation mechanisms [26], [27]. Also,
it can model an agent and make optimal decisions regardless
of the limited available knowledge about the surrounding
environment. In other words, RL demonstrates outstanding
decision-making ability, and it has several merits [28]. Firstly,
RL seeks optimal decisions through direct interaction with
the surrounding environment, similar to the way the human
brain learns. Secondly, RL is adaptive and can make optimal
decisions autonomously. Thirdly, compared to the traditional
optimization methods, RL is flexible and can be used for
real-world applications. Furthermore, DL has been integrated
with RL approaches to address a wide range of complicated
problems [29] such as cyber-attack detection. This integration
is a research direction initiated and pioneered by Google
DeepMind [30].

Consequently, RL can be a promising solution to overcome
the aforementioned limitations of DL approaches since it
has the capability of efficiently incrementing the learning of
the model by retraining the model using new consumption
patterns or newly traced attacks, without forgetting what has
already been learned or requiring complete retraining of the
model from scratch [28], [31]. The nature of the RL allows
for a simple update to the model parameters, and adaptation
for new consumption patterns and cyber-attacks.

In this paper, we investigate the use of RL to detect electric-
ity theft cyber-attacks by considering four different scenarios
(or cases). In the first scenario, an initial global detection
model is investigated using a deep Q network (DQN) and
a double deep Q network (DDQN) of different DL archi-
tectures. These architectures include feedforward neural net-
work (FFNN), gated recurrent unit neural network (GRU),
convolutional neural network (CNN), and hybrid architecture
consisting of CNN and GRU (CNN+GRU). The model is
global in the sense that it is trained on the data of a large
number of consumers, and it can be used for detecting the
false data of all customers. In the second scenario, a cus-
tomized detection model is built for new customers by utiliz-
ing RL’s ability to adapt to new data. This is accomplished
by retraining the initial global model on the consumption
readings of the new customer. This enables the model to
adjust to the consumption patterns of the new customer to
boost the detection accuracy and prevent zero-day attacks by
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FIGURE 1. Smart grid model architecture [1].

detecting the consumers that send false data from day one.
In the third scenario, we investigate the ability of our detector
to learn changes in the consumption patterns that may occur
due to various factors, such as changing the life-style of
a customer, change in the number of occupants, and the
purchase of new appliances. Finally, in the fourth scenario,
we focus on the problem of newly launched cyber-attacks
and investigate the ability of our detection model to learn
new attacks. The experimental results demonstrate that the
proposed DRL approach boosts the detection accuracy and
achieves higher performance than the existing DL techniques.
Also, it can adapt efficiently to new consumption patterns and
cyber-attacks.

To the best of our knowledge, RL has not been used before
for electricity theft cyber-attack detection, and in general,
despite its attractive features, its use in cyber-security has
received little attention. The key contributions of this paper
are outlined as follows:

o RL-based DQN and DDQN detectors are proposed to

detect electricity theft cyber-attacks.

« The ability of the RL detector to adapt to changes in the

consumption patterns is investigated.

o The challenges of defending against newly launched

cyber-attacks are addressed.

The remaining of this paper is structured as follows.
Section II presents the related works in the literature that
investigate electricity theft in SGs and our motivation for
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this work. Section III introduces the preliminaries used in
the development of our detector. Dataset preparation for
training the detectors is discussed in Section IV. Section V
discusses the proposed DRL detection models. The detection
performance is evaluated and analyzed in Section VI. Finally,
Section VII concludes the paper.

Il. RELATED WORKS AND MOTIVATION

In this section, we first review the related research studies
that investigate electricity theft detection. Then, we provide a
comparison between our proposed approach and the current
ML approaches present in the literature. The objective of this
comparison is presenting our motivation and addressing the
limitations inherent in the existing ML approaches.

A. RELATED WORKS

To detect electricity theft, multiple methods have been pro-
posed for the detection of electricity theft. These methods
can be categorized as hardware-based methods, statistical and
game theory methods, and data-driven methods.

1) HARDWARE-BASED METHODS

One of the methods to thwart electricity theft attacks is by
using hardware tamper proof modules in the SMs to prevent
hacking the meters to modify them to send false data [32].
However, these methods have several limitations. Specifi-
cally, these modules are costly and require full trust which
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cannot be guaranteed in reality. That is why most of the
proposals in the literature prefer data-driven methods over
hardware-based methods [20], [22], [32].

2) STATISTICAL AND GAME THEORY METHODS

Different electricity theft detectors have been proposed using
game theory [33], [34], [35], data mining, and statistical
methods including state estimation [36], clustering, local out-
lier factor (LOF), and principal component analysis (PCA).
For instance, the k-means clustering algorithm has been uti-
lized in [37] to cluster customers by analyzing their elec-
tricity consumption readings. Then, LOF has been employed
to identify the outlier candidates whose consumption read-
ings are significantly different from the centers of their
respective clusters. Furthermore, LOF is used to compute the
anomaly score for each of the identified outlier candidates.
Also, a PCA-based detector is proposed by Singh et al. [38].
The detector calculates an anomaly score for the data and
compares to a predefined threshold value to classify it.
Zheng et al. [39] proposed a novel approach for improving
the detection of electricity theft. The approach combines
the maximum information coefficient (MIC) data mining
technique with the fast search and find of density peaks
(CFSFDP) clustering technique. However, the statistical and
game theory methods do not give good accuracy because they
cannot capture the temporal aspect and complex patterns of
the data [40].

