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ABSTRACT Geometry-based Visual Odometry (VO) techniques are renowned in the fields of computer
vision and robotics. They use methods from multi-view geometry to estimate camera motion from visual
data obtained from one or more cameras. Tracking the camera motion precisely between different views is
dependent on the correct estimation of correspondences between salient points of the views. In practice,
geometry-based methods are found to be quite effective but do not perform well in challenging cases
due to tracking failures caused by abrupt motion, occlusions, textureless and low-light scenes, etc. On the
contrary, end-to-end learning from visual data using deep neural networks is an emerging area of research and
deals with challenging cases successfully. Despite being computationally expensive, these methods do not
outperform their counterparts in conditions favorable to geometry-based methods. Considering these facts in
this work, our goal is to integrate deep descriptors to improve the correspondence between image points for
tracking in a traditional geometry-based VO pipeline. We propose a simple stereo VO pipeline inspired by
popular techniques found in the literature. Two conventional and four deep descriptors have been used in our
experiments conducted on various image sequences of the challenging KITTI benchmark dataset. We have
determined empirically that deep descriptors can effectively minimize drift in the VO estimates and produce
better camera trajectories. The experimental results on the KITTI dataset demonstrate that our VO method
performs at par with the state-of-the-art works reported in the literature.

INDEX TERMS Deep descriptors, deep neural networks, driverless vehicles, interest point detectors, mobile
robots, visual odometry.

I. INTRODUCTION
Autonomous navigation is one desired functionality intended
for driverless vehicles and mobile robots to move in an
environment independently. To accomplish this challenging
task, the vehicle (or robot) must be able to localize itself
in the environment (localization problem) and build a map
of its surroundings (mapping problem) using its sensors.
Vision-based sensors are often the focus of interest as they
provide rich information about the surroundings at a low
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cost. Visual Odometry (VO) deals with the estimation of
vehicle motion using visual data from single or multiple
cameras and helps in the localization of the vehicle in the
environment [1]. In mobile robots, it is analogous to wheel
odometry which provides the motion of a robot relative to its
prior state or pose. However, the task is challenging as a VO
algorithm is required to deal with abrupt motions, occlusions,
variations in the scene illumination and low-textured environ-
ments [2], [3]. Visual Simultaneous Localization and Map-
ping (VSLAM), on the other hand, aims to build a map of the
environment and localize the vehicle in the map at the same
time using the visual data [4], [5]. Both VO and VSLAM
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share the same computational blocks for localization i.e.,
tracking of the camera across different views, but VSLAM
has additional blocks like map management, loop closure and
global trajectory correction. As for any odometry, an accurate
VO algorithm is expected to reduce drift in the localization by
limiting the tracking errors and therefore, helps inminimizing
the need for loop closure and global trajectory correction [4].

Traditional VO methods [5], [6], [7], [8], [9], [10] employ
geometry-based constraints and relationships to estimate the
camera pose from one view (or image) to another. These
methods provide reliable pose estimates but are subject to
the scene conditions (e.g., moving objects, illumination and
texture), and overlap between the two views. The exemplary
performance of the deep learning-based methods in other
challenging vision tasks like image recognition, object detec-
tion and tracking, scene segmentation, 3D reconstruction,
etc., has also motivated the researchers to design and develop
suchmethods for VO/VSLAM [2]. Therefore, in recent years,
several deep learning-based methods [3], [11], [12], [13],
[14] have been proposed for camera pose estimation with
the focus to learn in an end-to-end manner from visual
data. Their performance is better than the traditional VO
methods in challenging low-textured and low-light scenes
but is not good enough in comparison to their counter-
parts in favorable scene conditions [2], [13]. Moreover,
these methods are also comparatively more computationally
intensive.

Combining deep learning with geometry-based techniques
for VO to gain the best out of both is an intriguing area of
research and is the focus of this work. The two techniques can
be fused in multiple ways but there are no established guide-
lines to achieve the best combination. Recent works like [15]
and [13] propose to combine dense optical flow and depth
networks with a geometry-based monocular VO technique
which is quite expensive in terms of computations. In con-
trast, we have focused on the use of deep descriptors [16]
with a traditional geometry-based VO pipeline for stereo
camera setup. We have chosen the stereo setup instead of the
monocular setup as the former is known to perform better at
the estimation ofmetric scale required for pose estimation [1].
Moreover, descriptormatching ismore efficient than the com-
putation of dense optical flow using deep networks for track-
ing image points between different views. Our VO pipeline is
influenced by popular VO/VSLAM strategies that have been
put forth in the literature like C4VX [7], PTAM [10], stereo-
PTAM [8], ORB-SLAM [9], and ORB-SLAM2 [5]. As men-
tioned earlier, tracking across views is the key component
in VO and it is accomplished by establishing the correspon-
dences between the views. In traditional methods like C4VX,
PTAM, ORB-SLAM/ORB-SLAM2, these correspondences
are determined by first computing hand-crafted descrip-
tors like ORB around keypoints in one view and matching
them with the help of a suitable distance function (e.g.,
Euclidean distance) in the other view. Recent works have
shown that these hand-crafted descriptors perform poorly

in challenging low-textured and low-light conditions while
deep descriptors achieve better matching using the same dis-
tance function on benchmark datasets [17]. It is noteworthy
that these deep descriptors are learned using image patches
and the evaluation is performed on the benchmark datasets
like UBC dataset [18] and Homography-patches (HPatches)
dataset [19] for image patch verification and image match-
ing. Although good enough for evaluating the descriptors
in challenging scenes, yet, we believe these benchmark
datasets do not account for scenarios faced by driverless
vehicles and mobile robots. Challenges due to camera motion
such as motion blur, occlusion, moving objects, etc. are not
present at all in the UBC and HPatches benchmark datasets.
Therefore, this work aims to evaluate four deep descriptors
(TNet-TGLoss [20], PatchMatchNet [21], L2Net [22] and
HardNet [23]) and compare them with two conventional
descriptors (Scale Invariant Feature Transform (SIFT) [24]
and ORB [25]) on the KITTI benchmark dataset [26] des-
tined to evaluate algorithms for driverless vehicles. The four
deep descriptors chosen in this work are diverse in terms of
architecture, training methodology and loss function. For a
fair comparison with conventional descriptors, we use the
pre-trained models for deep descriptors instead of training
them on the KITTI benchmark dataset. It is also important
to note that the scenarios in the UBC and HPatches datasets
are significantly different than that of the KITTI benchmark
dataset. The main contributions and experimental findings of
our work are summarized as follows:

• A geometry-based VO pipeline is proposed for stereo
camera setup inspired by the building blocks of domi-
nant VO/VSLAM approaches like C4VX, PTAM, and
ORB-SLAM/ORB-SLAM2.

