
SPECIAL SECTION ON ADVANCES ON HIGH
PERFORMANCE WIRELESS NETWORKS FOR AUTOMATION AND IIOT

Received 9 May 2023, accepted 4 June 2023, date of publication 9 June 2023, date of current version 14 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3284461

A3C-Based and Dependency-Aware Computation
Offloading and Service Caching in Digital
Twin Edge Networks
LINGXIAO CHEN 1, QIANGQIANG GU1, KAI JIANG 2, (Student Member, IEEE),
AND LIANG ZHAO 1, (Member, IEEE)
1Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering, College of Computer and Information Technology, China Three
Gorges University, Yichang 443002, China
2School of Cyber Science and Engineering, Wuhan University, Wuhan 430000, China

Corresponding author: Liang Zhao (zhaoliang@ctgu.edu.cn)

This work was supported by the Scientific Research Fund of Hubei Provincial Department of Education under Grant Q20221202.

ABSTRACT The combination of Mobile Edge Computing (MEC) and Digital Twin (DT) is anticipated
to enhance the quality of mobile application services in the 6G era. However, current research often
overlooks service caching and task dependency, which may deteriorate system performance. Moreover,
Edge Servers (ESs) have limited computing resources and caching capacities, which require collaboration
to meet user demands. To address these challenges, we propose a DT-empowered MEC architecture that
supports Mobile Users (MUs) offloading dependency-aware tasks, while considering service caching and
edge collaboration. The objective is to jointly optimize computation offloading and resource allocation to
minimize the system’s energy consumption. Hence, this problem can be formulated as a Mixed Integer
Non-linear Programming (MINLP) problem and addressed by utilizing the Asynchronous Advantage Actor-
Critic (A3C)-based method. Extensive simulation results demonstrate that our approach outperforms other
benchmark algorithms under various scenarios, significantly reducing energy consumption.

INDEX TERMS Mobile edge computing, service caching, digital twin, deep reinforcement learning, task
dependency.

I. INTRODUCTION
The rapid development of mobile applications, including
autonomous driving, face recognition, and augmented reality,
has been facilitated by the emergence of B5G/6G technology
and intelligent terminals of Mobile Users (MUs). In order to
address the challenge of reducing response delay and enhanc-
ing the user experience, a flexible paradigm called Mobile
Edge Computing (MEC) has been introduced. It is capable
of leveraging computing power at the edge network, decreas-
ing task transmission delays and costs while simultaneously
improving the Quality of Service (QoS) [1], [2], [3], [4].

Digital Twin (DT) technology connects and synchronizes
the digital model of a physical entity or system with its
actual operating state in real-time [5], [6]. With the revival of

The associate editor coordinating the review of this manuscript and

approving it for publication was Lei Shu .

artificial intelligence, Reinforcement Learning (RL), includ-
ing multi-agent RL and Deep RL (DRL), has recently been
utilized to improve offloading efficiency in MEC [7]. How-
ever, MUs’ limited storage and computing capacity hinder
their ability to store substantial data and train neural net-
works. Integrating MEC and DT offers a practical solution
to this problem [8]. More precisely, DT can gather a lot of
physical layer data for neural network training, which will
assist MUs in making optimal decisions.

Previous works about MEC have primarily focused on
computation offloading, neglecting the significance of ser-
vice caching and task dependency [9], [10], [11]. However,
the performance and feasibility of task offloading are con-
siderably affected by service caching and task dependency.
Service caching indicates pre-caching application services
and relevant databases on edge servers (ESs) so that they
can handle corresponding computing tasks, reducing delay

57564
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-2641-4725
https://orcid.org/0000-0002-5706-7834
https://orcid.org/0000-0002-2725-9149
https://orcid.org/0000-0002-6700-9347


L. Chen et al.: A3C-Based and Dependency-Aware Computation Offloading and Service Caching

as well as energy consumption [12], [13], [14]. Additionally,
numerous computation-intensive tasks consist of multiple
interdependent subtasks, where the processing of the current
subtask is reliant on the completion of the preceding sub-
task [15], [16], [17].

Meanwhile, the aforementioned research was conducted in
relatively simple application scenarios. This paper seeks to
minimize the energy consumption of the system by address-
ing the problem of intelligent offloading for dependency-
aware tasks. Furthermore, edge collaboration and service
caching are considered, and resource allocation and compu-
tation offloading strategies are jointly optimized to handle
time-varying network conditions. This paper’s notable con-
tributions are summarized below:

1) A DT-empowered MEC system architecture is pro-
posed. By collecting system information, DT can train
neural networks and improve training accuracy.

2) Taking service caching and task dependency into
account, we can decrease the system’s energy con-
sumption by jointly optimizing offloading and resource
allocation. This challenge is addressed by formu-
lating it as a Mixed Integer Non-Linear Program-
ming (MINLP) problem and presenting an A3C-based
approach.

3) Simulation results demonstrate that in different scenar-
ios, the proposedA3C-basedmethod outperforms other
benchmark schemes.

A review of related work is presented in Section II of
this article, while Section III outlines the system model.
Following that, Section IV offers an A3C-based algorithm as
a potential solution to the problem at hand. Section V sum-
marizes the simulation results, with the conclusion presented
in Section VI.

II. RELATED WORK
To alleviate the workload pressure of limited MU resources,
the research around computation offloading in MEC
has aroused widespread interest over the past several
years [18], [19]. In [20], the authors exploited a novel edge
computing platform point to minimize user delay based on
the wireless access. The authors in [21] utilized cloud-edge
collaboration and vehicle-to-vehicle offloading in vehicular
edge networks, aiming to maximize the system utility while
satisfying the delay. In [22], the authors endeavored to reduce
the energy consumption of MUs by optimizing the com-
puting resources of ESs, in addition to taking computation
offloading decisions into account. Furthermore, the authors
in [23] investigated the end resource management challenge
for application in an edge environment, considering energy
efficiency and fairness.