3) DATA-DRIVEN METHODS

In order to detect false power consumption readings reported
by malicious SMs, different ML-based detectors have been
proposed in the literature. Some of these detectors utilize
shallow ML detection algorithms [20], [21], [22] such as
decision trees (DTs), logistic regression (LR), and support
vector machine (SVM), while others employ DL detection
algorithms [32], [41], [42]. While shallow ML detection algo-
rithms require explicit feature extraction for providing good
performance, DL detection algorithms possess the capability
of automatically identifying and extracting the important fea-
tures of the raw data using their deep layers. The given results
in the literature confirm that DL is a promising approach
that achieves better performance than shallow ML algorithms
[32], [41], [42], [43], [44], [45], [46], [47].

Jokar et al. [20] have proposed customized electricity theft
detectors, which are trained using real benign readings from
the Irish dataset [48]. This paper introduced a series of six
cyber-attacks to synthetically generate malicious samples.
Also, for each customer, two SVM-based electricity theft
detectors have been trained. One detector is a single-class
SVM that is trained exclusively on benign data samples, while
the other detector is a multi-class SVM that is trained on both
benign and malicious samples. The experimental results indi-
cate that the second detector has better performance in terms
of detection rate and false alarm than the former detector.

A hybrid electricity theft detector has been proposed by
Li et al. in [49]. The detector employs a hybrid architecture
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of CNN and random forest (CNN-RF) to identify elec-
tricity theft via analyzing the daily consumption readings.
The CNN captures the features of electricity consump-
tion readings, and the RF classifies the consumption read-
ings samples. The results of the experiments confirmed
that the hybrid model outperforms other detection models,
such as Gradient-Boosted Decision Trees (GBDT), RF, LR,
and SVM. Also, Hasan et al. [50] have proposed a hybrid
CNN-LSTM model for electricity theft detection. The results
of the model indicate a promising performance by achieving
89% classification accuracy. Another DL-based electricity
theft detection model has been proposed by Zheng et al.
in [32]. The detector employs CNN and MLP to detect fraud-
ulent behaviors by analyzing the electricity consumption
readings weekly. The detector has been trained on the state
grid cooperation of China (SGCC) dataset [51] that includes
malicious and benign samples, where the malicious samples
represent 9% of the total samples. The experimental results
demonstrated that the proposed detector outperforms other
detectors such as LR, RF, SVM, and CNN.

Most of the current ML-based methods for detecting
electricity theft rely on fine-grained electricity consump-
tion data, which can reveal sensitive information about the
habits and activities of smart grid consumers. This infor-
mation poses a threat to privacy and could be exploited for
criminal purposes such as burglary. To address this issue,
various privacy-preserving [1], [9], [52], secure communi-
cation solutions [53], [54], and secure federated learning
approaches [55] have been proposed in the literature. How-
ever, our focus in this paper is solely on using RL tech-
niques for electricity theft detection, and we do not address
privacy and secure communication concerns. Nonetheless,
the existing privacy-preserving and security methods can be
incorporated into our proposed approach.

B. MOTIVATION

Referring to the above discussion, the existing works mainly
focus on developing supervised/unsupervised ML techniques
to detect electricity theft, and none of them investigated
using RL for electricity theft detection. Since RL has the
ability to efficiently adapt to changes in consumption pat-
terns and new cyber-attacks, it is a promising solution for
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electricity theft detection. Thus, this paper aims to investi-
gate the use of RL for electricity theft detection in smart
power grids. The core idea and working principle of the
proposed approach lies in the use of DRL-DDQN model,
which seeks to learn the electricity consumption patterns of
the consumers and construct an optimal policy. This policy
empowers the model to make well-informed decisions in
the face of anomalous deviation in consumption patterns,
which could be an indicator for an electricity theft attack.
Consequently, the model can make the best actions to mit-
igate such attacks. We propose electricity theft detectors in
four different architectures of neural networks while taking
into consideration learning new consumption patterns and
attacks in addition to addressing the zero-day cyber-attacks
problem.

Specifically, this work aims to address the following limi-

tations in the existing DL approaches in the literature.

o Inefficient to adapt to changes in consumption patterns
and attacks: DL models are often trained on a fixed
dataset and may not be efficient to adapt to changes in
consumption patterns and attacks, requiring retraining
on a new dataset. This process is time-consuming and
computationally extensive, especially for large datasets.
In contrast, RL can efficiently adapt to these changes by
learning from past experiences and optimizing a policy
that considers the new patterns. As a result, RL can
lead to better performance and more efficient use of
computational resources.

e Lack of exploration: DL models do not typically have a
built-in exploration mechanism, and they rely solely on
the training data to minimize a loss function. This makes
the DL model less flexible and less capable of handling
new situations. In contrast, RL can explore the space of
possible actions by optimizing a policy that considers
maximizing the expected rewards for each action. The
exploration mechanism enables RL to retrain the agent
using newly collected data that may contain information
about previously unseen patterns. This exploration can
help the agent to improve its policy and better handle the
changes in the environment that were not encountered
during the initial training. As a result, RL can provide
improved performance.

o Difficulty of generalization: DL models may overfit the
training data and thus, they learn to recognize specific
patterns and features rather than generalizing to learn
a broader range of patterns. As a result, they may not
perform well on new or unseen data that was not present
in the training set. This is a significant limitation in
many classification tasks, especially in changing envi-
ronments where the distribution of data may shift over
time. In contrast, RL can learn policies that generalize
to new environments based on past experiences. This is
because the agent learns to optimize a policy based on
maximizing the expected reward. Therefore, RL can lead
to more reliable and accurate classification, even in new
environments.
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IIl. PRELIMINARIES
A. REINFORCEMENT LEARNING (RL)
Apart from supervised and unsupervised learning, RL is
considered the third type of ML that is characterized by its
capability of self-learning and the development of behaviors
through trial-and-error. The main architecture of an RL model
consists of two key components, including an agent and
an environment, as shown in FIGURE 2. The interactions
between these components are described using three different
concepts, state (s), action (a), and reward (r) [25], [56]. The
RL process starts through a direct interaction between the
agent and the environment sequentially in different time steps
as shown in FIGURE 2. The agent takes an action a; at a
time step ¢ and sends it to the environment. Accordingly,
the environment’s state changes from s; at time ¢ to a new
state s;11 at time ¢ 4+ 1. Then, the agent receives from the
environment a reward/penalty value represented by r; that
reflects how good/bad the action is. Generally, RL aims to
maximize the total accumulated reward and establish a policy
that maps states to actions. The total accumulated reward is
expressed as follows.
o
Ry = vir, (1)