• We have employed deep descriptors in the proposed
pipeline resulting in a hybrid approach that combines
deep learning and the geometry-based VO approach.

• It is shown experimentally that the deep descriptors
minimize drift in the VO estimates effectively and pro-
duce better camera trajectories compared to the conven-
tional descriptors on the challenging KITTI benchmark
dataset.

• In comparison with the five state-of-the-art meth-
ods (ORB-SLAM2 [5], convLSTM [27], Deep-VO-
Feat [11], DF-VO [13], SF-VO [28]) on the KITTI
benchmark dataset, our method achieves the lowest
frame-to-frame translation error and yields competitive
results in terms of frame-to-frame rotation error, drift in
translation and rotation and absolute trajectory error.

The rest of the paper is structured as follows. Section II
presents the relevant research works reported in the literature.
The description of the VO pipeline and descriptors used in
this work are provided in Section III and Section IV respec-
tively. Experimental results along with the implementation
notes are discussed in Section V. Finally, conclusions and
future works are presented in Section VI.
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II. RELATED WORKS
In this section, we describe the existing approaches and
techniques related to VO which is a well-studied problem in
the domains of computer vision and robotics. In addition to
VO methods, VSLAM methods are also worth mentioning
as both share the same pipeline. Traditionally, VO/VSLAM
methods can be categorized as feature-based and direct using
monocular and/or stereo cameras [1], [5], [10], [29], [30],
[31]. These methods generally use image geometry for cam-
era pose estimation. However, after the renaissance of neural
networks, recent developments have focused on end-to-end
deep learning-based methods [2], [3], [13] for camera pose
estimation compared to traditional geometry-based methods.
It is noteworthy that accurate scale estimation is a serious
limitation in monocular setup and therefore, stereo setup
usually yields better accuracy.

A. GEOMETRY-BASED METHODS
Single and multi-view geometry are well-known topics in
computer vision. Feature-based methods [5], [6], [7], [8], [9],
[10], [32], [33] for monocular, stereo and color-depth (RGB-
D) camera setups have been proposed in the literature in the
last two decades for pose estimation. These VOmethods gen-
erally use a keypoint detector to determine the salient points
(keypoints) in images, and feature vectors or descriptors are
computed by considering the local region around each key-
point. Tracking of keypoints for establishing correspondences
across different views (or image frames) is performed through
descriptor matching.World points are also computed with the
help of triangulation and maintained in the form of a map.
Both map and tracked points are used to estimate the relative
camera poses between views. Keypoint detector performance,
type of descriptor and matching technique contribute to the
accuracy of estimated poses between image frames.

Klein and Murray. in a seminal work, proposed parallel
tracking and mapping (PTAM) [10] for estimation of the pose
of a handheld camera in an unknown environment. In their
work, tracking and mapping are executed as parallel tasks
and optimized to estimate the camera pose in real-time. The
‘‘features from the accelerated segment test’’ (FAST) corner
detector is used at multiple scales to detect keypoints in
an image. Tracking of keypoints from one image frame to
another is achieved through the image warping technique that
warps patches around each keypoint in one view and matches
them in the other by minimizing sum-of-absolute differences
(SAD). World points are added to the map and computed
for keyframes only, using the triangulation technique. Cam-
era pose is estimated by minimization of reprojection error
between the tracked keypoints and projection of the corre-
sponding world points in the map. To reduce drift errors,
Bundle adjustment (BA) [34] is performed locally on camera
poses and world points in the map. In contrast to the previ-
ous work destined for monocular camera setup, the author
in [32] presents a stereo VO algorithm for mobile robots. The
stereo-rectified image pair is used to compute the disparity

by matching pixels in the left and right images. Then, corners
are detected in the rectified image pair using a standard corner
detection algorithm, like the FAST corner detector, and pixel
values in a fixed window around the corners are used as the
descriptor. For tracking the corner points between consecu-
tive stereo images, the descriptors are matched using the SAD
score. To validate the matches, rigidity constraints on the
corresponding world points are employed. The motion is esti-
mated by minimizing the reprojection error between a set of
left and right image keypoints and the projections of the corre-
spondingworld points. In a similar work, Geiger et al. employ
corners as keypoints and image gradients in a local region
around the keypoints as descriptors in their work on pose
estimation and 3D reconstruction using stereo images [35].
The world points are computed using the triangulation using
the calibration information of the stereo setup. For motion
estimation, a reprojection error similar to [32] is employed
and minimized with the help of a non-linear optimization
scheme. A follow-up work [6] proposes a feature selection
strategy based on the image bucketing method to reduce the
computational complexity in descriptor matching for tracking
purposes. However, contrary to the earlier work [35], Nistér
five-point method [36] is used to estimate the essential matrix
using the left image views only and is decomposed to get the
rotation matrix. The translation vector is estimated by using
the reprojection error in the stereo settings (using both left
and right points and corresponding world point projections)
to estimate the scale reliably.

Persson et al. propose C4VX in [7] which is a stereo
VO method employing the FAST corner detector at multiple
scales for keypoints and ‘‘binary robust independent elemen-
tary features’’ (BRIEF) descriptor. Tracking is performed by
matching BRIEF descriptors of the left images of one view
with those of the second view. Triangulation is performed to
compute the world points using the stereo pair. The keypoints
and corresponding world points are then used to estimate
the camera pose with the help of a Perspective-n-point (PnP)
solver [37]. Similar to PTAM, local BA is used to optimize the
camera pose and world points. Mur-Artal et al. [9] proposed
ORB-SLAM for monocular camera setup which is one of the
widely-used VSLAM algorithms in the domain of robotics.
Tracking, mapping and loop closure are three major tasks
executed in parallel in the method. For all tasks, ‘‘oriented
FAST and rotated BRIEF’’ (ORB) descriptors are used due
to their excellent performance and reduced computational
cost. The tracking is based on scale-aware ORB descriptor
matching across image frames. World points are added to
the map for each keyframe. To ensure long-term operation,
world points and keyframes are reviewed regularly and are
removedwhen they are not trackable. Camera pose estimation
is based on the PnP solver using keypoints and correspond-
ing world points. Local BA is employed to optimize the
map and camera poses. Loop closure is performed with the
help of a place recognition technique. A follow-up work [5]
extends the ORB-SLAM to stereo and RGB-D camera
setups.