In practice, however, ESs can only use existing services to
accommodate specific computing tasks. The above works are
unrealistic, since most assume that all tasks can be accommo-
dated by an ES. In [24], the authors assumed the MEC server
had cached the calculation results of high popularity before

the user requested a computing task. The authors in [25]
proposed that an ES cannot cache all services to support
users, and computing tasks cannot be executed normally if
the associated services are not cached. However, the asso-
ciated task service type may not be cached because of the
ES’s restricted storage space, which leads to task failure.
Besides, frequent service updates can result in higher operat-
ing costs than task execution and affect system stability [26].
Therefore, this problem should be solved by considering the
collaboration between ESs. In [27], the authors considered
computation offloading and service caching in a coordinated
MEC platform. Fully leveraging the storage and computing
capabilities, the authors in [28] not only consider workload
scheduling and service caching but also emphasize the impor-
tance of edge node collaboration in reducing the overall
workload of a MEC system.

However, most of the above studies focus on offload-
ing independent tasks and rarely consider the correlation
between tasks. The fact is that a mobile application may
consist of multiple related tasks. Hence, in MEC scenarios,
it is more challenging and practical to study the correla-
tion between tasks for task offloading. In [29], the authors
investigated a single-ES system that can optionally cache
previously downloaded applications for future reuse. The
authors in [30] considered how to find a feasible offload-
ing scheme for dependency-aware tasks under limited cache
resources, aiming to minimize the generation time. In [31],
the author investigated the scheduling decision of an applica-
tion composed of multiple related tasks in a cloud computing
system and reduced the overall application execution cost.
In [32], offloading assignments for dependency-aware tasks
are investigated to attain the ideal offloading strategy based
on the system cost.

Furthermore, as DT technology can evaluate the cur-
rent system state in real-time and predict its future per-
formance, it is enabled to play a comprehensive analysis
and decision-making role in MEC scenarios. The authors
in [33] proposed a deep learning (DL) architecture where
DT can obtain user association schemes and the variation
of real networks in real-time to train the DL algorithm off-
line. In [34], the author utilized DT technology to realize
artificial intelligence in a vehicle edge computing network
to promote the utilization of the ES’ resources. The authors
in [5] considered intelligently offloading tasks with the assis-
tance of DT, considering collaboration between ESs in this
system.

ADT-empoweredMEC architecture that takes into account
edge collaboration and service caching is proposed in this
study. Separate from the majority of earlier research, we put
the spotlight on the more challenging dependency-aware
tasks as opposed to independent tasks.

III. SYSTEM MODEL
Detailed information regarding the network architecture is
presented in this section. Following that, we delve into the

VOLUME 11, 2023 57565



L. Chen et al.: A3C-Based and Dependency-Aware Computation Offloading and Service Caching

FIGURE 1. The Architecture of digital twin network.

communication model and computation model. To conclude,
we propose relevant optimization objectives.

A. NETWORK ARCHITECTURE
Fig. 1 illustrates a DT-empowered MEC architecture, which
comprises a cloud server, multiple MUs, and ESs. This
architecture is comprised of two layers, namely the physi-
cal entity layer and the DT layer. The former includes N
ESs and I MUs, denoted by the sets N = {1, 2, . . . ,N }
and I = {1, 2, . . . , I }, respectively. These ESs can receive
task offloading requests from the MUs that are randomly
distributed in the wireless coverage area. Additionally, both
edge devices and terminals in the DT layer are equipped with
corresponding sensors to collect relevant information, such as
hardware configurations and network status.

As shown in Fig. 2, the data center in DT stores a large
amount of data, including information about MUs, ESs, and
communication environments. The data is utilized to create
function modules for digital modeling, including modules for
user behavior and radio channel environment. Through these
models and big data, it is possible to utilize AI algorithms
like DQN and DDPG to obtain the optimal strategy. Based
on the above, DT collects a large amount of information from
the physical entity layer. After receiving the user request and
task information, the AI algorithm is used to determine which
offloading scheme the MU adopts, and finally the offloading
scheme is sent to the MU to realize the task’s intelligent
offloading. As a result, DT can constantly communicate with
the physical layer to make valid real-time decisions.

In the proposed system, each MU i generates a task that is
composed of multiple subtasks, which are dependent on each
other. The set of subtasks is denoted by J = {1, 2, . . . , J},

FIGURE 2. Structure of digital twin layer.

where the output of subtask j′ is utilized as the input for
subtask j. Consequently, subtask j can only begin computation
once subtask j′ has been completed. The subtask information
is characterized by various parameters, such as ci,j which
specifies the aggregate number of CPU cycles needed to
complete the subtask, di,j which indicates the subtask’s data
size, and tmaxi,j which represents the maximum acceptable
delay for the subtask j.

Each ES n is restricted by its caching capacity, which
limits the number of services it can cache. Specifically, only
a subset of subtask types requires storage space hq to cache
corresponding services, and we denote this set asQ. For each
subtask type q ∈ Q, let ϕn,q denote whether ES n caches the
corresponding service (ϕn,q = 1 if yes, and ϕn,q = 0 oth-
erwise). The cloud has abundant caching capacity and can
cache all services. Additionally, assuming that collaboration
among ESs can enable distributed caching and enhance the
utilization of available resources.