1=0

where y € [0, 1] is the discount factor that reflects the contri-
bution of the future reward to the expected return. If y = 0,
it means the agent lacks foresight and is looking forward to
maximizing the current rewards only. On the other hand, if y
gets closer to 1, the agent aims to be foresighted to the future
rewards [56]. rr4;, in Eq. 1, is the reward of the future time
step.

RL introduces the value function V7 (s), described in Eq. 2,
to show how good the agent is in the state s and it is iden-
tified as the expectation at state s. Also, it depends on the
policy 7 that maps the actions and states. When the optimal
policy, which maximizes the action value achievable for state
s, is adopted, an optimal value function that represents the
highest value is obtained. The optimal policy and optimal
value function are denoted as 7w * and V*(s), respectively [57],
and represented by Eqs. 3 and 4, respectively.

V() =ER, | S; =) (@)

7% = argmax V7 (s) 3)
T
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V*(s) = max V" (s) @)
T

Similarly, a Q function is formulated to estimate a Q
value using input pair (state, action) and outputs the reward.
Consequently, the optimal policy 7 * and the optimal Q value
0*(s, a) are represented as follows.

7" = arg max 0*(s, a). 5)
Q*(s,a) = R(s,a) + yEy [V* (s)]. (6)

where R(s, a) stands for the immediate reward gained by the
agent after executing an action a and the transition from state s
to another state s', Ey [V* (s’ )] stands for the expected future
reward of state s’ after transitioning from state s to s’.

In order to understand how the optimal policy is computed
in the RL, it is important to discuss the exploration and
exploitation mechanisms. Exploration means that the agent
must explore and evaluate a variety of available actions to
determine the best action selection in the future. Meanwhile,
exploitation means that the agent must utilize the current
knowledge to modify the action policy, thus maximizing the
total rewards. The mathematicians investigate the exploration
and exploitation using an e-greedy policy. The agent can
either explore the actions by randomly selecting an action
from the set of available actions at state s with exploration
rate € or exploit a certain action with exploitation rate 1 — €
considering the maximum Q value of this action. The explo-
ration rate € € [0, 1] should start from the maximum value
1 and gradually decrease with the progress of the learning
process [57], [58]. Eventually, the agent decides the opti-
mal action using the exploitation mechanism and the current
knowledge when the training model becomes more mature.

A distinguishable Q learning algorithm has been proposed
in [59] as a model-free RL. It encourages the agent of the
RL model in the Markovian domain to learn and behave
optimally via practicing different actions sequentially. The
goal of using the Q learning algorithm is to maximize the total
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accumulated reward using the Bellman equation:
Q"™ (st,ar) < (1 —a)Q (51, ar)
+a (rt +ymax Q (si+1, az+1)) ()

where (r; + y max, O (S:+1, ar+1)) is the update target and
a € [0, 1] is the learning rate. o indicates to what level the
updated Q-value overrides the previous Q-value. If « = 0,
this indicates that the agent utilizes the prior knowledge only
and did not learn anything from the new interaction. If « = 1,
this indicates that the agent ignores the prior knowledge and
focuses only on exploring the available actions.

Q function is presented to estimate this reward maximiza-
tion when the action is executed in a state. The iterative
updating process is considered the main concept of the Q
learning algorithm to continually update and learn the Q
value giving the learning rate [25], [56], [57]. This updat-
ing process is repeated until the next state s, becomes a
terminal state at the end of the episode. Finally, the current
and the last updated Q values are compared to check the
convergence occurrence. If the convergence is not realized,
the agent has to repeat this process in the next iteration.
In the Q-learning algorithm, a Q-table is constructed to record
Q-values of pairs (state, action). The architecture of the
Q-table is formulated using rows that correspond to the set
of the states and columns corresponding to the set of the
available actions [29], [57]. With increasing the number of
actions and states, a large memory is required to cope with
the continuous increase of state-action space. Hence, it is
inefficient to use a Q-table to handle this increasing space,
especially in complex real problems. Fortunately, DL has
been integrated with RL and initiated deep Q network (DQN)
as a promising and powerful solution to this problem due to
the interesting DL properties [29].

B. DEEP LEARNING (DL)

DL is a powerful technique of neural networks comprised
of several hidden layers. The general structure of neural
networks is constructed from input, hidden, and output layers.
Recently, many applications, such as voice identification and
face recognition, employed DL techniques to enhance the
application performance due to the accuracy and flexibility of
the DL. In this manuscript, a classification problem is studied
to classify electricity consumption readings, hence, detecting
the electricity theft attacks using various DL architectures.
In particular, feed-forward neural networks (FFNNs), recur-
rent neural networks (RNNSs), and convolutional neural net-
works (CNNs) are used in the proposed RL approach. In the
training phase of a DL model, an optimizer, an objective
function, and labeled data sample are used to compute the
optimum values of parameters for the model, including biases
and weights.