58296 VOLUME 11, 2023



M. Bilal et al.: Enhancing Conventional Geometry-Based VO Pipeline

Contrary to feature-based methods, direct methods formu-
late an energy function involving camera poses and camera
intrinsics as parameters. The energy function is then mini-
mized to compute the parameters. Moreover, the energy func-
tion relies on the dense representation of an image i.e., pixel
values instead of keypoints and descriptors. Steinbrücker et
al. [38] propose a direct method for the estimation of camera
poses from RGB-D images. It is based on the minimization
of a non-convex energy function aiming to find a warping
function that warps one image view to another. The lineariza-
tion of the energy function is performed under photoconsis-
tency assumption for optimization. After convergence, the
image warping function yields the relative camera pose. For
large camera motions, a coarse-to-find approach at different
scales of the image is applied. Similarly, in [30], the authors
propose to minimize the photometric error where parameters
like camera pose, camera intrinsics and world points are
optimized jointly. Generally, the direct methods require a
decent initialization for the parameters and are not resilient
to illumination changes between frames [14].

B. DEEP LEARNING-BASED METHODS
Owing to the recent development in the field of deep neu-
ral networks, various end-to-end learning models for pose
estimation have been suggested [2]. Recurrent convolutional
neural networks are employed to estimate pose from color
images in monocular settings in [12]. The inputs to the
recurrent network are two consecutive frames and the net-
work is trained to estimate the relative pose between them.
The mean squared error between the ground truth pose and
the output of the network is used as the loss function. The
follow-up work of Jiao et al. [39] proposes to use a convo-
lutional neural network (CNN) followed by a bi-directional
long short-termmemory (Bi-LSTM) for pose estimation. The
CNN is used for feature extraction while the Bi-LSTM uses
the sequential information between two frames for relative
camera pose. The mean squared error defined in [12] is
used as the loss function. Similarly, Pandey et al. [40] use a
CNN for optical flow estimation which is fed to a Bi-LSTM
network for pose estimation. The network is trained with
the mean squared error between the ground truth pose and
the predicted pose similar to [12]. Xue et al. [41] propose
a framework based on a CNN and two additional modules
namely memory and refining aiming to incorporate spatial
and temporal information for camera tracking for monocu-
lar VO. A loss function based on both relative pose (local)
error and trajectory (global) error is proposed for training
the framework in an end-to-end fashion. A self-supervised
monocular VO scheme (convLSTM) based on convolutional
LSTM is proposed in [27] intending to adapt to unseen and
dynamic test scenarios in an unsupervised manner. Similar
to [41], the use of convolutional LSTM enables to focus on
both spatial and temporal information for VO estimation. The
self-supervised loss function used in their work combines
appearance and depth information. In [42], Zhu et al. present

a CNN for monocular VO composed of four streams each one
concentrating on one quadrant of the optical flow aiming to
exploit local visual cues. Each stream employs an attention
mechanism to alleviate redundancy in the intermediate fea-
ture maps. The loss function is the mean square error between
the ground truth pose and the predicted pose.

Contrary to the monocular approaches discussed above,
Depth-VO-Feat [11] uses stereo pair for depth estimation and
then uses it for pose estimation in an unsupervised way. For
these tasks, a depth network and a pose network are trained
jointly. The stereo images also help in determining the metric
scale contrary to monocular images. Liu et al. [43] propose a
stereo VOmethod using a deep neural network learning depth
and pose jointly. Contrary to other approaches where a depth
map is learned with the help of the ground truth depth map,
they used ground truth pose to supervise the depth network in
their joint learning framework.

In general, deep learning-based methods do not require
camera calibration. However, the computational cost is sig-
nificantly higher than their counterparts.

C. HYBRID METHODS
The geometry-based VO methods provide reliable estimates
when correspondences are established accurately. Typically,
sufficient texture and illumination are required in the scene to
establish the correspondence correctly. In challenging envi-
ronments, geometry-based methods do not perform well.
On the other hand, deep VO methods provide promising
results in challenging environments but perform inferior to
their geometry-based counterparts, especially in scenarios
favorable to geometry-based methods [2]. One interesting
area of research is to combine recent advancements in the
field of deep learning with geometry-based approaches for
VO to maximize the benefits of both. However, there are
numerous ways to achieve the fusion of the two approaches.
For example, in [13], two CNNs, one for dense optical flow
estimation and the other for depth estimation, are trained in
a monocular setup. The dense optical flow and depth are fed
to a conventional geometry-based VO approach. They have
shown that their hybrid method achieved superior results.
Similarly, DL-Hybrid [15] uses an optical flow network and
a depth network with a traditional geometry-based method
for a monocular VO system. Liu and Chen [28] proposed
a sparse optical flow network for feature tracking and use
a geometry-based method for pose computation. It is worth
mentioning that they trained the optical flow network on syn-
thetic data contrary to [13] and [15] and achieved competitive
results. In a recent work on monocular VO [44], Cao et al.
propose a joint learning framework composed of a depth
network, an optical flow network, and a BA module. In their
work, the traditional BA is modified to fit in the deep learning
framework to improve the generalization ability of the VO
method.

Our methodology presented in this work is motivated by
these hybrid approaches. We study the influence of deep
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descriptors in a geometry-based VO pipeline destined for a
stereo setup, as deep descriptors have outperformed tradi-
tional descriptors in image matching and retrieval tasks on
the benchmark datasets [17].

III. VISUAL ODOMETRY PIPELINE
In this section, we describe a feature-based VO pipeline
for stereo images based on blocks from the conventional
geometry-based pose estimation methods. Specifically. the
pipeline is inspired by the dominant VO/VSLAM approaches
proposed in the literature like C4VX [7], PTAM [10], stereo-
PTAM [8], ORB-SLAM [9], and ORB-SLAM2 [5]. The
complete algorithm is described in Algorithm 1. We assume
the pinhole camera model in this work. The input to the
VO pipeline is a sequence of n stereo-rectified image pairs
{(I (l)j , I (r)j )}nj=1 obtained through the calibration procedure
where I (l) and I (r) denote left and right images respectively.
In addition to the stereo-rectified images, the calibration
procedure yields the stereo baseline (sb) and the camera
intrinsic matrix (K ∈ R3x3). The algorithm outputs cam-
era poses Qj, j = 1, . . . , n where Qj ∈ SE(3). In the
following, we provide details of important blocks of the
VO pipeline.

