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ABSTRACT The current target detection network in deep learning has been widely used in plant growth state
detection. However, with the development of deep learning, within the field of plant growth state detection,
the performance of the detection network is no longer the primary factor limiting the detection accuracy
and model generalization ability. The construction of high-quality and large-scale plant datasets is more
significant for the improvement of model detection accuracy and generalization ability. However, traditional
methods for building deep learning datasets for plants have a large time span and low efficiency. And it is
difficult to construct and expand the dataset for plants with complex growth environments and difficult image
acquisition by existing methods. To address this problem, this paper proposes a method for constructing plant
datasets based on augmented reality techniques. The method proposed in this paper allows for the rapid and
efficient construction of large-scale field datasets that match the actual inspection environment in the lack
of data. Meanwhile, this paper proposes an automatic annotation method for datasets in conjunction with
the imaging environment in virtual space. In this paper, we experimentally compare the proposed method
with the method of expanding the dataset using GAN networks. Using the virtual dataset constructed by the
method proposed in this paper as the training set, the trained YOLOv5 model achieves an average accuracy
(@0.5:0.95) of 0.71 for the three detection categories on the test set. The detection accuracy of the six mixed
datasets constructed using the two data expansion methods on the test set was experimentally tested. The
proposed method in this paper improved the accuracy by 2.2%, 3.1%, and 7.0%, respectively. The smaller
the percentage of real images, the greater the accuracy improvement. Experiments show that the method
proposed in this paper can well solve the problems faced in the field of plant growth state detection, such
as the lack of data, and provides a new idea for the production and expansion of datasets in plant detection
tasks.

INDEX TERMS Deep learning, object detection, plant growth state detection, augmented reality, YOLOv5,
dataset augmentation, dataset construction.

I. INTRODUCTION
Plant growth state detection is a method for monitoring and
predicting the growth state of plants. Deep learning can
extract features from large amounts of data to build models
for classification and detection. Many scholars have applied
it to plant growth state detection because of its rapid computer
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vision and image recognition development. Deep learning
has various applications in detecting the growth stage of
plants. Researchers typically focus on adapting and utilizing
network models to match targeted datasets for better results.
For instance, Fuentes et al. [1] improved the Backbone part
of the original Faster-RCNN [2] network and achieved an
average detection accuracy (mean Average Precision, mAP)
of 85.98% on the tomato disease dataset; Ozguven and
Adem [3] achieved automatic detection of beet leaf spots by
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improving the Faster-RCNN network, obtaining 95.48%
detection accuracy on 155 beet leaf photographs. However,
Mohanty et al. [4] found that when the convolutional neural
network developed based on the PlantVillage dataset was
used to identify other tomato leaf disease datasets, the iden-
tification accuracy dropped sharply from 99% to 31%. This
suggests that within the field of plant growth state detection,
the performance of deep learning is mainly dependent on the
dataset used [5].

A. CHALLENGES FACING
To address the challenges encountered in deep learning plant
detection, improving the methods for building plant datasets
may be more critical than optimizing the detection models
themselves. Thakur et al. [6], in their paper, pointed out that
the need for large-scale field public datasets is one of the
major bottlenecks in model development for the detection
of various plant diseases. Not only the number of datasets
but also the consistency of the detection environment has
an important impact on the detection accuracy. For exam-
ple, Yuan et al. [7] conducted experiments on various image
datasets with network models for crop pest recognition. They
showed that their detection accuracy is higher when the back-
ground environment of the test images is consistent with the
training images. Some scholars have tried to expand the plant
dataset with Generative Adversarial Networks (GAN) [8]: for
example, Barth et al. [9] used Cycle GAN [10] to synthesize
crop images, trained the model with synthetic images, and
fine-tuned the network with authentic images to improve
the model detection accuracy. However, GAN generate high-
quality images based on sufficient training images; for plant
growth state detection applications (e.g., plant disease detec-
tion) with only a limited number of training images, it is
challenging to train GANmodels useful for downstream deep
learning tasks [11]. For instance, Zhu et al. [12] trained
GAN networks to generate orchid seedlings using different
numbers of training images. They found that the GANmodels
trained using lower numbers of training images generated
images that lacked texture details compared to the actual
samples and could not capture the detailed structures of the
roots and leaves.