1) FEED-FORWARD NEURAL NETWORK (FFNN)
FFNN is one of the most common architectures of DL used to
solve a wide variety of problems, such as voice identification,
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TABLE 1. Irish dataset characteristics.

Description of data Value
Data consumption time frame 536 days
No. of customers 3600+
Fine-grained interval 30 Min
No. of readings per day (R) 48
No. of the considered customers 130

TABLE 2. Cyber attack functions.

Attack No ‘ Attack function ‘
-t fi(@i(t)) = Bxi(t)
2 f2(@i(t)) = Bewi(t)
3rd f3(zi(t)) = mean(x;)
4th fa(zi(t)) = Brmean(x;(t))
h _Jo t € [ts, te]
5 fs(zi(t)) = {l’z(t) t ¢ [ts, te]
6" fo(xi(t)) = zi(R —t)

face recognition, and prediction systems. Multi-layer percep-
tron (MLP) is another name for FFNN. The typical architec-

ture of an FFNN is shown in FIGURE. 3.
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2) CONVOLUTIONAL NEURAL NETWORK (CNN)

CNN is introduced as a class of DL networks frequently used
in a variety of applications such as speech processing, image
processing, and natural language processing (NLP). CNN is
characterized by the ability to capture intricate patterns and
extract distinct features from the input data. A typical CNN
structure comprises of an input layer, convolutional layers,
pooling layers, fully connected layers, and an output layer as
depicted in FIGURE 4.

3) GATED RECURRENT UNIT (GRU) NEURAL NETWORK

GRU is a class of RNNs, used in different applications such
as speech recognition and text generation. RNN is a combina-
tion of some hidden states and internal connections between
the internal states as shown in FIGURE 5. The input data to
an RNN is processed time step by time step. At each time step
t, the current hidden state of the network /%, is updated using a
transition function with two inputs, the previous hidden state
h;_1 and the current time information x; for, as follows.

hy =F (x;, 1), (8)

where F' is a nonlinear activation function. Hence, the pre-
vious inputs can be stored and memorized using /;_1, which
indicates that GRU is considered a memory for input patterns.

IV. DATASET PREPARATION

In this section, we discuss the details of the preparation phase
of the dataset, used for training and evaluating the proposed
electricity theft detection model.

A. BENIGN SAMPLES

In this paper, the Irish smart energy trails [48], a real public
dataset, are used to train and evaluate the proposed approach.
This dataset was released by the Electric Ireland and Sus-
tainable Energy Authority at the onset of 2012. The main
characteristics of this dataset are presented in TABLE 1.
In our experiments, we depend only on the SMs’ readings
of 130 randomly selected customers from the Irish dataset,
yielding a total of 69,680 samples, where each sample repre-
sents the fine-grained readings (i.e., 48 readings) in one single
day for one customer. All these samples are benign samples.

B. MALICIOUS SAMPLES
The proposed detector needs to be trained on both classes
of data (benign and malicious samples). However, the mali-
cious samples are not publicly available. Therefore, a set of
electricity theft cyber-attacks, which are introduced in [20],
are utilized in this work to imitate the electricity theft cyber-
attacks. The proposed cyber-attacks are used to generate mali-
cious samples via modifying the benign samples. Six attacks
are summarized in TABLE 2, where, x;(¢) denotes the true
value of the electricity consumption reading of a customer 7 at
time step 7 and f(.) gives the reduced electricity consumption
value.

The target of the 1% attack is reducing the true consumption
value by a random reduction factor 8, where 0 < 8 < 1. The
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FIGURE 6. Mini-batch preparation for DQN and DDQN training [58].
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FIGURE 7. The DQN training scheme [58].

2" attack dynamically reduces the true consumption value
by a time-varying reduction factor B;, where 0 < B; <
1. The 3" attack reports the mean value of the electricity
consumption readings over the day and the 47 attack reduces
the mean of consumption readings by the time-varying reduc-
tion factor. The 5 attack enables the attacker to report zero
consumption readings during a certain period of time defined
as [ty, t.]; otherwise, the attacker reports the true consumption
readings, where #; and ¢, identify the start and end time of
electricity theft period, respectively. Finally, the 67 attack
reports the actual higher consumption readings during the
low price periods. This attack is launched in case of using
dynamic pricing for electricity consumption where the prices
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of the electricity vary during the day to reduce the load during
peak hours.

C. DATA PREPROCESSING

Given the attack functions discussed in the previous subsec-
tion, to create the malicious samples, the parameters S and
B; must be set. These parameters are uniformly distributed
random variables within the range of [0.1, 0.4] in the attack
functions fi(.), />(.), and f1(.). In attack function f5(.), s is a
uniformly distributed random variable in the range of [0, 19]
and ¢, is set to 48. Further, after employing the proposed
attack functions on the benign samples to create the mali-
cious dataset, the corresponding daily benign and malicious
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FIGURE 8. The DDQN training scheme [58].

samples for each customer are 536 and 3,216 (536*6 attacks),
respectively, with a total of 3,752 samples. Consequently, the
dataset is imbalanced since the number of benign samples is
less than the number of malicious samples where the ratio
between the two classes of samples is (1:6).

Utilizing the imbalanced dataset for training the electricity
theft detector causes the detector to be biased toward the
malicious samples’ class because it is the majority class.
Therefore, an adaptive synthetic (ADASYN) over-sampling
technique is applied to avoid this issue by over-sampling
the minority benign samples’ class for each SM. Thus, the
total daily samples of each customer is 6,432 representing
the balanced benign and malicious samples, where each sam-
ple consists of 48 readings. Consequently, given the benign
and malicious samples of 130 customers over 536 days, the
dataset size is 836,160 (6,432*130) samples. The dataset is
partitioned into two sets, one for training and the other for
testing, in a 2:1 ratio. The number of samples in the training
set is 557,440, and the number of samples in the testing set
is 278,720.