A. KEYPOINT DETECTOR AND DESCRIPTOR
A keypoint detector is applied to each stereo pair to out-
put salient points denoted by the pair (P(l)

j ,P(r)
j ) where

P(.)
j = [p(.)1j ,p

(.)
2j , . . . ,p

(.)
mj] is composed of m keypoints. A d-

dimensional descriptor is then used to represent a small patch
around a keypoint efficiently with numeric values yielding
a total of m descriptors denoted by D(l)

j and D(r)
j for left

and right images respectively. The descriptor is assumed to
be distinctive in nature and resilient to variations in scale,
illumination, and viewpoint. In general, there is no criterion
to choose the optimal detector and descriptor for a task and
thus requires empirical evaluation. Therefore, in this work,
we have considered different traditional and deep descriptor
methods to evaluate their suitability for the VO pipeline in our
experiments. The details of these detectors and descriptors are
provided in section IV.

B. DESCRIPTOR MATCHING
An exhaustive approach to computing the pairwise distances
between two sets of descriptors is employed in our VO
pipeline which yields a distancematrix. The distance between
a pair of descriptors is either squared Euclidean distance
for real-valued descriptors or Hamming distance for binary
descriptors. For matching i.e. establishing 2D-2D correspon-
dences, the minimum distance in each column of the distance
matrix must be less than a threshold which is set to 40% of
themaximumdistance.Moreover, we have considered unique
matches only. In our pipeline, the MatchDescriptor function
(see lines 12 and 17) returns the indices of the matched
descriptors. The descriptor matching, on one hand, serves as
a tracker that tracks the keypoints between I (l)j−1 and I (l)j and

Algorithm 1 Stereo Visual Odometry Algorithm

Input: Stereo-rectified image set: {(I (l)j , I (r)j )}nj=1,
Camera intrinsic matrix: K,
Stereo baseline: sb,
Window size: w
Result: Estimated camera poses: {Q1,Q2, . . . ,Qn}

1: Point set: P ← ∅
2: Map:M← ∅
3: for j = 1 to n do

4: P(l)
j ← KeypointDetector

(
I (l)j

)
5: P(r)

j ← KeypointDetector
(
I (r)j

)
6: D(l)

j ← Descriptor
(
I (l)j ,P(l)

j

)
7: D(r)

j ← Descriptor
(
I (r)j ,P(r)

j

)
8: if j = 1 then
9: Qj← I4x4
10: P ← P(l)

j
11: else

12: L ←MatchDescriptor
(
D(l)
j−1,D

(l)
j

)
13: Qj← SolvePnP

(
P(l)
j ,M,L,K

)
14: Qj← PoseRefinement

(
Qj,P

(l)
j ,M,L,K

)
15: P ← UpdatePointSet

(
P(l)
j ,L

)
16: end

17: S ← MatchDescriptor
(
D(l)
j ,D(r)

j

)
18: M← UpdateMap

(
I (l)j , I (r)j , S,Qj,K, sb

)
19: if mod(j,w) = 0 then
20: (M,QV(j))← LocalPoseMapOptimiza-

tion
(
P,M,QV(j),K

)
21: end
22: end

on the other hand, is used to determine the correspondences
between left and right stereo pair i.e., (I (l)j , I (r)j ) for the con-
struction of the world map.

C. POINT SET AND WORLD MAP
The keypoints (P(l)

j ) and tracking information (L) are stored
in the form of a point set denoted by P and are updated at
each image frame (see lines 10 and 15). Additionally, the
local 3D scene structure information i.e. world points with
respect to the current pose (Qj) and corresponding tracking
information (S) are stored in a world map (denoted by M)
and are also updated using the untracked points at each image
frame (see line 18). To compute the world points, we first
compute the disparity map using the Semi-global matching
algorithm [45] and then employ the reprojection matrix [46].
We recall that the reprojection matrix uses the principal point
and the focal length from the camera intrinsic matrix (K) and
the stereo baseline (sb). It is noteworthy that the new world
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points are added without further verification following the
strategy proposed in [9] and [5].

D. POSE ESTIMATION
The 3D-2D correspondences can now be obtained from the
tracking information stored in the point set (P) and the
map (M). Pose estimation from 3D-2D correspondences is
an optimization problem where the aim is to determine the
camera pose by minimizing the reprojection error between
the 3D world point and the 2D image point. Let (xk , p

(l)
k )

represent the kth 3D-2D correspondence at the jth frame (or
view) where xkj ∈M and p(l)kj ∈ P . Moreover, let p̃(l)kj denotes
the projection of the 3D world point xk , we can write the
optimization problem as:

argmin
Qj

∑
k

∥p(l)kj − p̃(l)kj )∥
2
2. (1)

where ∥.∥2 is the l2 norm.
The above optimization problem is also known as

Perspective-n-Point (PnP) problem. It can be solved by using
the well-known Perspective-n-Point (PnP) solvers like [37]
and [47] by employing the image geometry. Specifically,
We use P3P solver [47] which requires a minimum of three
correspondences, with random sample consensus (RANSAC)
for estimating the camera pose. The purpose of RANSAC is
to deal with the outliers i.e., noisy correspondences as the P3P
solution is not optimal in the presence of outliers.

For the first image frame, the camera pose is assumed to
be aligned with the world frame. The camera pose, in sub-
sequent frames, is determined by the P3P solver. Once the
initial estimate of the camera pose is determined in an image
frame, it is refined with the help of the motion-only Bundle
Adjustment (BA) technique by considering all inliers i.e. the
largest consensus set (see line 14) as proposed in [7] and [5].
In general, the BA problem is to minimize the reprojection
error in (1) which is minimized efficiently with the help of the
Levenberg-Marquardt (LM) algorithm [34]. It is important to
note that, in the case of motion-only BA, the camera pose
Qj is optimized and points are fixed. The maximum number
of iterations is fixed to 20 in our implementation for pose
refinement.