B. CONTRIBUTION
The current primary approach to building deep learning plant
datasets is to use GAN networks to expand the actual pho-
tographed and collected images. This approach makes it
challenging to construct a large-scale field public dataset in
the presence of variable detection environments and sparse
samples. Therefore, in this paper, we propose an augmented
reality-based [13] image data generation method as a way to
construct a deep learning dataset of urban greenery plants Da
Wu Feng Cao. Firstly, we mapped the Da Wu Feng Cao leaf
blade and constructed a 3Dmodel that represented the plant’s
shape and texture. We augmented these 3D models with
rendering techniques to generate high-quality training images

that capture detailed pose and texture details of the actual
leaf blade.Additionally, we ensured that the background of
the training images matched the actual growth environment
of Da Wu Feng Cao to maintain consistency with the actual
detection environment. To prevent the homogenization of
image data in our constructed dataset, we employed a patch-
work approach using randomly selected Da Wu Feng Cao
leaf blades and various randomized models. This approach
ensured that the training dataset contained a diverse range
of pose, texture, and environmental variations. Additionally,
we utilized an automated sample annotation approach based
on virtual imaging environments that enhance the speed and
accuracy of dataset construction by minimizing errors that
can occur with manual annotation. The method described in
this paper is experimentally proven to be superior to other
plant dataset construction methods. The main contributions
of this paper are as follows:

1) An augmented reality-based dataset construction
method is proposed to build a plant dataset that fits the actual
application situation through plant model construction and
augmented reality technology, which provides a new way of
thinking for producing deep learning datasets in plant growth
state detection.

2) A leaf blade random patchwork and model randomiza-
tion generation method is adopted, and an automatic sam-
ple annotation function is implemented. It accelerates the
construction of datasets and solves the problems of lack of
datasets, long collection periods, and high costs faced in plant
growth state detection.

3) It solves the problem that it is difficult to expand the
plant dataset when the GAN network faces the lack of actual
data, and effectively improves the accuracy and generaliza-
tion performance of the training model.

II. RELATED WORK
The superiority of deep learning in the field of vision tasks has
provided new ideas in the field of plant growth state detection.
With the rise of Convolutional Neural Networks (CNN) [14],
many classical CNNs architectures such as AlexNet [15],
VGG [16], and ResNet [17] are widely used in plant growth
state detection. In the beginning, researchers extracted plant
features from images of plant diseases using Convolutional
Neural Networks (CNNs) and then employed classifiers to
classify the different diseases. Later, as the demand for vision
tasks upgraded, some classical target detection networks such
as YOLO [18] and Faster-RCNN were proposed one after
another. Researchers tried to apply the target detection net-
works to the field of plant growth state detection with success.
The overall framework for the plant growth state detection
using a target detection network is shown in Fig.1.

As shown in Fig.1, to use images taken from the field for
plant disease detection, several preprocessing steps are neces-
sary. This includes image filtering, cropping, data augmenta-
tion, and expansion to improve the quality of the dataset. The
target detection network is generally divided into two mod-
ules: the backbone feature extraction network (Backbone)
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FIGURE 1. The detection framework contains two parts: the model training and the actual detection parts. The model training process is shown in the
upper part of Figure 1: it includes the steps of dataset acquisition and production, feature extraction, prediction boxes regression, loss calculation, and
model parameter update.

and the Regression prediction layer (Regression): The func-
tion of the Backbone part is to extract the deep semantic
information of the image, and the implementation method is
generally to convert the feature information of the image in
W , H dimensions to the feature information on the channel
by CNN, and fed into the Regression layer of prediction
boxes and prediction of categories. The prediction boxes of
the Regressor layer regression are fed into the loss function
along with the labeled actual detection boxes for loss calcu-
lation, and finally, the parameters of the network model are
iteratively updated based on the loss results. The best network
model after the iterative update is generally selected for the
actual detection, as shown in the red-bordered part in Fig.1.
Finally, the network model structure and loss function are
adjusted according to the detection result, and the modified
network is trained again.