V. THE PROPOSED REINFORCEMENT LEARNING MIODELS
In the proposed models, it is required to set up the training
process by creating the mini-batches of the training dataset
for each model. The generic structure of the training dataset
consists of a number of samples where each sample contains
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features and the corresponding label. In order to assimilate the
basic concepts of DRL with the training dataset, the dataset
features represent the state of the environment while the
corresponding label represents the action. Thus, the general
form for each sample of a mini-batch consists of the state
of the current time slot s;, the action of the current time
slot a;, and the state of the next time slot s;4+1. The generic
structure of the mini-batch is illustrated in FIGURE 6, where
a subset of samples called mini-batch is created by sampling
the training dataset randomly. The generation process of the
mini-batches is performed before the training model starts
such that each mini-batch is constructed by n + 1 sequential
samples ranked by the index ¢. In this section, we discuss the
training process of our RL-based DQN and DDQN models.

A. DEEP Q NETWORK (DQN)

In this work, a DQN model is employed to compute the
value of the Q function. Given a certain state and action,
a Q function value is obtained to represent the maximum
expected reward for this specific pair (state, action). Con-
sequently, depending on different Q function values for the
different states, it is easy to formulate the policy function that
maps states to actions, i.e., a certain action is executed for a
certain state. The optimal policy 7 * represents the maximum
Q-values of the pairs (state, action), and it is computed from
the Q function as explained in Eq. 5. The training process of

VOLUME 11, 2023



A.T. El-Toukhy et al.: Electricity Theft Detection Using DRL in Smart Power Grids

IEEE Access

Algorithm 1 DDQN Training Algorithm
Input: Training epochs T, batch size B, exploration
rate €, discount factor y, and learning rate .
Output: The optimal action a*.
1: Initialize the action value function Q(s, a) arbitrarily.
2: Initialize the state s by sampling the training dataset
randomly.
3: fori=0,1,2,..., T do
4:  for each state s in i. do

5: Input the state s; and the actions set A in the
current network in order to predict Q(s, A) for all
actions.

6: Use the e-greedy policy to select the action a;.

7 Given s; and a,, obtain Q(s;, a;).

8: Calculate the reward r;.

9: Input the next state s;1 and the actions set A in
the target network in order to predict Q(s;+1,A)
for all actions.

10: Use arg max, Q(s;+1, A) policy to select a;+1.
11: Given s,y and d,4 1, obtain Q;_H(SZ_H, ary1).
12: Using Q,H, 71, and y, Obtain Q.

13: Calculate the loss function.

14: Update the Q-value Q(s;, ay).

15: Repeat until s;41 is terminal.

16:  end for

17:  Repeat until getting to epoch T.

18: end for

19: Compute the optimal policy 7* and optimal action a*.
20: Execute the optimal action a; at current time slot .

DOQN is initiated using the generic structure of the individual
sample that contains the triple (s;, a¢, s;+1), where s; is the
current state, a; is the true label, and s, is the next state as
represented in FIGURE. 7.

The training process in this work is performed using four
different architectures of deep neural networks, including
FFNN, CNN, GRU, and hybrid architecture (CNN-+GRU).
Also, the mean square error loss is applied between Q; and
Oref, where Q; and Qs are the estimated Q-value of the
current state and Q-reference value, respectively. Qyr is cal-
culated by summing the current state reward r; to the result
of the multiplication of the discount factor y by the Q-value
of the next state Q1. The reward value r; of a certain state is
estimated depending on the comparison between the ground
truth label a; and the predicted label g, at that certain state.
When the two values are equal, i.e., the prediction is correct,
the reward value is one, r; = 1. Otherwise, the reward value
is zero, r; = 0, as indicated in the following equation.

po b = ©)
0 a; #al.

Furthermore, a prediction process of the Q function using
all the combinations of a current state s, and the set of
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TABLE 3. Parameters of DRL schemes.

Parameter | Value
No. of training epochs (T") 10
Batch size (B) 128
Exploration rate (€ ) 0.6
Discount factor () 0.001
Learning rate (o) 0.00001

different available labels A is performed to get the pre-
dicted label of the current state a,. This prediction process
of Q(ss, A) is illustrated in FIGURE. 7, where Q(s;, A) =
[O(s, ap), O(sy, a1), ..Q(s, ap)] and p is the total number
of available labels. After that, an e-greedy algorithm is
employed to select the action from the input Q(s;, A) where
the action is selected either using the exploitation process
with probability € or using the random exploration process
with probability 1 — €. On the other hand, an arg, max(.)
policy is employed to predict the action of the next state
41 as illustrated in the right-hand side of FIGURE 7. Both
the next state s;1; and the predicted action a;4; are used
to estimate the Q-value of the next state Qt+1 using the
maximum policy formula Q,+1 = maxsQ(st+1,A). Once
the model training phase is successfully completed, the pro-
posed DRL model is employed for the action prediction by
selecting the action which provides the maximum value of the
Q function.

B. DOUBLE DEEP Q NETWORK (DDQN)

The generic structure of DDQN has the same elements as the
DOQN structure. However, there is only one difference in the
next state prediction process. DDQN has two deep neural
networks; the first network is called the current network and
used to predict the Q function of the current state Qf, while
the second network is called the target network and used to
predict the Q function of the next state Qt+l~ Although both
the target network and the current network have the same
architecture, the target network has a time delay synchro-
nization. Therefore, the target network’s parameters must be
updated with those of the current network on a regular basis.
The main cause for employing the second network (target
network) is avoiding the moving target effect during gradient
decent calculation over (Q, — Q,ef)z. Otherwise, the training
and prediction mechanisms of the DDQN model are the same
as explained in the DQN model. By updating the parameters
of the target network, the DDQN is able to determine the
optimal Q-value for the optimal action by minimizing the
prediction loss between 0, and Orer. This is accomplished
through an increase in the accumulated reward used to calcu-
late Q.. The typical architecture of the DDQN is presented
in FIGURE 8 and the DDQN training process is presented in
Algorithm 1.
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TABLE 4. The parameters of the FFNN detection model.