B. COMMUNICATION MODEL
In general, there is a wireless connection betweenMU and the
ES. However, it is assumed that all tasks cannot be performed
on the user’s equipment and must be sent to the local ES
first. The process of optimizing offloading computing tasks
to the ES and returning the final result to MU is not being
considered in this paper. Thereby, the wireless transmission
process is ignored. In this study, communication between
servers is facilitated by optical fiber wired connections. This
encompasses the communication between an ES and the
cloud server, as well as the interaction between various ESs.
The data transfer speed between different ESs is represented
as res, while rcloudj refers to the data transfer speed between
each ES and the cloud server. Besides, Ptrsn (J/bit) indicates
the energy consumption per bit of data transmission between
different ESs, while Pcloud (J/bit) indicates the energy con-
sumption per bit of data transmission between the ES and
the cloud server. Thus, the transmission delay and energy
consumption for ES-to-ES communication are calculated as.

t trsi,n,j =
di,j
res

, (1)

57566 VOLUME 11, 2023



L. Chen et al.: A3C-Based and Dependency-Aware Computation Offloading and Service Caching

etrsi,n,j = Ptrsk di,j, (2)

Subsequently, the transmission delay and energy consump-
tion between the cloud and ESs can be expressed as follows

tcloudi,n,j =
di,j
rcloudj

, (3)

ecloudi,n,j = Pclouddi,j, (4)

C. COMPUTATION MODEL
1) ES EXECUTION MODEL
The computing capacity offered by ES n to subtask j is
represented by fi,n,j, and the delay required to execute subtask
j on ES n is expressed as follows

tcompi,n,j =
ci,j
fi,n,j

. (5)

Next, the energy consumption on ES n can be calculated as
follows:

ecompi,n,j = Pcompn tcompi,n,j , (6)

where Pcompn indicates the computing power of ES n.

2) CLOUD EXECUTION MODEL
For tasks that require high computing capacities, they can be
offloaded to cloud computing centers to execute through the
core network. This allows the utilization of their powerful
computing resources to handle tasks that are too complex
to be processed by the terminal and ESs. Given the high
downlink rate and small computation results, the computing
delay tcloudi,n,j on the cloud server and the transmission delay
ecloudi,n,j of returning results are not considered in this paper.

Binary decision variables are defined for each subtask to
determine whether it should be carried out on the ES or the
cloud. Specifically, ai,n,j = 0, 1 indicates whether subtask j is
carried out on the ES n, while ai,c,j = 0, 1 indicates whether
subtask j is carried out on the cloud. Moreover, the variables
ai,n′,j′ = 1 and ai,c,j′ = 1 represent the previous subtask j′

being carried out on the ES n′ or on the cloud, respectively.
Considering the location of the subtask execution and the

input data source, the following situations are taken into
account for subtask j of MU i.
1) Performing a subtask at the same location as its input

data source results in further transmission delay or energy
consumption, which occurs in two scenarios: (a) when the
subtask is carried out in an ES and its input data is also
sourced from the same ES (ai,n′,j′ = 1, ai,n,j = 1, n′ =
n), or (b) when both the current subtask and the preced-
ing related subtask are carried out in the cloud (ai,c,j′ =
1, ai,c,j = 1). Performing two sequential subtasks in the same
location results in increased transmission delay or energy
consumption.

2) Sequential subtask execution in different locations does
not result in further transmission delay or energy consump-
tion. This holds true when: (c) the subtask is carried out in the
cloud and its input is caused by an ES

(
ai,n,j′ = 1, ai,c,j = 1

)
,

TABLE 1. Notations and definition.

(d) the subtask is carried out in an ES and its input is caused
by the cloud

(
ai,c,j′ = 1, ai,n,j = 1

)
, or (e) the subtask is

carried out in one ES and its input is caused by another ES(
ai,n′,j′ = 1, ai,n,j = 1, n′ ̸= n

)
. Conversely, when the sub-

task execution location and input data source are the same,
there will be an increase in transmission delay or energy
consumption.

According to the preceding, expressing the finish delay of
subtask j formed by MU i can be done as follows:

tfini,j =



tfini,j′ + t
comp
i,n,j , ai,n′,j′ = 1, ai,n,j = 1, n′=n,

tfini,j′ + t
trs
i,n,j + t

comp
i,n,j , ai,n′,j′ = 1, ai,n,j = 1, n′ ̸= n,

tfini,j′ + t
cloud
i,n,j + t

comp
i,n,j , ai,c,j′ = 1, ai,n,j = 1,

tfini,n′ , ai,c,j′ = 1, ai,c,j = 1,

tfini,j′ + t
cloud
i,n,j , ai,n,j′ = 1, ai,c,j = 1,

(7)

where tfini,j′ indicates the finish delay of subtask j′ of MU i.
Hence, the maximum finish delay of MU i is defined as
Ti = max

{
tfini,j , j ∈ J

}
. In addition, the energy consumption

of subtask j is

efini,j=



efini,j′ + e
comp
i,n,j , ai,n′,j′ = 1, ai,n,j = 1, n′=n,

efini,j′ + e
trs
i,n,j + e

comp
i,n,j , ai,n′,j′ = 1, ai,n,j = 1, n′ ̸= n,

efini,j′ + e
cloud
i,n,j + e

comp
i,n,j , ai,c,j′ = 1, ai,n,j = 1,

efini,j′ , ai,c,j′ = 1, ai,c,j = 1,

efini,j′ + e
cloud
i,n,j , ai,n,j′ = 1, ai,c,j = 1,

(8)

VOLUME 11, 2023 57567



L. Chen et al.: A3C-Based and Dependency-Aware Computation Offloading and Service Caching

Accordingly, the system energy consumption for fin-
ishing total subtasks of MU i can be represented as
Ei = max

{
efini,j , j ∈ J

}
.

D. PROBLEM FORMULATION
Minimizing the energy consumption of the system while
fulfilling the delay demands of each subtask is our objective.
Given the system model described above, the corresponding
problem can be described as

min
a,f

J∑
j=1

Ei (9)

s.t. ai,n,j = {0, 1},∀i ∈ I,∀n ∈ N ,∀j ∈ J (9a)

ai,c,j = {0, 1},∀i ∈ I,∀j ∈ J (9b)∑
j∈J

ai,n,j + ai,c,j = 1,∀i ∈ I,∀n ∈ N (9c)

∑
q∈Q

ϕn,qhq ≤ Cn,∀n ∈ N (9d)

∑
j∈J

fi,n,j ≤ f edgen ,∀n ∈ N (9e)

tfini,j − t
fin
i,j′ ≤ t

max
i,j ,∀i ∈ I,∀j ∈ J ,∀j′ ∈ J (9f)

Ti ≤ Tmaxi ,∀i ∈ I, (9g)

where (9a) and (9b) are binary decision variables that repre-
sent offloading tasks to the ES n and the cloud, respectively;
(9c) indicates that each subtask has the option to be executed
either on the ES n or the cloud. To ensure that the total
amount of cached services does not be exceed the storage
capacity Cn of the ES n, (9d) is introduced. The available
computing resources f edgen given by the ES n is guaranteed
not to be surpassed by the allocated computing resources for
MUs through (9e). Additionally, the delay for each subtask
and total subtasks are respectively restricted by (9f) and (9g).
It is important to note that Tmaxi expresses the maximum
allowable delay for executing all subtasks.