Standard target detection networks can be classified into
single and two-step methods. In this paper, we focus on the
single-step method and present results from several improved
YOLO models that were trained on the COCO dataset and
tested on the COCO test-dev dataset in recent years. As shown
in Table 1.

In Table 1, FPS refers to the number of images that the
network model can detect in one second, while AP (Aver-
age Precision) represents the accuracy of the model. AP is
calculated based on Intersection over Union (IoU), which is
a metric used to determine whether the predicted bounding
box accurately captures the object. It measures the overlap
between the predicted box and the ground truth box and
provides a value between 0 and 1. TP (True Positive) refers
to the number of correctly identified targets, while FP (False
Positive) is the number of incorrectly identified targets. AP50
means that the threshold value of IoU is 50%, the detection
boxes more excellent than this threshold are considered as TP,
and the proportion of the number of TPs in this category to the
total ground truth is calculated and recorded as the detection
accuracy of this category. The average of the detection accu-
racy of multiple categories is taken under the COCO dataset,

TABLE 1. Detection accuracy and detection rate achieved by the
improved YOLO model on the COCO test-dev dataset in recent years.

and Box AP indicates the average detection accuracy under
each IoU threshold.

Table 1 shows that improving the network model is an
effective way to improve the detection capability. However,
the improvement in detection accuracy brought by the model
improvement is limited in the target detection problem, and
the performance of the detection accuracy depends mainly
on the training data. For example, with detecting diseased
tomato leaves, Fuentes et al. achieved an average detection
accuracy of over 80% using the Faster-RCNN network in
2017. However, in 2020, Liu [19] achieved an average detec-
tion accuracy of 91.23% for this task using the relatively
lightweight YOLOv3 network on own dataset. The above
indicates that a superior dataset is more potent for improv-
ing detection accuracy than model improvement. Therefore,
a more practical approach for tasks involving the detection of
plant growth states is to construct a dataset that is adequate
and suitable for the actual detection environment.
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FIGURE 2. The virtual dataset construction process based on augmented reality technology is divided into three parts: Plant model construction and
import, Environment construction and import, Sample data generation.

However, the construction of plant datasets also encounters
many problems.For example, it can be challenging to collect
image data for plants that grow in harsh environments and
are scarce in nature, making it difficult to capture them in
their natural settings. Plant samples cultivated artificially
in the laboratory often lack detection accuracy during the
collection process due to problems such as significant dif-
ferences with the actual detection background. By contrast,
cultivating plants in a laboratory requires significant expertise
and complex equipment, which can drive up the cost of
producing datasets. Therefore, this paper proposes a dataset
constructionmethod to construct plant datasets by augmented
reality technology to train deep learning target detection net-
works. After being trained, the network model is utilized to
detect ‘‘Da Wu Feng Cao’’ in its actual environment, with
experimental results demonstrating the effective performance
of the method. This paper has the following advantages over
the traditional plant dataset construction methods.

1) Ability to construct plant datasets consistent with the
actual detection environment and with sufficient data.

2) It is less expensive and generates datasets quickly and
efficiently without relying on laboratory-grown plant samples
or taking numerous repeat photographs of the samples.

3) Adopt the strategy of randomized model space to world
space model generation to suppress the homogeneity of
image data, implement the function of automatic dataset
annotation to reduce the errors caused by mislabeling and
omission in manual annotation, and accelerate the process of
dataset construction.

4) Compared with the generative image expansion method
can rely on a small number of plant image data to complete
the expansion of plant data.