E. LOCAL POSE-MAP OPTIMIZATION
As described previously, the camera pose at jth image frame
(Qj) is determined with the help of 3D-2D correspondences
and the PnP solver. However, the 3D world points are also
dependent onQj−1. Thus, the current camera pose is directly
dependent on the previous camera poses. Estimation errors
in camera pose propagate and lead to drifting over time.
To alleviate the drifting problem, BA is introduced at regular
intervals in theVOpipelinewhere both camera poses andmap
points in the local neighborhood (V) of the jth image frame
are optimized jointly (see line 20). Let �(Qj, xk ) denote a
reprojection function that projects the 3D world point xk to
jth camera view.Moreover, let p(l)kj represent the kth 2D image

point in jth camera view.We can write the local BA optimiza-
tion problem in the neighborhood of jth camera view defined
by a set V of views as the minimization of the following
reprojection error:

min
∑
k

∑
i∈V(j)

uki∥p
(l)
ki −�(Qi, xk )∥22. (2)

where uki = 1 if kth world point is visible in ith camera view
and 0 otherwise.

As BA is computationally intensive, only 10 iterations of
the LM algorithm are performed. Furthermore, to improve
the quality of 3D-2D correspondences, the world points with
sufficiently large reprojection errors are removed from the
map. This step ensures that the good quality world points are
retained.

IV. DESCRIPTORS
In this section, we describe in detail the different conven-
tional and deep descriptors used in this work. Specifically,
we consider two widely used conventional descriptors known
as SIFT [24] and ORB [25]. Both SIFT and ORB are
pseudo-standards in the domain of computer vision due to
their excellent performance in several applications includ-
ing stereo matching, object recognition, object tracking, 3D
reconstructions, place recognition, VO, andVSLAM, etc. [5],
[48], [49], [50]. In recent years, descriptor learning from data
is the focus of researchers working in the field of computer
vision owing to rapid advancement in deep learning meth-
ods. We have considered four different deep descriptors in
this work namely TNet-TGLoss [20], PatchMatchNet [21],
L2Net [22] and HardNet [23]. They have achieved signifi-
cant results while outperforming the conventional descriptors
on image patch verification and image retrieval tasks [17].
Table 1 summarizes the descriptors used in this work, their
dimensionality and the number of parameters in the network
for deep descriptors. Details of both conventional and deep
descriptors are presented in the following subsections. It is
noteworthy that the above-mentioned deep descriptor learn-
ing methods do not incorporate an interest point detector con-
trary to the conventional descriptors. However, without loss
of generality, any interest point detector can be employed. It is
also worth mentioning that the research works [20], [21], [22]
have described several networks for deep descriptor learning
including two-channel and center-surround networks. In this
work, we have focused on the single-branch variants of the
proposed networks because they need fewer computations
compared to two-channel and center-surround networks. The
implementation details are presented in section V-C.

A. SCALE INVARIANT FEATURE TRANSFORM (SIFT)
Scale Invariant Feature Transform (SIFT) [24], proposed by
David Lowe, is one of the widely used descriptors employed
in several computer vision applications including image
retrieval, stereo matching, object recognition, 3D reconstruc-
tion, place recognition, object tracking, etc. [48], [49], [51],
[52], [53], [54], [55]. The success of the SIFT descriptor
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TABLE 1. Conventional and deep descriptors used in the VO pipeline.

is mainly due to its resilience to illumination, scale, and
viewpoint variations. The computation of the SIFT descriptor
is composed of two stages known as keypoint detection and
computation of Histogram of Oriented Gradients (HOG). The
keypoint locations are the extrema in the scale-space pyramid
that is constructed using the Difference of Gaussian (DOG).
A fixed region of size 16× 16 around each keypoint location
is considered to describe the keypoint. An 8-bin HOG is
computed for each 4 × 4 non-overlapping subregion in the
fixed region to describe the keypoint. All 16 histograms are
concatenated to form a final 128D real-valued vector. The
descriptor is normalized to achieve an illumination invariant
descriptor.

B. ORIENTED FAST AND ROTATED BRIEF (ORB)
Oriented FAST and Rotated BRIEF (ORB) descriptor was
proposed by Rublee et al. [25] as an alternative to SIFT and
speeded up robust feature (SURF) descriptors with an empha-
sis on reducing the computational complexity. The descriptor
is binary in nature and is based on the computationally effi-
cient FAST corner detector [56] and BRIEF descriptor [57].
Generally, multiscale FAST corners are detected on the image
pyramid determined by user-defined scales and serve as key-
points. The orientations of keypoints are determined with the
help of the intensity centroid method. The rotation invariance
is improved by computing moments in a circular region of
fixed size around the keypoint. Then, for each keypoint, the
rotated BRIEF descriptor is computed by taking into account
the orientation of the keypoint. Being invariant to rotation,
scale, viewpoint, and illumination, the ORB descriptor has
been employed successfully in fields like object recogni-
tion, image matching, structure from motion, and VSLAM,
etc. [5], [9], [50]. In [25], the authors propose to use a circular
region of 31 × 31 pixels around the keypoint and a total of
8 scales with a scale factor of 1.2. These settings result in a
32D integer-valued (i.e. 256 bit) descriptor.

C. TRIPLET NETWORK WITH GLOBAL LOSS (TNet-TGLoss)
In [20], Kumar et al. proposed a descriptor learning frame-
work trained with a custom loss function that combined
a novel loss function called global loss and the triplet
loss [58]. The learning framework consists of convolution
and max-pooling layers with rectified linear units (ReLU) as
activation functions after convolution layers. The complete
network architecture called TNet-TGLoss is shown in Fig. 1.
The input to the network is a grayscale patch of 64× 64 pixels
and the output is a 256D descriptor after the application of
l2 normalization. The arguments to convolution (conv) layers

FIGURE 1. TNet-TGLoss network architecture.

are filter size, number of filters, and stride respectively.More-
over, the input arguments to pooling (max-pool/avg-pool)
layers are its spatial size and stride respectively. The number
of training parameters in the network is 1M approximately.
They trained the network from scratch using the 250,000
image triplets from the UBC dataset [18] with the custom
loss function. Data augmentation (rotation, flipping the image
horizontally and vertically) is also employed to achieve robust
descriptors. Though the network can be trained using the
triplet loss function, it requires a large number of triplets
sampled from the training set which may not be feasible
due to the enormous number of possible triplets. Moreover,
the network may learn to map all inputs to a single point
in the output space. To alleviate these problems, Kumar et
al. proposed combining the triplet loss with the global loss.
They showed that the distances between descriptors of similar
and dissimilar pairs follow two distinct distributions and used
the respective means and variances to form the global loss
function. Specifically, the loss aims to: (1) minimize the
mean of distances of similar pairs; (2) maximize the mean of
distances of dissimilar pairs; (3) minimize the variances of the
two distributions. The trained network is shown to perform
excellently on the image patch verification task on the UBC
benchmark dataset.