TABLE 7. The parameters of the hybrid (CNN+GRU) detection model.

) Parameters . Parameters
Architecture Architecture
Layer Number of units AF Layer | Number of units | AF
Input 48 Linear Input 48 Linear
Dense 512 Relu ConvlD 64 Relu
Dense 700 Relu ConvlD 64 Relu
Dense 850 Relu ConvlD 128 Relu
GRU 64 Tanh
FFNN Dense 1024 Relu CNN+GRU an
Dense 512 Relu GRU 64 Tanh
Dense 256 Relu GRU 64 Tanh
Dense 200 Relu Dense 64 Relu
Dense 50 Relu Dense 128 Relu
Output 7 Softmax Dense 2 Softmax
TABLE 5. The parameters of the CNN detection model. . .
In the second scenario, a customized model based on DDQN
Paramotors is developed for new customers. Firstly, the global model is
Architecture - utilized for detecting the electricity theft cyberattacks, and
Layer Number of units AF e - .
then, utilizing the distinct features of RL, the global model
Input 43 Linear is retrained on the consumption readings of this customer
ConvlD 32 Relu to obtain the customized model. In this way, the detection
Conv1D 64 Relu accuracy can be high due to customizing the global model and
ConvlD 128 Relu zero-day attacks are thwarted due to using the global model
Dense 64 Relu at the beginning.
CNN Dense 128 Relu The third scenario focuses on changes in the consump-
Dense 256 Relu tion patterns of cpr.rent.customers. The CllStOIIlth.‘,d model is
Dense 756 Relu updated by retraining it on the l.ates.t consumption data .to
learn the new patterns. Meanwhile, in the fourth scenario,
Dense 512 Relu .
we tackle the challenge of learning new cyber-attacks. The
Dense 2 Softmax C . . . .
global model is initially trained to identify three types of
attacks and when a new attack is discovered, the model
TABLE 6. The parameters of the GRU detection model. is retrained using the newly collected consumption data to
enhance its detection and defense capabilities.
. Parameters The parameters of the proposed DRL detection schemes
Architecture Layer Number of units AF are adjusted and given in TABLE 3. In our experiments,
- we have used Python 3 libraries, including Numpy, Scikit-
Input 43 Linear learn, Tensorflow, Pandas, Matplotlib, and Keras. Finally, all
GRU 64 Sigmoid experiments have been run on the Google Colab platform
GRU GRU 64 Tanh which provides the ability to write and execute Python codes
Dense 64 Relu directly in the browser.
Dense 128 Relu
Dense 2 Softmax A. PERFORMANCE EVALUATION METRICS

VI. PERFORMANCE EVALUATION

In this section, the setup of our experiments and the per-
formance evaluation metrics are discussed. After that, the
experimental results of four scenarios conducted in this work
are presented to assess the performance of the proposed
detection approaches. The first scenario presents a global RL
model that utilizes DQN and DDQN to detect false power
consumption readings using various neural network architec-
tures such as FFNN, CNN, GRU, and hybrid (CNN+GRU).
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The proposed detection approaches are assessed in terms of
different evaluation metrics, including accuracy, precision,
recall, false alarm, false negative rate, highest difference,
and F-1 score. These metrics are computed using the true
positive (TP), true negative (TN), false positive (FP), and false
negative (FN), which are the core elements of the confusion
matrix and are defined as follows:

o TP: It is the number of samples that are correctly classi-
fied as malicious.

o TN: It is the number of samples that are correctly clas-
sified as benign.
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FIGURE 9. Training accuracy of different architectures of DDQN-based global model.

o FP: It is the number of samples that are misclassified as
malicious.

o FN: It is the number of samples that are misclassified as
benign.

The above evaluation metrics are explained as follows.

1) ACCURACY (ACC)

It computes the ratio of the number of correctly classified
samples to the total number of evaluated samples. It is deter-
mined as follows:

TP +TN

ACC(%) = x
TP+ TN + FP + FN

100.  (10)

2) PRECISION

It computes the ratio of the number of true positive samples to
the sum of true positive samples and false positive samples.
It is determined as follows:

100. (11)

. TP
Precision(%) = —— X
TP + FP
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3) RECALL
It computes the ratio of the number of true positive samples to
the number of positive samples. It is determined as follows:

x 100.

Recall(%) = (12)

T
TP + FN

4) FALSE ALARM (FA)

It computes the ratio of the number of false positive samples
to the total number of negative samples. It is determined as
follows:

FA(%) = x 100. (13)

FP
FP+TN
5) FALSE NEGATIVE RATE (FNR)

It computes the ratio of the number of false negative samples

to the total number of positive samples. It is determined as
follows:

FNR(%) = x 100. (14)

FN
FN +TP
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TABLE 8. Comparison between the performance of DL, DQN-RL, and DDQN-RL global models.