So as to decrease the system’s energy consumption,
efficient offloading and resource allocation decisions are
required. Nevertheless, ai,n,j and ai,c,j are binary discrete
variables, while fi,n,j is a continuous variable. That is to
say, this problem can be described as a MINLP problem.
Although MOSEK, Gurobi, and other solvers have many
mature algorithms for solvingMINLP problems, they need to
assume that the environment is static and will not change due
to decision-making actions, that is, actions will not affect the
environment. They can only obtain the optimal solution in a
certain state and cannot solve the sequential decision-making
problem. The RL algorithm is self-adaptive and continuously
improves its decision-making strategy through interaction
with the environment, gradually approaching the optimal
strategy. This study considers a systemmodel where the tasks
consist of interdependent subtasks. Specifically, the succeed-
ing subtask cannot commence until the previous one has
been completed, and the choices made for each subtask will

influence subsequent decisions. As such, this issue represents
a standard sequential decision-making problem.

To summarize, traditional RL algorithms like Q-learning
and SARSA are inadequate for the MDP problem because it
involves both continuous and discrete actions. However, A3C
is a DRL method that is based on the actor-critic framework
and can handle such problems. It interacts with the environ-
ment through multiple threads at the same time, and trains
the neural networks of multiple workers asynchronously.
Therefore, the A3C algorithm is presented to address this
issue.

IV. PROPOSED A3C BASED ALGORITHM
The fundamental elements of our system will now be
explored in this section. Afterwards, we will introduce a DRL
method customized to tackle the issue previously described.

A. DEFINITION OF THE STATE, ACTION AND REWARD
EachMU generates a series of dependent subtasks, which can
be offloaded not only to associated ESs but also collaborative
ESs or the cloud via associated ESs. The computation results
are ultimately returned to the MU after completing all sub-
tasks. The Markov Decision Process (MDP) can model the
environment in which intelligence is placed. Here, we for-
mally represent the optimization of the computation offload-
ing process as an MDP. In this MDP, the agent can repeatedly
interact with the unknown environment and make optimal
decisions adaptively. Three important factors inMDP are now
defined as shown below.

1) State space: The network environment can represent
the system state. Thereby, the state at time slot t can be
indicated as s(t) = {L(t),A(t)},L(t) refers to caching service
type, idle caching storage and computing capacity of the ES
at time slot t . A(t) =

{
at−1i,n,j, a

t−1
i,c,j | i ∈ I, n ∈ N , j ∈ J

}
,

denotes the current subtask’s input data source.
2) Action space: It is utilized to represent related

decisions at each time slot. According to our proposed
system, the action space can be indicated as at =

{A(t),F(t)}. The offloading decision vector can be indi-
cated as A(t) =

{
ati,n,j, a

t
i,c,j | i ∈ I, n ∈ N , j ∈ J

}
, and

the computing resource allocation is indicated as F(t) ={
f ti,n,j | i ∈ I, n ∈ N , j ∈ J

}
.

3) Reward Function: The agent receives an immediate
reward for each action taken based on the current state at each
time step. Our goal is to reduce the energy consumption of the
system while fulfilling the delay conditions of each subtask.
Consequently, we have designed the reward function based on
the corresponding optimization goal, which can be expressed
as

R(s(t), a(t)) = −
I∑
i=1

efini,j − e
fin
i,j′ (t), (10)

where
∑I

i=1 e
fin
i,j − e

fin
i,j′ (t) indicates the total system’s energy

consumption.

57568 VOLUME 11, 2023



L. Chen et al.: A3C-Based and Dependency-Aware Computation Offloading and Service Caching

B. DEEP REINFORCEMENT LEARNING
As a generic learning framework, RL contains both the envi-
ronment, the agent, observation, action, and reward. In each
episode, the agent monitors the environment’s condition and
interacts with it by taking actions, and receiving different lev-
els of rewards. After continuous learning, the optimal strategy
for maximizing the long-term expected cumulative reward
will be acquired. Nevertheless, traditional RL approaches
have difficulty handling high-dimensional state spaces or
more complex continuous actions [35]. DRL has been widely
used in a variety of applications in recent years, such as
augmented reality, smart homes, intelligent manufacturing,
etc. It represents Q-values by value function approximation
instead of a Q-table, solving the problem that traditional RL
cannot handle dimensional disasters.

In addition, most RL algorithms have slow training speeds.
However, A3C is a DRL method that can utilize multiple
threads to accelerate the learning process.

C. A3C-BASED ALGORITHM
By employing several threads to interact with the environ-
ment concurrently, the A3C enables multiple workers for
asynchronous training of the neural network [36], [37]. The
global neural network model in the A3C algorithm is respon-
sible for storing and updating network parameters. Each
worker thread carries out an action established on the current
state and observes a reward, which will be transmitted back
to the neural network for parameter adjustment, aiding the
agent to learn and optimize its strategy. This is achieved by
calculating the gradient of the neural network loss function.

The A3C algorithm also makes use of the actor-critic
network framework, which serves two purposes. Firstly, the
actor strategy network aims to learn and optimize the strategy.
The actor network receives the state as input and generates the
action probability distribution, improving the performance of
the strategy. Secondly, the critic network manages measuring
the performance of the actor in a particular state.