III. METHOD
The process of traditional plant dataset construction methods
is rough as follows: taking plant images in the field, then
select the captured images, and finally cropping andmanually
labeling the images, etc. Field capture requires setting up
long-time cameras for on-time capture, and the construction
of datasets spans a wide range of time and is inefficient.

Therefore, this paper builds a dataset construction platform
based on augmented reality technology,the detailed flow is
shown in Fig.2.

Fig.2 illustrates the process of building a virtual dataset
using the Virtual Dataset Building Platform. Firstly, the 3D
plant model is constructed by manual modeling and map-
ping acquisition, which mainly includes the steps of plant
geometry model reconstruction and plant mapping overlay.
In order to complement the biological heterogeneity missing
from the single modeling, the plant model is reconstructed
by random mapping stitching technique in the construction
of the plant model. At the same time, photogrammetry and
aerial triangulation techniques are used to collect positioning
attitude data from multiple perspectives in the actual back-
ground environment. The collected data was used to build a
3D environment model. Furthermore, a mapping patch for
delicate parts is used to fill in the texture details in the
environment model. The platform will then slice and dice
the resulting model to prevent memory crashes caused by
too much data. Then the cut model is imported into the
platform database, and the platform calls the model in the
database to generate the virtual space. The platform will
randomly generate a specified number of plant models in the
plant generation area based on the settings of environmental
variables in the virtual space (environmental variables will
control the change of weather in the virtual space, the number
of normal and diseased plants generated in the generation
area, etc.). To ensure the diversity of the collected data, the
plant models are periodically regenerated. Next, the platform
simulates the camera parameters of the actual data acquisition
process for the samples in the virtual space. The camera
view and coordinates are also changed during the acquisition
process with reference to the real camera orientation and
view. Save the captured image data to the data storage side
and add one to the amount of data in the environment variable
until the amount of data reaches the set value. Finally, after
exiting the loop, the image annotation module will be called
to automatically generate and save the coordinates of the
smallest outer rectangle of the target plant in the virtual image
to complete the automatic annotation of the dataset.
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FIGURE 3. Artificial modeling process: (a) Mapping acquisition,
(b) original mapping, (c) height map, (d) normal map, (e) model-creation,
(f) material-creation, (g) UV show mapping, (h) model generation.

A. PLANT MODEL CONSTRUCTION METHOD
Plant model construction is an essential part of the dataset
construction method and has the critical impact on the sub-
sequent model training effect. Plants are highly biologically
heterogeneous compared to other detection targets, so the
impact of repeated models on the detection effect must be
considered in the modeling process. This paper uses artificial
modeling supplemented with random leaf blade patchwork to
construct the plant model. The artificial modeling process is
shown in Fig.3.

The whole artificial modeling process is divided into a total
of five parts, first, need to shoot the flattened blade to collect
the original mapping of DaWu Feng Cao leaves and then use
PhotoShop software to capture the blade surface texture and
bump to generate the height map, the height map for different
color depth rendering, to generate with virtual bump texture
normal map. Subsequently, the blade model was constructed
using Cinema4D, and the blade model, including the blade
contour and blade veins, required texture information such as
a height map and normal map captured using the texture map;
furthermore, through the acquired original mapping, height
map, normal map on the blade material color, bump, reflec-
tion, normal line, etc. create, and according to the generated
blade material and original mapping to create a mapping, use
the UV mapping tool to spread mapping to the blade model,
and finally generate the complete model.

Although artificial modeling can simulate leaf shape and
texture information fairly realistically, a single leaf profile
shape will lead to an overly homogeneous leaf model, result-
ing in the homogenization of the collected data. Therefore,
in this paper, we construct multiple categories of shape con-
tours and generate the mapping of leaf blades by random leaf
blade patchwork. Taking diseased leaves as an example, if the
diseased leaves are too homogeneous, the plants will lack
biological heterogeneity, which will cause the trained net-
work to be less effective in detection. Therefore, we intercept
the diseased parts of the mapping for random patchwork and
mapping on the surface of the leaf model, and the specific
effect is shown in Fig.4.