D. PATCH MATCH NETWORK (PatchMatchNet)
In one of our previous works related to descriptor learn-
ing [21], Patch Match Network (PatchMatchNet) was pro-
posed, It is based on densely connected convolution layers
contrary to plain convolution layers in a CNN for image patch
matching task. It has been shown that the network based on
densely connected convolution layers learns a better repre-
sentation of the inputs compared to its counterpart with plain
convolution layers. The network is composed of convolu-
tion (conv), concatenation (concatenate), max-pooling (max-
pool), and average pooling (avg-pool) layers (see Fig. 2).
Each convolution layer is followed by a batch normalization
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FIGURE 2. PatchMatchNet network architecture.

(bnorm) layer and ReLU activation function. The dense con-
volution layer is achieved by a convolution layer and a con-
catenation operation applied to the input and output of the
convolution layer. The total number of training parameters in
the network is 0.6M approximately. For descriptor learning,
a Siamese network is trained with the help of image patch
pairs. Then, the outputs of the two branches of the network
are concatenated and fed to a 2-layer fully connected network
(called top network) to learn a similarity score for a pair
of inputs. The hinge loss is used for training the Siamese
and top networks simultaneously. Once trained, the output
of one branch of the Siamese network is a 512D descrip-
tor representing the input grayscale patch of 64 × 64 pix-
els. The network is trained from scratch on 500,000 image
patch pairs from the UBC dataset [18]. Data augmentation
(random flip and random rotation) is also employed during
training. The l2 normalization is not part of the network
rather it is done separately after the computation of the
descriptor. The network is shown to outperform networks
with plain convolution layers on the image patch verification
task of the UBC dataset. Moreover, the generalization capa-
bility of the descriptor is shown on the HPatches benchmark
dataset [19] which includes tasks like patch verification and
image retrieval.

E. L2Net
L2Net [22] is a stack of plain convolution layers with filter
sizes of 3 × 3. The number of filters is varied from 32 to

FIGURE 3. L2Net and HardNet both share the same architecture. The
HardNet uses a dropout layer before the final convolution layer.

128 in the seven convolution layers of the network as can
be seen in Fig. 3. The batch normalization (bnorm) layer
and ReLU activation function are used after each convolution
layer except the final layer. The final layer employs l2 nor-
malization instead of ReLU to output a 128D real-valued
descriptor. The input to the network is a grayscale patch of
32 × 32 pixels. The network has 1.3M training parameters
approximately. For descriptor learning, the authors propose
a progressive sampling strategy for training that enables the
network to see a large number of image patch pairs in a few
epochs. In the proposed sampling strategy, in one mini-batch
of size b, a certain image patch has only one more image with
the same label. Thus, each batch has b/2 unique labels yield-
ing b similar pairs and b2 − b dissimilar pairs. Therefore, the
network can be trained on a large number of pairs within a few
epochs. The loss function is composed of three error terms.
The first term aims to minimize the relative Euclidean dis-
tances between descriptors of similar pairs and maximize the
relative Euclidean distances between descriptors of dissimilar
pairs. The second term aims to achieve compactness of the
descriptor by minimizing the correlation between different
dimensions of the descriptor. The third term aims to bring
the intermediate feature maps of similar pairs together while
pulling apart those of dissimilar pairs. During training, data
are augmented with the help of random rotations and random
flips. The L2Net has achieved remarkable performance on
image patch verification and image retrieval tasks on the
benchmark datasets including UBC and HPatches datasets.

F. HardNet
Mishchuk et al. [23] proposed HardNet for descriptor learn-
ing from image patches by adopting the L2Net architecture
with a different training methodology. They proposed to use
a dropout layer before the final convolution layer of L2Net
architecture for the regularization purpose (see Fig. 3). Sim-
ilar to L2Net, the input to the network is a grayscale patch of
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32× 32 pixels and the output is 128D real-valued descriptor.
Moreover, the mini-batch is constructed in the same way as
described in the case of L2Net. The loss function is based
on the Euclidean distance between image patch pairs in a
mini-batch and contrary to L2Net, does not consider the
compactness and intermediate features maps. For training,
a triplet loss is used which aims to minimize the distance
between similar pairs for each distinct b/2 image patch in
the mini-batch while maximizing the distance to the closest
dissimilar pair involving the same distinct image patch. The
technique called ‘‘hardest-within-batch’’ mining scheme has
performed remarkably on the UBC and HPatches benchmark
datasets for image patch verification and image retrieval
tasks. Data augmentation similar to the above-mentioned
networks is also considered during the training.

V. EXPERIMENTAL RESULTS
In this section, we present the benchmark dataset followed
by the evaluation metrics and implementation details. Both
quantitative and qualitative results for our VO pipeline using
conventional and deep descriptors are provided. Moreover,
a comparison with the state-of-the-art methods is also pre-
sented.

A. KITTI VISUAL ODOMETRY DATASET
The KITTI Visual Odometry dataset [26] introduced in
2012 is a benchmark dataset for evaluating VO and VSLAM
algorithms. It is one of the most used datasets because it is
a large-scale dataset representing a realistic outdoor driving
scenario. The dataset provides a total of 22 stereo sequences
(labeled as 00 to 21) which are collected by driving a sta-
tion wagon in an urban environment for a total distance of
39.2 km. The vehicle is equippedwith a stereo camera setup, a
3DLIDAR and aGPS/IMU localization unit. The stereo setup
is composed of 2 grayscale and 2 color cameras and images
are recorded at a rate of 10 frames per second. The camera
setup has an image resolution of 1392 × 512 pixels and the
stereo baseline is 54 cm. The dataset provides stereo-rectified
images and corresponding calibration data. Additionally, the
ground truth of 11 sequences (from sequence 00 to sequence
10) representing vehicle trajectory is provided. In this work,
we have used stereo-rectified grayscale images from the
11 sequences with corresponding ground truth.