Then, the A3C process will be described. The DT system
initiates the information gathering process from the immedi-
ate surroundings to deduce the current state st . Subsequently,
guided by the policy function π (at | st ; θ), the system under-
takes a corresponding action at , and as a result, obtains a
reward rt before transitioning to the subsequent state st+1.
The state value function V (st ; θv), which is parameterized
by θv, is mathematically represented by

V (st ; θv) = E [Gt | s = st , π]

= E

[
∞∑
k=0

γ krt+m | s = st , π

]
, (11)

whereGt represents the discounted return for the state st . The
discount factor γ represents how future returns will affect the
current system state, where γ ∈ [0, 1].
The A3C algorithm adopts the m-step update method

for parameter updating, which is faster than the one-step
return method. The cumulative reward of m steps can be

FIGURE 3. The architecture of A3C.

represented as

Rt =
m−1∑
i=0

γ irt+i + γmV (st+m; θv) , (12)

where rt+i represents the immediate reward. m is
upper-bounded by tmax . If it achieved the final state or per-
formed the tmax action, both the value and policy functions
will be updated.

Furthermore, to improve the efficiency and stability of
training, the advantage function is introduced and defined as

A (st , at ; θ, θv) = Rt − V (st ; θv) =
m−1∑
i=0

γ irt+i

+ γ kV (st+m; θv)− V (st ; θv) , (13)

where the value function and the parameters of the policyare
denoted by θv and θ , respectively. By comparing the action
taken in the current state with the expected return and the
average return, it can estimate the quality of an action and
help the A3C-based algorithm adjust its policy.

Based on the above, the actor network’s loss function is
written as

fπ (θ ) = logπ (at | st ; θ) (Rt − V (st ; θv))+ δH (π (st ; θ)) ,

(14)

where the entropy term of strategy π can be represented by
H (π (st ; θ)), and δ can maintain the balance between the
exploitation and exploration [38]. The critic network’s loss
function is written as

fv (θv) = (Rt − V (st ; θv))2 . (15)

Next, the policy parameter of actor network and critic
network are updated, which can be expressed as

dθ ← dθ +∇θ ′ logπ
(
at | st ; θ ′

)
(Rt − V (st ; θv))

+ δ∇θ ′H
(
π

(
st ; θ ′

))
, (16)

VOLUME 11, 2023 57569



L. Chen et al.: A3C-Based and Dependency-Aware Computation Offloading and Service Caching

Algorithm 1 A3C-Based Joint Computation Offloading and
Resource Allocation Algorithm
Input: The initial state and related environment parameters;
Output: The optimal computation offloading and resource

allocation action; Iteration:
1: repeat
2: for each worker do
3: Set gradients of two global networks: dθ = 0,

dθv = 0;
4: Synchronous parameters of each worker with

global parameters: θ ′ = θ and θ ′v = θv;
5: Obtain the current system state st ;
6: for t < tmax do
7: Perform an action at according to the policy

π (at | st ; θ);
8: Reward with rt and new state st+1;
9: t ← t + 1;

10: end for
11: R =

{
0, for terminal state

V
(
st , θ ′v

)
, for non - terminal state.

12: for i ∈ {t − 1, · · · , tstart } do
13: Update R = rt + γR;
14: Obtain cumulative gradient wrt θ ′ by

Eq. (16);
15: Obtain cumulative gradient wrt θ ′v by

Eq. (17);
16: end for
17: Asynchronous update θ and θv;
18: T ← T + 1;
19: end for
20: until T > Tmax

and

dθv← dθv +
∂ (Rt − V (st ; θv))2

∂θ ′v
. (17)

In light of the RMSProp optimization, the global parameter
θ and θv are updated in an asynchronous manner [38], [39].

Algorithm 1 outlines the details of the A3C-based algo-
rithm, and the optimal decisions are made by the agent based
on this algorithm. Firstly, there is a global network and some
workers composed of actors and critics, and each worker
learns the recent parameters from the global network and
obtains the present system state for each episode. It indi-
vidually selects actions depending on the present strategy
st and interacts with the environment to get reward rt and
achieve following the state st+1. Until the ultimate state is
reached, this process is repeated. Next, each worker updates
its actor and critic network according to the cumulative gra-
dient function. In addition, the global network will auto-
matically update its parameters after obtaining the uploaded
parameters of each worker. In each episode until the last one,
repeat the appeal training process. When the final time slot is
reached, the algorithm converges, and the optimal strategy is
obtained.

TABLE 2. Simulation parameters.

V. NUMERICAL RESULTS
A. PARAMETERS SETTINGS
To assess the effectiveness of the proposed method, we car-
ried out experiments in a dynamic MEC scenario that com-
prises a cloud and 3 ESs along with 6 MUs. The subtasks
generated by MUs are of 10 different types, and their sizes
fall between 1 and 4 Mbit. Each ES has a computing capacity
ranging from 4 to 8 GHz and caching capacity between
10 and 60 GB. The storage demand for each service ranges
from 1 to 4 GB. Pcloud (j/bit) = 2 × 10−7(J/bit) represents
the energy consumed per bit of data transmitted from the ES
to the cloud server, while Ptrsn = 3 × 10−8(J/bit) represents
the energy consumed per bit of data transmitted between ESs.

Furthermore, we adopt a fully connected neural network
for our actor-critic network with two hidden layers, each con-
sisting of 128 hidden units. The experience playback buffer
size is set to 5000, with a fixed mini-batch of 64 sample
transfer tuples. In addition, the actor and critic learning rates
are 0.001 and 0.01, respectively.

To fully evaluate the A3C algorithm, the following bench-
mark schemes are compared with it, along with DDPG-based
and Greedy algorithms:

• DDPG-based: This algorithm uses deep deterministic
strategies to obtain optimal decisions.

• Greedy: The agent will adopt the strategy with the low-
est energy consumption for each subtask. Furthermore,
the computing resources assigned to each subtask must
satisfy its delay constraint.