A diseased leaf model was constructed in Fig.4, whose
disease areas were randomly generated to compare individual
diseased leaf samples, ensuring the validity of the data while
significantly reducing the homogeneity of the samples.

FIGURE 4. (a) Original leaf model. (b,c,d) Randomly generated diseased
leaf model.

FIGURE 5. (a) Real environment. (b) Environment under virtual space.

B. ENVIRONMENT CONSTRUCTION METHOD
Even humans use the relationship between background and
foreground to understand objects, a relationship known as
background bias [25]. However, there needs to be more
background bias in many public plant datasets, such as the
PlantVillage dataset, so the accuracy of the model trained on
the PlantVillage dataset decreases when detected. In order
to overcome the effect of background bias, it is required
to make the backgrounds of training and test datasets con-
sistent. However, it is challenging to construct a training
dataset consistent with the actual detection background in real
situations due to time and space variations. Therefore, this
paper improves the traditional dataset construction method
and simulates the actual detection environment by augmented
reality technology. Augmented reality is a technology that
combines the real world with virtual information based on
real-time computer computing and multi-sensor fusion [26].
The leading technology used in this paper is visual augmented
reality, the core of which lies in matching and visualizing
virtual information and the real world in physical space [27].
This paper utilizes photogrammetry to acquire multi-angle
images and obtain positioning attitude data for environment
model construction. This method offers several advantages,
including reduced time consumption, low cost, high accu-
racy, and realistic texturing. The specific approach is first
to set the heading of the Unmanned Aerial Vehicle(UAV),
select a heading with 80% overlap with the actual site for
aerial photogrammetry to obtain image files with site location
information, and then use the camera to capture the delicate
mapping part. Finally, ContextCapture was used to read the
image file to generate the 3D mapping model, as shown in
Fig.5.

The positional attitude parameters from the image files
alone are insufficient for 3D reconstruction and need to be
complemented using the Bundle Aerotriangulation method.
To do this, it is first necessary to mathematically model the
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FIGURE 6. Central projection conformational relationship.

photogrammetric data.As shown in Fig.6, the two parallel
coordinate systems are the ground photogrammetric coordi-
nates and the image-space auxiliary coordinates. When the
image point a, the camera center point S, and the ground point
A of the measured image are in the same line, the co-linear
equation(1) can be deduced:

(x − x0) = −f
a1(XA − XS ) + b1(YA − YS ) + c1(ZA − ZS )
a3(XA − XS ) + b3(YA − YS ) + c3(ZA − ZS )

(y− y0) = −f
a2(XA − XS ) + b2(YA − YS ) + c2(ZA − ZS )
a3(XA − XS ) + b3(YA − YS ) + c3(ZA − ZS )

(1)

In equation(1) (x, y) are the coordinates of the image point
a in the image plane with the principal image point (x0, y0) as
the origin; (XA,YA,ZA), (XS ,YS ,ZS ) are the coordinates of
ground point A and camera center point S in the object space,
respectively; f is the image principal distance; (ai, bi, ci) is
the cosine of the angular elements of the external orientation
of the image in 9 directions.

The above is the co-linear equation with the main distance
of the image film. The Bundle Aerotriangulation is precisely
based on the similarly projected beam in each image film
as the leveling unit, the co-linear equation based on the
central projection as the mathematical model of leveling,
the coordinates of the image point as the observation value,
according to the condition that the coordinates of the common
intersection point of adjacent images are equal. The encrypted
coordinates of the control point are equal to the ground coor-
dinates, and the coordinates of the outer orientation elements
and encrypted points of each image film are solved. These
coordinates complement the positional attitude parameters of
the model.