Metrics DL DQN-RL DDQN-RL
FFNN | CNN | GRU | CNN+GRU | FFNN | CNN | GRU | CNN+GRU | FFNN | CNN | GRU | CNN+GRU
ACC (%) 9242 | 93.14 | 91.10 94.71 95.02 | 95.84 | 95.84 96.84 94.63 | 95.22 | 95.82 97.33
Precision (%) 92.41 92.78 | 91.67 93.68 95.10 9593 | 95.90 96.89 94.86 95.50 | 95.94 97.38
Recall (%) 9240 | 93.52 | 90.38 95.84 95.02 | 95.84 | 95.84 96.84 94.63 | 95.22 | 95.82 97.33
FA (%) 7.56 7.23 8.17 6.42 4.47 2.99 3.75 2.68 243 1.37 2.48 2.06
FNR (%) 7.59 6.47 9.62 4.15 5.48 5.32 4.57 3.64 8.30 8.16 5.86 3.27
HD (%) 84.85 86.30 | 82.21 89.43 90.55 92.86 | 92.09 94.16 92.20 93.86 | 93.35 95.27
F1 (%) 9240 | 93.15 | 91.02 94.75 95.06 | 95.89 | 95.87 96.86 94.74 | 9536 | 95.88 97.35
1000 TABLE 9. Comparison be_tween the performance of the global and
customized models for different customers.
0.995
2 0990 Metrics Global model Customized models
& Customer 14 | Customer 30 | Customer 48
§ 0.985 ACC (%) 97.332 99.439 98.102 99.502
;JJ 0,980 Precision (%) 97.388 99.441 98.119 99.507
= Recall (%) 97.332 99.439 98.102 99.502
‘s 0ans FA (%) 2.06 0.25 0.93 0.14
a 04970 FNR (%) 3.27 0.86 2.88 1.00
0965 HD (%) 95.27 99.19 97.17 99.36
i i i i i i i F1 (%) 97.355 99.440 98.110 99.504
o 5000 10000 15000 20000 25000 30000

Number of training batches

FIGURE 10. Training accuracy of DDQN-based hybrid(CNN+GRU)
customized model for customer 14.

6) HIGHEST DIFFERENCE (HD)
It computes the difference between recall and false alarm
(FA), and it is determined as follows:

HD(%) = Recall(%) — FA(%). (15)

7) F-1 SCORE (F1)
It computes the harmonic mean between precision and recall.
It is determined as follows:

2 x Precisi Recall
* Precision x Recall 100.

F1(%) = (16)

Precision + Recall

B. EXPERIMENTAL RESULTS OF SCENARIO 1

In the first scenario, a global RL detection model is con-
structed using a DQN and a DDQN of different DL architec-
tures, including FFNN, CNN, GRU, and hybrid architecture
(CNN+GRU). Different DL models, including FFNN, CNN,
GRU, and hybrid (CNN+GRU) are utilized as benchmarks to
evaluate the performance of the different RL detection mod-
els. The dataset discussed in section IV is used for training all
the different architectures of DL and RL detection models.
The parameters of the aforementioned detectors are pro-
vided in TABLES 4-7. Also, the training accuracy of differ-
ent architectures of DDQN-based global model is presented
in FIGURE 9. The figure shows that the training accuracy
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increases with increasing the number of training batches.
Both the CNN and hybrid (CNN-+GRU) architectures exhibit
superior performance and faster convergence compared to
other architectures such as FFNN and GRU. Also, it is worth
noting that the FFNN architecture exhibits the slowest con-
vergence rate compared to the other architectures.

The performance of the different detectors in scenario 1 is
evaluated in terms of ACC, precision, recall, FA, FNR, HD,
and F1, and the results are given in TABLE 8. This table com-
pares the performance of DL-based, DQN-RL-based, and
DDQN-RL-based global detectors. Firstly, we can observe
that both CNN and GRU detectors achieve higher perfor-
mance compared to FFNN detectors due to the distinguish-
able characteristics of CNN and GRU. CNN provides the
detectors with the ability to extract features successfully
while GRU enables the detectors to capture the correlation
among the inputs. Secondly, the hybrid architecture of CNN
and GRU provides the best performance compared to the
other detectors as a result of the effective combination of
their distinguishable characteristics. Thirdly, all the afore-
mentioned detectors provide better performance in the case
of using RL compared to using DL because RL has the
capability to find the optimal actions using the reward concept
during the training process.

For instance, the HD increases from 89.43% in the
hybrid (CNN+GRU) DL-based detector to 95.27% in the
corresponding DDQN-based detector (i.e., about 5.84%
increase). Moreover, the FA decreases from 6.42% in the
hybrid (CNN+GRU) DL-based detector to 2.06% in the
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TABLE 10. The performance of old and updated customized models for different customers due to changing their consumption behavior.

Metrics Old customized model Updated customized models
Customer 14 Customer 30 Customer 48 Customer 14 Customer 30 Customer 48
ACC (%) 78.095 79.595 79.9 99.222 99.626 99.248
Precision (%) 79.865 79.717 80.519 99.233 99.234 99.230
Recall (%) 78.095 79.595 79.9 99.222 99.626 99.248
FA (%) 33.56 19.14 12.58 0.11 0.37 0.12
FNR (%) 10.0 15.06 27.84 1.57 0.38 1.45
HD (%) 44.54 60.455 67.32 99.11 99.26 99.10
F1 (%) 78.970 79.655 80.208 99.228 99.429 99.238

TABLE 11. Comparison between the performance of the global and customized models for newly launched attacks for different customers.