• Cloud Execution (CE): All subtasks are carried out
in the cloud. Therefore, ESs do not participate in the
execution of subtasks, and its computing resources are
not used.

• Random Offloading (RO): Subtasks are randomly
assigned to the ES that stores the relevant service. If the
service is not cached by any ES, it is offloaded to the
cloud.

B. THE CONVERGENCE PERFORMANCE
We will compare the A3C and DDPG algorithms based on
average reward and analyze their differences in this sec-
tion. By contrasting the convergence performance of the
two algorithms in Fig. 4, it is evident that the convergence
curve of the A3C-based algorithm climbs rapidly within the

57570 VOLUME 11, 2023



L. Chen et al.: A3C-Based and Dependency-Aware Computation Offloading and Service Caching

FIGURE 4. Convergence of the A3C-based and DDPG-based algorithms.

FIGURE 5. Energy consumption versus the number of MUs.

first 1500 training episodes and reaches a relatively stable
value. Furthermore, we have noticed that the ultimate conver-
gence outcome obtained via the A3C-based algorithm closely
approximates that of the DDPG-based algorithm. However,
the convergence speed of the former is significantly better
than that of the latter. This discrepancy is attributed to the
implementation of multi-threading in the A3C-based algo-
rithm, which allows for greater interaction with the environ-
ment, thereby resulting in enhanced training efficacy.

C. PERFORMANCE COMPARISON
Additionally, we contrast the energy consumption perfor-
mance of our proposed algorithmwith the DDPG-based algo-
rithm, Greedy, RO, and CE under different scenarios.

Fig. 5 exhibits the relationship between the energy con-
sumption and the number of MUs. It is obvious that two DRL
algorithms have the best performance. Themain reason is that
they can obtain the optimal decision by training the neural
network with a large amount of data. Greedy algorithm tends
to get the local optimal solution without considering the over-
all situation. Hence, our proposed method outperforms the

FIGURE 6. Energy consumption versus the computing resources of ESs.

FIGURE 7. Energy consumption versus the caching capacity of ESs.

Greedy algorithm. With an increase in the number of MUs,
the energy consumption of all methods grows proportionally
by generating more computing tasks, leading to more intense
competition for computing resources.

Fig. 6 exhibits the relationship between the energy con-
sumption and the computing capabilities of ESs. All schemes,
except for CE, exhibit a decline in energy consumption as
the number of ESs increases, which reduces the computing
delay and, consequently, the energy consumption. In con-
trast, CE remains invariant as the computing resources of
the ESs remain unutilized. Notably, the A3C-based algorithm
outperforms the DDPG-based algorithm in terms of energy
consumption reduction, owing to their adeptness in gather-
ing global information and efficiently allocating computing
resources.

The relationship between the energy consumption and the
caching capacity of ESs is depicted in Fig. 7. For all schemes
except the CE, energy consumption falls as caching capacity
rises. This is because the ES can store additional services,
providing more options for the offloading of subtasks. Some
subtasks can be offloaded to collaborative ESs, and the cloud

VOLUME 11, 2023 57571



L. Chen et al.: A3C-Based and Dependency-Aware Computation Offloading and Service Caching

FIGURE 8. Energy consumption versus the number of subtasks.

can be offloaded to the local ES, thus reducing transmission
energy consumption. For the CE scheme, energy consump-
tion is not affected by the caching capacity of ESs because
all the subtasks are carried out in the cloud rather than on
the ES.

Fig. 8 illustrates the relationship between the energy con-
sumption and the number of subtasks. All schemes exhibit
a uniform energy consumption trend, with the exception of
CE, wherein sequential subtasks are carried out in the cloud,
incurring no additional energy expenditure. Notably, as the
number of subtasks escalates to seven, both RO and Greedy
approaches manifest higher energy consumption compared to
CE. The superior energy efficiency of the A3C-based algo-
rithm can be attributed to its aptitude for acquiring optimal
decisions for these subtasks.

Overall, the proposed method outperforms other bench-
mark schemes in various scenarios, confirming its effective-
ness in reducing energy consumption.

VI. CONCLUSION
This paper proposes a DT-empowered MEC system archi-
tecture considering service caching and task dependency
together. Firstly, we formulate the original optimization prob-
lem as aMINLP. Next, an A3C-based solution is developed to
decrease energy consumption by acquiring the optimal policy.
Finally, the proposed method outperforms other benchmarks
under different scenarios, as demonstrated by the simula-
tion results. However, our study only considers a sequential
dependency-aware task executionmodel, and further research
is needed to explore task offloading under a more general
model. In fact, studying task offloading under a general
dependency-aware task model would have significant prac-
tical value. Furthermore, extended reality (XR) and holo-
graphic communication are the current research frontiers and
will become one of the important applications of the future
6G communication network. In the following research, this
aspect will be further considered.

REFERENCES
[1] Y. Liu, S. Xie, and Y. Zhang, ‘‘Cooperative offloading and resource man-

agement for UAV-enabled mobile edge computing in power IoT system,’’
IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 12229–12239, Oct. 2020.

[2] S. Bebortta, D. Senapati, C. R. Panigrahi, and B. Pati, ‘‘Adaptive per-
formance modeling framework for QoS-aware offloading in MEC-based
IIoT systems,’’ IEEE Internet Things J., vol. 9, no. 12, pp. 10162–10171,
Jun. 2022.

[3] H. Zhou, Z. Zhang, D. Li, and Z. Su, ‘‘Joint optimization of computing
offloading and service caching in edge computing-based smart grid,’’ IEEE
Trans. Cloud Comput., vol. 11, no. 2, pp. 1122–1132, Apr./Jun. 2022.

[4] X. Shang, Y. Huang, Y. Mao, Z. Liu, and Y. Yang, ‘‘Enabling QoE sup-
port for interactive applications over mobile edge with high user mobil-
ity,’’ in Proc. IEEE INFOCOM Conf. Comput. Commun., May 2022,
pp. 1289–1298.