C. AUTOMATIC ANNOTATION METHOD FOR DATASET
The dataset labeling is the most time-consuming and labori-
ous step in the data pre-processing process, and it is also the
one that has a significant impact on the network training. The
traditional data annotation method uses tools such as Labe-
limg, and it is difficult for human annotation to achieve stan-
dard and uniform, accurate annotation on datasets with small
targets and high overlap. This section proposes a method for
automatically annotating datasets in a virtual spatial imaging

FIGURE 7. Coordinates of the smallest external rectangle in the model
space.

environment, which achieves better results on plant virtual
datasets. As shown in Fig.7, the coordinates of the sample
under the model space and the coordinates pm of the minimal
outer rectangle of the sample can be obtained when the target
sample is generated.

The coordinates in the model space must be left multiplied
with the M matrix to get the coordinates pw in the world
space. As shown in equation(2):

pw = MTMRMSpm (2)

The equation(2) represents the translation, rotation, and
scaling of the coordinates of the object in model space to
obtain the coordinates of the object in world space. The coor-
dinates of the objects in world space need to be transformed
by V and P matrices to get the screen coordinates presented
in front of the screen pS . V matrix is a transformation matrix
from world space to camera space, which maps the world
coordinates to the lens space coordinates of the current posi-
tion and pose [28]. P matrix is a transformation matrix from
camera space to a two-dimensional plane. Objects in camera
space are mapped into the two-dimensional plane by per-
spective projection and eliminating the coordinates of those
invisible range points. Specifically, as shown in equation (3):

p′
= RTT−1pw

ps = Mprojectp′ (3)

The equation(3), describes the mapping process from the
world coordinate system to the camera coordinate system,
and p′ is the coordinates in camera space at this time. repre-
sents the matrix that maps from camera space to the 2D plane,
and ps is the coordinates of the resulting 2D plane. The effect
of the actual labeled sample is shown in Fig.8.

IV. EXPERIMENT
In order to verify the effectiveness of the proposed plant
dataset construction method, a real image dataset is con-
structed in this paper, as shown in Fig.9(a).And based on
part of the real image data, a virtual dataset is constructed
using the dataset construction method proposed in this paper,
as shown in Fig.9(b). Meanwhile, the GAN network for gen-
erating virtual images is trained based on real images in this
paper, and the training data is expanded by the GAN network,
as shown in Fig.9(c).
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FIGURE 8. Actual labeling sample.

FIGURE 9. (a)Real image data,(b)Virtual images generated using the
method proposed in this paper,(c)Virtual images generated using GAN
networks.

As shown in Fig.9(a), the real picture collection site is
located in the Tian Yi Ecological Park in southwest China.
Through human intervention to control the growth state of
green plants in fixed areas, using fixed cameras for image
acquisition, and using intelligent wide-angle dome-type net-
work cameras, the camera’s highest resolution can reach
2560 × 1440, the highest frame rate of 25FPS. A total of
three groups of camera positions are set up, respectively,
front view camera group 1, left view camera group 2, right
view camera group 3. Front view, left view and right view
images of the growing area of greenery are captured by the
camera. The field of view of the left- and right-view cam-
era groups is 60.2-3.4◦. The collection time is February 28,
2022 - March 31, 2022, daily 7:00-19:00 time period, which
includes all kinds of light conditions and weather conditions
such as sunny days, cloudy days, and haze. In order to build a
real dataset with clear images and easy to annotate, a total of
1100 clear images with different types of lighting andweather
were selected as the real image dataset from the 11920 images
collected in this paper, with 1920×1080 pixels. In order
to improve the detection accuracy, the detection targets are
divided into three categories in the process of labeling the
diseased leaves, from low to high, according to the severity
of the leaf disease as l_y, l_i, and l_d.