Metrics Global model Newly launched attacks customized models
Customer 5 | Customer 20 | Customer 25 | Customer 35 | Customer 5 | Customer 20 | Customer 25 | Customer 35
ACC (%) 77.753 81.704 77.069 79.060 99.782 98.444 98.630 99.751
Precision (%) 80.271 83.648 81.416 85.170 99.387 98.481 98.648 99.752
Recall (%) 77.753 81.704 77.069 79.060 99.782 98.444 98.630 99.751
FA (%) 8.04 6.20 4.45 3.01 0.65 0.19 0.57 0.42
FNR (%) 36.21 30.48 41.14 42.68 0.44 2.90 2.16 0.49
HD (%) 69.72 75.5 72.62 82.16 99.13 98.26 98.07 99.33
F1 (%) 78.992 82.665 79.182 82.001 99.584 98.462 98.639 99.751

corresponding DDQN-based detector (i.e., about 4.36%
decrease) and the F1 score increases from 94.75% to 97.35%
(i.e., about 2.6% increase). Overall, the results indicate
that the performance of DQN-RL- and DDQN-RL-based
detectors are better than the performance of the DL-based
detectors. Furthermore, the performance of the DDQN-
RL-based detectors is better than the performance of the
DQN-RL-based detectors due to the continuous updating of
the target network parameters and avoiding the moving target
effect. Finally, the results indicate that the DDQN-RL-based
hybrid (CNN+GRU) detector outperforms all other detec-
tors. Therefore, the hybrid structure of CNN+GRU using
DDQN-based RL is chosen to design the detectors in the
following scenarios.

C. EXPERIMENTAL RESULTS OF SCENARIO 2

In this scenario, a DDQN-based customized detection model
is built for a new customer. In particular, if a new customer
joins the smart grid, the readings of this customer are uti-
lized for retraining a copy of the global detection model
to create a customized model which has higher accuracy,
while preventing zero-day attacks. The retraining process is
performed sample by sample to obtain the new DDQN-based
customized detection model. Also, the training accuracy of
the DDQN-based hybrid (CNN+GRU) customized model
for customer 14 is presented in FIGURE 10. The figure
shows that the training accuracy increases with increasing the
number of the training batches. TABLE 9 shows the compar-
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ison between the performance of the global detection model
and the performance of the customized detection models of
three randomly selected new customers. For a fair compar-
ison, all the DDQN-based global and customized detection
models have the same hybrid (CNN+GRU) structure. The
results given in TABLE 9 indicate that all the customized
detection models have better performance compared to the
global detection model. For the different customers, the ACC,
precision, recall, HD, and F1-score are higher, while the FA
and FR are lower.

D. EXPERIMENTAL RESULTS OF SCENARIO 3

In this scenario, changing the consumption pattern of an
existing customer is taken into consideration. The consump-
tion pattern of a customer may change for several reasons,
including changing the number of dwellers in the home and
purchasing new electric appliances. In case of changing the
consumption pattern of a customer, the DDQN-based cus-
tomized detection model of this customer is retrained using
the new consumption readings. The retraining process is per-
formed sample by sample to obtain the updated DDQN-based
customized detection model. TABLE 10 gives the results of
the old and updated customized detection models for different
customers due to changes in their consumption patterns. All
the DDQN-based customized detection models have the same
hybrid (CNN+GRU) structure. As observed from TABLE 10,
the performance results of the updated customized detection
models, i.e., after the retraining process, are better than the
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performance results of the old customized detection model,
i.e., before the retraining process, for the different customers.
On one hand, the ACC and HD increase by up to 20% and
55%, respectively. On the other hand, FA and FNR decrease
by up to 33% and 26%, respectively. Furthermore, comparing
the performance results of the updated customized detection
models to the original models in TABLE 9 indicates that there
is a closer performance match for different customers.

E. EXPERIMENTAL RESULTS OF SCENARIO 4

In this scenario, retraining the model on newly discovered
cyber-attacks is investigated. In particular, a global detection
model is trained on the 1%, 2"¢ and 4™ attacks presented in
TABLE 2. However, the customers launch, the 3’d, S’h, and
6™ attacks presented in TABLE 2, using the new attacks, new
malicious samples are computed and utilized for retraining
the global detection model. The retraining process is per-
formed sample by sample to obtain the new DDQN-based
customized detection model. TABLE 11 gives the results of
the global models, i.e., before the retraining process, and cus-
tomized detection models of new cyber-attacks for different
customers. For a fair comparison, all the DDQN-based global
and customized detection models are constructed using a
hybrid (CNN+GRU) structure. The results illustrate that the
customized detection model can learn the newly launched
cyber-attacks and provides a better capability for electricity
theft detection. For the different customers, the ACC and HD
increase by up to 21% and 30%, respectively. On the other
hand, the FA and FNR decrease by up to 7.4% and 42%,
respectively.

VIi. CONCLUSION

In this paper, the use of RL for identifying the electricity
theft cyber-attacks in smart power grids has been investigated.
In particular, a series of cyber-attacks have been employed
to create the malicious reading samples from benign read-
ings of a real power consumption dataset. Then, deep RL
detectors have been proposed for detecting electricity theft
cyber-attacks. Specifically, we consider four scenarios. In the
first scenario, the results indicate that the global detectors
of RL-based DQN and DDQN achieve better performance
compared to the performance of DL-based detectors. The
results indicated that the RL-based detectors provide lower
FA and higher HD. Moreover, the hybrid architecture of
(CNN+GRU) provides the best performance compared to
the other detectors as a direct result of the effective combi-
nation of their distinguishable characteristics. In the second
scenario, a DDQN-based customized detector has been built
for new customers. The results indicate that the customized
detectors have better performance compared to the global
detection model. In the third scenario, changing the con-
sumption pattern of existing customers is investigated. The
results indicate that the updated detection model achieves
a comparable performance compared to the original detec-
tion model before the consumption patterns change. In the
fourth scenario, training the model on new cyber-attacks is
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investigated and the results illustrate that the detection model
can learn the new cyber-attacks and provide high accuracy,
recall, and HD in addition to lower FA.
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