[5] T. Liu, L. Tang, W. Wang, Q. Chen, and X. Zeng, ‘‘Digital-twin-assisted
task offloading based on edge collaboration in the digital twin edge net-
work,’’ IEEE Internet Things J., vol. 9, no. 2, pp. 1427–1444, Jan. 2022.

[6] X. Lin, J. Wu, J. Li, W. Yang, and M. Guizani, ‘‘Stochastic digital-twin
service demandwith edge response: An incentive-based congestion control
approach,’’ IEEE Trans. Mobile Comput., vol. 22, no. 4, pp. 2402–2416,
Apr. 2023, doi: 10.1109/TMC.2021.3122013.

[7] H. Zhang,M. Huang, H. Zhou, X.Wang, N.Wang, and K. Long, ‘‘Capacity
maximization in RIS-UAV networks: A DDQN-based trajectory and phase
shift optimization approach,’’ IEEE Trans. Wireless Commun., vol. 22,
no. 4, pp. 2583–2591, Apr. 2023.

[8] B. Fan, Y. Wu, Z. He, Y. Chen, T. Q. S. Quek, and C. Xu, ‘‘Digital
twin empowered mobile edge computing for intelligent vehicular lane-
changing,’’ IEEE Netw., vol. 35, no. 6, pp. 194–201, Nov. 2021.

[9] G. Guo and J. Zhang, ‘‘Energy-efficient incremental offloading of neural
network computations in mobile edge computing,’’ in Proc. IEEEGLOBE-
COM, Dec. 2020, pp. 1–6.

[10] Y. Dai, D. Xu, S. Maharjan, G. Qiao, and Y. Zhang, ‘‘Artificial intelligence
empowered edge computing and caching for Internet of Vehicles,’’ IEEE
Wireless Commun., vol. 26, no. 3, pp. 12–18, Jun. 2019.

[11] Z. Song, Y. Liu, and X. Sun, ‘‘Joint task offloading and resource allocation
for NOMA-enabled multi-access mobile edge computing,’’ IEEE Trans.
Commun., vol. 69, no. 3, pp. 1548–1564, Mar. 2021.

[12] H. Zhou, T. Wu, H. Zhang, and J. Wu, ‘‘Incentive-driven deep reinforce-
ment learning for content caching and D2D offloading,’’ IEEE J. Sel. Areas
Commun., vol. 39, no. 8, pp. 2445–2460, Aug. 2021.

[13] J. Yan, S. Bi, L. Duan, and Y. A. Zhang, ‘‘Pricing-driven service caching
and task offloading in mobile edge computing,’’ IEEE Trans. Wireless
Commun., vol. 20, no. 7, pp. 4495–4512, Jul. 2021.

[14] G. Zheng, C. Xu, H. Long, andX. Zhao, ‘‘MEC inNOMA-HetNets: A joint
task offloading and resource allocation approach,’’ in Proc. IEEE Wireless
Commun. Netw. Conf. (WCNC), Mar. 2021, pp. 1–6.

[15] H. Liao, X. Li, D. Guo, W. Kang, and J. Li, ‘‘Dependency-aware applica-
tion assigning and scheduling in edge computing,’’ IEEE Internet Things
J., vol. 9, no. 6, pp. 4451–4463, Mar. 2022.

[16] M. Mehrabi, S. Shen, V. Latzko, Y. Wang, and F. H. P. Fitzek, ‘‘Energy-
aware cooperative offloading framework for inter-dependent and delay-
sensitive tasks,’’ in Proc. GLOBECOM IEEE Global Commun. Conf.,
Dec. 2020, pp. 1–6.

[17] W. He, L. Gao, and J. Luo, ‘‘A multi-layer offloading framework for
dependency-aware tasks in MEC,’’ in Proc. IEEE Int. Conf. Commun.,
Jun. 2021, pp. 1–6.

[18] H. Zhou, T. Wu, X. Chen, S. He, D. Guo, and J. Wu, ‘‘Reverse
auction-based computation offloading and resource allocation in mobile
cloud-edge computing,’’ IEEE Trans. Mobile Comput., early access,
Jul. 18, 2022, doi: 10.1109/TMC.2022.3189050.

[19] H. Zhou, M. Li, N. Wang, G. Min, and J. Wu, ‘‘Accelerating deep learning
inference via model parallelism and partial computation offloading,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 34, no. 2, pp. 475–488, Feb. 2023.

[20] Z. Wang, G. Xue, S. Qian, and M. Li, ‘‘CampEdge: Distributed com-
putation offloading strategy under large-scale AP-based edge computing
system for IoT applications,’’ IEEE Internet Things J., vol. 8, no. 8,
pp. 6733–6745, Apr. 2021.

[21] J. Zhao, Q. Li, Y. Gong, and K. Zhang, ‘‘Computation offloading and
resource allocation for cloud assisted mobile edge computing in vehicular
networks,’’ IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7944–7956,
Aug. 2019.

57572 VOLUME 11, 2023

http://dx.doi.org/10.1109/TMC.2021.3122013
http://dx.doi.org/10.1109/TMC.2022.3189050


L. Chen et al.: A3C-Based and Dependency-Aware Computation Offloading and Service Caching

[22] H. Li, H. Xu, C. Zhou, X. Lü, and Z. Han, ‘‘Joint optimization strat-
egy of computation offloading and resource allocation in multi-access
edge computing environment,’’ IEEE Trans. Veh. Technol., vol. 69, no. 9,
pp. 10214–10226, Sep. 2020.

[23] Y. Kim, H. Lee, and S. Chong, ‘‘Mobile computation offloading for appli-
cation throughput fairness and energy efficiency,’’ IEEE Trans. Wireless
Commun., vol. 18, no. 1, pp. 3–19, Jan. 2019.