Fig.9(b) shows the virtual dataset constructed by the
dataset construction method proposed in this paper. In order
to ensure that the generated virtual images can highly sim-
ulate the real detection environment, this paper sets the
environmental parameters in the virtual space by imitating

the lighting and weather conditions in the real environment.
Firstly, we count the percentage of various kinds of weather
in the real picture acquisition process, and generate virtual
images with the same weather percentage in the virtual envi-
ronment according to that percentage. First, the percentage of
various kinds of weather during the real picture acquisition is
counted, and the weather changes in the virtual environment
are adjusted according to that percentage. Secondly, the light
level in the real environment is collected by sensors, and
the change in light level during the collection is simulated
using the dataset construction platform. For example, the
illumination level of a sunny day in the real environment
gradually rises from 30,000-130000lux in the morning from
7:00 am to 12:00 am. At this time, the illumination level
under the virtual platform will also be set to rise gradually
according to this rule, to simulate the lighting conditions in
the real environment. Finally, the number of plants generated
in the virtual space is set to imitate the number of each type of
plant in the real environment. At this point, the environmen-
tal parameters in the virtual space have been set. Then the
virtual data are collected by simulating the imaging angles
and camera parameters of the three groups of cameras in the
real acquisition process through UE4.

Fig.9(c) shows the image data generated by the GAN
network. The training of the GAN network requires a large
number of real images. In order to make the virtual images
generated by GAN network can be effectively used for the
expansion of the dataset, 8,000 of the 11,920 real images
collected by real are used for the training of the network in
this paper. The network is trained by setting different numbers
of training sets,and comparing the generated results after
training until the model performance is optimal. The effect of
the GAN network trained with different number of training
sets is shown in Fig.10.Due to the large number of samples,
the time required to train the GAN network is longer, and
the requirements for the equipment are higher. The number
of training sets has an important impact on the quality of the
images generated by the GAN network, as seen in Fig.10.
In the lack of real data, higher quality virtual data cannot be
generated through GAN networks.

The experimental environment in this paper is NVIDIA
GeForce RTX3060, using Pytorch1.8.0 to build the detection
network. Using the average accuracy rate @0.5:0.95 as a
model accuracy measure, it measures the detection ability of
the model under different IoU thresholds. A higher average
accuracy indicates that the regression boxes of the model are
more accurate, and the detection results are more accurately
fitted to the original labels. The experiment divides the real
dataset into a training set, validation set, and test set in the
ratio of 8:1:1. The total number of training sets was kept
constant in the experiment, and the total number of training
sets was 880. Subsequently, different amounts of real data
were assigned to each training set. Finally, the training set
is expanded by two different dataset expansion methods,
bringing the total number of training sets to 880 for each
group. The YOLOv5s network was used to train each dataset,
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FIGURE 10. (a)Real samples of input GAN networks,(b)The result of the GAN model trained with 500 images as the training set,(c)The result of the GAN
model trained with 1000 images as the training set,(d)The result of the GAN model trained with 3000 images as the training set,(e)The result of the GAN
model trained with 8000 images as the training set.

FIGURE 11. Accuracy of models trained on different training sets.(a)The dataset constructed and expanded by the method proposed in this
paper is used as the training set.(b)Use the dataset expanded by GAN network as the training set.

and then the resulting models were tested on the test set.
Fig.11 shows the accuracy curves of the trained models on
different datasets on the validation set.

Fig.11(a) shows the accuracy curves on the validation set
for the dataset constructed according to the method described
in this paper. The real dataset is the actual acquired real
images and the virtual dataset is the virtual images generated
using the method proposed in this paper. The percentage of
real data in the mixed dataset is 25%, 50%, and 75%, respec-
tively. Fig.11(b) shows the accuracy curves of the dataset
constructed using the GAN network on the validation set. The
mixed dataset is formed by expanding the real data using the
GAN network, and the number of real images in each group
is 220, 440, and 660 in turn. The real images are fed into
the GAN network to generate virtual images, and then the
generated virtual images are mixed with the real images to
form a mixed dataset. From the accuracy curves of the model
trained on the three mixed datasets in Fig.11(a), it can be
seen that the proposed method in this paper has good results
for the expansion of the dataset, although it cannot perfectly
fit the complexity of real images. Even without mixing real
data, the network trained on the virtual data is still able to
achieve an average detection accuracy of more than 0.7 for
the three detection categories. Since GAN networks need to
use existing real images to generate virtual images, it is not