B. EVALUATION METRICS
In this work, we have employed the KITTI odometry evalu-
ation criteria [26] to evaluate quantitatively the influence of
descriptors on the VO algorithm. The evaluation criteria are
based on the translation and rotation errors computed using
the ground truth and estimated trajectories. Generally, two
types of errors, relative and absolute errors in the trajectory,
are computed and discussed below. It is noteworthy that the
relative error determines the drift in the pose locally as the
vehicle moves in an environment while absolute error denotes
the localization accuracy in the global sense.

LetG1, . . . ,Gn ∈ SE(3) denote the ground truth poses for
n frames in a sequence. The relative pose error between the
ground truth and estimated camera poses at a time instant j
over a fixed interval δ is defined as:

Ej =

REj tEj

0T 1

 = (G−1j Gj+δ)−1(Q−1j Qj+δ). (3)

where T denotes the transpose of a vector.
Using the above equation, rotation error (Erot ) and transla-

tion error (Etrans) at time instant j are computed as follows:

Erotj = arccos
(
trace(REj )− 1

2

)
. (4)

Etransj = ∥tEj∥2. (5)

In the KITTI odometry evaluation criteria, (3) to (5) are
employed to compute two sets of relative rotation and trans-
lation errors. In the first set, all possible sub-sequences of
length in [100 m, 200m, . . . , 800 m] are considered by adjust-
ing the indices i and δ in (3) to compute the sub-sequence
rotation and translation errors. The average translation and
rotation errors denoted as terr (%) and rerr (%) [deg/100m]
respectively are then computed for a sequence by averaging
over all possible sub-sequences. In the second set, frame-
to-frame pose error known as relative pose error (RPE) is
computed by setting δ as 1 in (3). The average translation
and rotation errors denoted as tRPE [m] and rRPE [deg] are
then computed for a sequence using (4) and (5). In addition
to the relative errors, absolute trajectory error (ATE) [m] is
computed by considering the translation vectors of ground
truth poses tGj and estimated pose tQj . Mathematically, the
ATE at time instant j is computed as follows:

ATEj = ∥tGj − tQj∥2. (6)

The average value of ATE is computed for an entire
sequence to report the localization accuracy.

C. IMPLEMENTATION DETAILS
The VO pipeline, SIFT, and ORB are implemented using
MATLAB®computer vision and image processing tool-
boxes. The TNet-TGLoss and L2Net rely on the MatCon-
vNet toolbox for MATLAB® [59]. The PatchMatchNet and
HardNet use TensorFlow [60] and PyTorch [61] respectively.
For deep descriptors, repositoriesmentioned by the respective
authors are used to get the pre-trained models. For a fair
comparison, models trained on the Liberty subset of the UBC
benchmark dataset [18] are used in our experiments. We have
used the multiscale FAST detector which is native to the ORB
as the keypoint detector for all deep descriptors. A total of
1000 keypoints spread evenly on the input image are consid-
ered for descriptor computations for both conventional and
deep methods. In the VO pipeline, the local BA is performed
after every w frames (see algorithm 1) which is set to 5 in
our experiments. A desktop PC equipped with i7-4770 CPU,
12GB RAM, and 11GB GTX 1080Ti graphic card running
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TABLE 2. Quantitative VO results using conventional and deep descriptors on sequences 00 to 10 of the KITTI dataset.

the Ubuntu operating system serves as the computational
platform in all our experiments.

D. VISUAL ODOMETRY RESULTS
We evaluate the performance of six descriptors (ORB,
SIFT, TNet-TGLoss, PatchMatchNet, L2Net, HardNet) using
the geometry-based VO pipeline of section III and the
above-mentioned evaluation metrics. The results in terms of
relative errors i.e., terr (%), rerr (%) [deg/100m], tRPE [m] and
rRPE [deg] and absolute errors i.e., ATE [m] on 11 sequences
of the KITTI dataset are presented in Table 2. The winner
and runner-up for each sequence and each metric are also
shown in bold and underlined text respectively. On comparing
conventional descriptors only, ORB achieves lower average
translation drift (terr = 3.818%), average rotation drift (rerr
= 1.520%) and average ATE (75.492 [m]) than SIFT. But,
SIFT performs better than ORB in terms of average frame-
to-frame relative errors i.e. tRPE and rRPE achieving rela-
tive pose errors of 0.040 [m] and 0.067 [deg] respectively.
Thus, it can be concluded that ORB is better than SIFT at
dealing with the drift problem in the VO estimation over
longer periods. On comparing deep descriptors only, HardNet
achieves lower average translation drift (terr = 3.611%) and
average rotation drift (rerr = 1.186%) than TNet-TGLoss,
PatchMatchNet and L2Net. In terms of ATE, L2Net is slightly
better than HardNet achieving an average ATE of 61.128
[m] but is significantly better than PatchMatchNet (80.381
[m]) and TNet-TGLoss (70.343 [m]). Considering average

frame-to-frame relative errors, both HardNet (0.057 [m] and
0.075 [deg]) and L2Net (0.064 [m] and 0.075 [deg]) achieve
similar results and are better than PatchMatchNet and TNet-
TGLoss. Moreover, it is noted that PatchMatchNet, L2Net
and HardNet attained best or runner-up positions on 9 out
of 11 sequences while TNet-TGLoss reached the top two
positions in 5 sequences only in one or more evaluation met-
rics. Thus, it can be stated that a modified CNN architecture
employed by the PatchMatchNet and/or a better sampling
strategy during training employed by the L2Net and Hard-
Net yielded better deep descriptors. It is also noteworthy
that PatchMatchNet has only 0.6M parameters compared to
1.3M of L2Net and HardNet and achieves competitive results
but yields high dimensional descriptors (see Table. 1). This
makes L2Net and HardNet promising choices due to their
superior performances while yielding only 128D descriptors.
Considering the average errors for all descriptors, the Hard-
Net achieves the best terr (3.611%) and rerr (1.186%). Com-
pared to HardNet, the runner-up ORB descriptor achieves
a translation error of 3.818%, lagging by 0.21%, while the
L2Net achieves a slightly higher rotation error of 1.188%,
lagging by just 0.002%. The L2Net attains an average ATE
of 61.128 [m] computed over all sequences and outperforms
all others. It is followed by the HardNet achieving an ATE
of 61.234 [m]. In terms of relative error (tRPE and rRPE), the
SIFT outperforms all on 10 out of 11 sequences and achieves
the lowest relative pose errors on average. It is followed by
the HardNet achieving very close relative errors and lags
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TABLE 3. Quantitative comparison with existing methods on sequences 00 to 10 of the KITTI dataset.