[24] S. Li, B. Li, and W. Zhao, ‘‘Joint optimization of caching and computation
in multi-server NOMA-MEC system via reinforcement learning,’’ IEEE
Access, vol. 8, pp. 112762–112771, 2020.

[25] Z. Xu, L. Zhou, H. Dai, W. Liang, W. Zhou, P. Zhou, W. Xu, and G. Wu,
‘‘Energy-aware collaborative service caching in a 5G-enabled MEC with
uncertain payoffs,’’ IEEE Trans. Commun., vol. 70, no. 2, pp. 1058–1071,
Feb. 2022.

[26] V. Farhadi, F. Mehmeti, T. He, T. F. L. Porta, H. Khamfroush, S. Wang,
K. S. Chan, and K. Poularakis, ‘‘Service placement and request scheduling
for data-intensive applications in edge clouds,’’ IEEE/ACM Trans. Netw.,
vol. 29, no. 2, pp. 779–792, Apr. 2021.

[27] H. Zhou, Z. Zhang, Y. Wu, M. Dong, and V. C. M. Leung, ‘‘Energy
efficient joint computation offloading and service caching for mobile edge
computing: A deep reinforcement learning approach,’’ IEEE Trans. Green
Commun. Netw., vol. 7, no. 2, pp. 950–961, Jun. 2023.

[28] X. Ma, A. Zhou, S. Zhang, and S. Wang, ‘‘Cooperative service caching
and workload scheduling in mobile edge computing,’’ in Proc. IEEE
INFOCOM Conf. Comput. Commun., Jul. 2020, pp. 2076–2085.

[29] S. Bi, L. Huang, and Y. A. Zhang, ‘‘Joint optimization of service caching
placement and computation offloading in mobile edge computing sys-
tems,’’ IEEE Trans. Wireless Commun., vol. 19, no. 7, pp. 4947–4963,
Jul. 2020.

[30] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, ‘‘Offloading dependent
tasks in mobile edge computing with service caching,’’ in Proc. IEEE
INFOCOM Conf. Comput. Commun., Jul. 2020, pp. 1997–2006.

[31] S. Sundar and B. Liang, ‘‘Offloading dependent tasks with communication
delay and deadline constraint,’’ in Proc. IEEE INFOCOM Conf. Comput.
Commun., Apr. 2018, pp. 37–45.

[32] Y. Fan, L. Zhai, and H. Wang, ‘‘Cost-efficient dependent task offloading
for multiusers,’’ IEEE Access, vol. 7, pp. 115843–115856, 2019.

[33] R. Dong, C. She,W. Hardjawana, Y. Li, and B. Vucetic, ‘‘Deep learning for
hybrid 5G services in mobile edge computing systems: Learn from a digital
twin,’’ IEEE Trans. Wireless Commun., vol. 18, no. 10, pp. 4692–4707,
Oct. 2019.

[34] K. Zhang, J. Cao, and Y. Zhang, ‘‘Adaptive digital twin and multiagent
deep reinforcement learning for vehicular edge computing and networks,’’
IEEE Trans. Ind. Informat., vol. 18, no. 2, pp. 1405–1413, Feb. 2022.

[35] H. Zhou, K. Jiang, X. Liu, X. Li, and V. C.M. Leung, ‘‘Deep reinforcement
learning for energy-efficient computation offloading in mobile-edge com-
puting,’’ IEEE Internet Things J., vol. 9, no. 2, pp. 1517–1530, Jan. 2022.

[36] X.Ye,M. Li, F. R. Yu, P. Si, Z.Wang, andY. Zhang, ‘‘MEC and blockchain-
enabled energy-efficient Internet of Vehicles based on A3C approach,’’ in
Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2021, pp. 1–6.

[37] H. Zhou, Z. Wang, G. Min, and H. Zhang, ‘‘UAV-aided computation
offloading in mobile-edge computing networks: A Stackelberg game
approach,’’ IEEE Internet Things J., vol. 10, no. 8, pp. 6622–6633,
Apr. 2023.

[38] J. Du, F. R. Yu, G. Lu, J. Wang, J. Jiang, and X. Chu, ‘‘MEC-assisted
immersive VR video streaming over terahertz wireless networks: A deep
reinforcement learning approach,’’ IEEE Internet Things J., vol. 7, no. 10,
pp. 9517–9529, Oct. 2020.

[39] H. Zhou, Z. Wang, H. Zheng, S. He, and M. Dong, ‘‘Cost minimization-
oriented computation offloading and service caching in mobile cloud-
edge computing: An A3C-based approach,’’ IEEE Trans. Netw. Sci. Eng.,
vol. 10, no. 3, pp. 1326–1338, May 2023.

LINGXIAO CHEN received the B.S. degree from
the Chongqing University of Posts and Telecom-
munications. He is currently pursuing the master’s
degree with the College of Computer and Infor-
mation, China Three Gorges University. His main
research interests include mobile edge computing
and deep reinforcement learning.

QIANGQIANG GU received the B.S. degree from
Nanyang Normal University. He is currently pur-
suing the master’s degree with the College of
Computer and Information, China Three Gorges
University. His main research interests include
mobile edge computing and federated learning.

KAI JIANG (Student Member, IEEE) received
the M.S. degree from China Three Gorges Uni-
versity, China, in 2021. He is currently pursu-
ing the Ph.D. degree in cyberspace security with
Wuhan University, China. His research interests
include deep reinforcement learning, intelligent
transportation, the Internet of Vehicles, and mobile
edge computing.

LIANG ZHAO (Member, IEEE) received the
B.Sc. degree in biomedical engineering from the
Changchun University of Technology, in 2015,
and the M.Sc. degree in circuits and systems
and the Ph.D. degree in radio physics from Cen-
tral China Normal University, Wuhan, China, in
2018 and 2021, respectively. He is currently a Lec-
turer with the College of Computer and Informa-
tion Technology, China Three Gorges University.
His main research interests include wireless sensor

networks, the Internet of Things, and mobile edge computing.

VOLUME 11, 2023 57573