possible to construct datasets that are all virtual images. From
Fig.11(b), it can be seen that the GAN network can achieve
good results for data expansion when the dataset is sufficient.
However, in the lack of real data compared to the proposed
method in this paper, expanding the dataset by GAN network
leads to too much similarity of images and lack of diversity
of samples, resulting in the reduction of detection accuracy.

Comparing the accuracy of the detection networks trained
above, it can be seen that the data expansionmethod proposed
in this paper is better than the GAN network. Moreover, the
method can quickly and efficiently construct virtual datasets
in the absence of real data, solving the problem of not being
able to use GAN networks to expand datasets in the absence
of real data. To verify the generalization performance of the
resulting models and the correctness of the experiments, the
average accuracy of each model was tested on the test set
again, as shown in Table 2:

The accuracy comparison of the test set in Table 2 shows
that the dataset expanded by the method proposed in this
paper is superior to the dataset expanded using the GAN
network in terms of accuracy. Comparing the accuracy errors
on the test set, the expansion effect of the two methods on the
dataset is in accordance with the performance on the valida-
tion set. The virtual datasets constructed by both methods can
expand the datasets to some extent, but the method proposed
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FIGURE 12. Actual detection results.The leftmost column shows the global detection results. In contrast, the right-hand columns
(a), (b), and (c) show the local detection effects. Different rows indicate the detection results of the trained models for different datasets.
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TABLE 2. Detection accuracy on the test set.

in this paper can generate a large number of virtual samples
quickly and efficiently with less real samples. Comparing the
detection accuracy of the six mixed datasets on the test set,
the proposed method in this paper improves 2.2%, 3.1% and
7.0%, respectively. This indicates that the method proposed
in this paper is more superior than the GAN network, and it is
still able to construct and expand the dataset better in the lack
of real data. The actual detection results of the model trained
based on this method are shown in Fig.12:

Fig.12 shows the actual detection results of the trained
model on the five training sets, with the first column showing
the overall detection results and the three columns on the
right side showing the local detection results. The training
sets of the detection model from top to bottom are: virtual
dataset, mixed dataset 3 (75% virtual data), mixed dataset 2
(50% virtual data), mixed dataset 1 (25% virtual data), and
real dataset sequentially. It can be seen from the figure that
the virtual dataset does not achieve the detection effect of
the actual data, but the model trained by the virtual dataset
can still accurately complete some of the detection tasks.
Comparing the detection results with the mixed data, we can
conclude that expanding the training set by the proposed
dataset construction method is effective.

V. CONCLUSION
In this paper, we propose an augmented reality-based dataset
construction method for plant growth state detection tasks
due to the difficulty and high cost of data collection, the
separateness of detection targets and environments, and the
lack of uniform standards for manual annotation, which have
the following main advantages.

1) Augmented reality technology can highly fit the growth
environment as well as the shape of the plant to build a train-
ing dataset consistent with the actual detection environment.

2) Realistic mapping and physical rendering techniques
are used, which can fit the plant shape contour and leaf
details well. The plant sample data can be expanded and

constructed efficiently by leaf blade random patchwork and
sample randomization generation.

3) Reduce the cost of dataset production, the dataset gen-
erated by the virtual platform does not require artificial cul-
tivation and manual annotation of the actual dataset, and the
dataset production cycle is short and convenient.

The experimental results show that the proposed dataset
construction method outperforms GAN networks and solves
the problem that GAN networks cannot be used in the lack of
real data. The actual detection results show that the method
demonstrated in this paper can better meet the needs of non-
high-precision plant detection. This method can build a high
quality and large scale field dataset, and solve the problem of
lack of data in the field of plant growth state detection.
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