FIGURE 4. Estimated trajectories of Our (red), DF-VO (blue), ORB-SLAM2 (green) and Depth-VO-Feat (magenta) in different sequences of the KITTI
dataset. The ground truth (black dotted) is also plotted. The starting point is shown with a black square box.
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by 0.017 [m] in translation and by 0.006 [deg] in rotation.
Overall, the HardNet attains the top position in terms of
terr (%) and rerr (%) while it is a runner-up in terms of ATE,
tRPE and rRPE.

Next, we present a comparison of our method (with
HardNet as the deep descriptor) with five state-of-the-art
methods namely ORB-SLAM2 [5], convLSTM [27], Deep-
VO-Feat [11], DF-VO [13] and SF-VO [28] in Table.
3. The ORB-SLAM2 is a widely-used geometry-based
method employing ORB descriptor; convLSTM is a deep
learning-based method employing a self-learning mechanism
for domain adaptation; Deep-VO-Feat, DF-VO and SF-VO
are hybrid methods like ours combining deep learning and
geometry-based methods. Moreover, ORB-SLAM2, convL-
STM, Deep-VO-Feat and SF-VO deal with monocular VO
while DF-VO exploits stereo information. We have used the
results reported in [13] for ORB-SLAM2 and Deep-VO-Feat
in addition to their DF-VO results. It is noteworthy that Deep-
VO-Feat uses the KITTI dataset for training a depth network.
Similarly, DF-VO uses the dataset for dense optical flow and
depth networks. Thus, both Deep-VO-Feat and DF-VO are
adapted to the driving sequences. Contrary to these methods,
SF-VO uses synthetic datasets for learning sparse optical
flow. The ORB-SLAM2 without loop closure is used for
comparison in this work. The results of convLSTM trained on
the synthetic dataset1 are reported here for a fair comparison.
However, only terr (%) and rerr (%) are reported by the authors
of convLSTM in [27]. In [28], the evaluation of SF-VO is
demonstrated using terr (%), rerr (%) and ATE only. It is also
important to note that monocular VOmethods lack the metric
scale, thus the ground truth is used to estimate the proper scale
as proposed in [13]. In Table 3, the top three methods for each
sequence and each metric are shown in bold, underlined and
italic text respectively. In terms of average errors computed
on all sequences, SF-VO achieves the lowest drift in the
translation compared to all other methods while our method
is ranked second by a narrow margin. Specifically, SF-VO
obtains 3.185% as terr while our method lags by just 0.426%.
Both SF-VO and ourmethod perform significantly better than
DF-VO (6.747%), Depth-VO-Feat (9.354%), ORB-SLAM2
(17.119%) and convLSTM (17.695%) in terms of drift in the
translation. However, our method obtains the smallest relative
translation error (tRPE) of 0.057 [m] compared to the runner-
up (DF-VO) obtaining 0.138 [m] while Depth-VO-Feat and
ORB-SLAM2 obtain 0.148 [m] and 0.388 [m] respectively.
The ORB-SLAM2 attains the lowest drift in the rotation (rerr
= 0.357%, rRPE = 0.066 [deg]) and our method holds the
second place by a narrow margin (rerr = 1.186%, rRPE =
0.057 [deg]). SF-VO obtains the third place in the ranking
with an rerr of 1.484% while DF-VO is ranked third in
terms of rRPE (0.105 [deg]). The convLSTM has significantly
higher rerr (4.676%) while Depth-VO-Feat performs slightly
better in comparison (rerr = 3.314%, rRPE = 0.187 [deg]).
In terms of ATE, SF-VO, Deep-VO-Feat and Deep-VO are

1Carla simulator: www.carla.org

the top three methods obtaining 22.095 [m], 48.695 [m] and
49.855 [m] respectively. Our method and ORB-SLAM2 are
ranked fourth and fifth in terms of ATE obtaining 61.234 [m]
and 69.727 [m] respectively.

In addition to quantitative results, trajectories estimated
by ORB-SLAM2, Deep-VO-Feat, DF-VO and our method
are plotted against the ground truth in several sequences of
the KITTI dataset are presented in Fig. 4. Unfortunately,
the estimated trajectories of SF-VO and convLSTM are not
available publicly and therefore, we could not include them
in our qualitative analysis. It can be observed that our method
performed well in sequences 07, 09 and 10 shown in the first
row of the figure. The second row displays sequences where
our method deviates from the ground truth significantly.
In sequence 01 (Fig. 4(d)), all methods including ours could
not perform well but our method tracked the camera motion
long enough compared to all other methods. In sequences 05
(Fig. 4(e)) and 08 (Fig. 4(f)), DF-VO outperformed all other
methods including ours.

VI. CONCLUSION AND FUTURE WORKS
In this article, we have presented a geometry-based VO
method for stereo camera setup. The performance of the
geometry-based VO method relies on the accurate tracking
of points between the camera views. Generally, the method
employs a descriptor-matching technique to establish corre-
spondences between different camera views which requires
robust descriptors. In this work, we have shown through
experiments that deep descriptors, owing to the recent devel-
opments in the domain of deep learning, perform better than
their conventional counterparts on the KITTI benchmark
dataset which presents a challenging real-world scenario.
It is noteworthy that deep descriptors are not trained on the
KITTI dataset in this work and their performance relies on
the generalization capability of networks for descriptor learn-
ing. Comparison with state-of-the-art methods demonstrates
the effectiveness of our method. In comparison, it achieves
competitive relative and absolute pose errors.

In future works, we aim to investigate the performance of
deep descriptors by training networks on the KITTI dataset
and compare their performance with the pre-trained ones.
We also plan to consider multiple datasets presenting dif-
ferent scenarios (indoor/outdoor, ground/aerial vehicles, etc.)
in our evaluation. Furthermore, we will focus on the joint
learning framework to learn of keypoints and descriptors in
an image in an end-to-end manner, especially for VO/SLAM
pipelines.
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