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ABSTRACT The Emergency Departments (EDs) in health centres located in the main areas of Saudi Arabia
have heavy patient inflow because of the pandemic, viral infections, and even on some special occasions like
Umrah or Hajj, where pilgrims who travel from one place to another with serious disorders. Other than the
EDs, it was important to observe the patient’s activities from ED to other wards in the region or the hospital
to track the spread of viral diseases. In this case, deep learning (DL) and machine learning (ML) methods
have been used to track the target audience and classify the data into many classes. With this motivation, this
study develops an artificial rabbit optimization with a machine learning-based healthcare data classification
(AROML-HDC) technique for EDs. The AROML-HDC technique monitors and tracks the patient visit data,
treatment given, and length of stay (LOS). In addition, the AROML-HDC technique designs an effective
ARO algorithm for the optimal selection of feature subsets. Next, the class-specific cost regulation extreme
learning machine (CSCR-ELM) classifier is applied for effective medical data classification. Finally, the
grasshopper optimization algorithm (GOA) was used to adjust the parameters related to the CSCR-ELM
classifier. The experimental outcome of the AROML-HDC approach is tested on the benchmark Cleveland
dataset and the Statlog dataset comprising 297 and 270 samples, respectively. The simulation results signify
the improved performance of the AROML-HDC technique over other recent methods with maximum
accuracy of 93.22% and 94.05% Cleveland dataset and the Statlog dataset, respectively.

INDEX TERMS Medical data classification, emergency departments, KSA hospitals, feature selection,
machine learning.

I. INTRODUCTION

Recently, the healthcare field is generating data from a lot
of patients and facilities. By using this data, clinicians can
easily anticipate better techniques for treatment and boost
the medical field [1]. One significant use of the python
structure encourages computing facilities to extract useful
insights from the data over the healthcare domain. Disease
diagnosis is determining the disease through symptoms of
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persons [2]. The challenging issue in the diagnosis is some
signs and symptoms were non-specific. Machine learning
(ML) helps to forecast the disease diagnosis depending on the
prior training data. Several scientists have made different ML
techniques to work well to diagnose different diseases [3].
ML presents the capability for machines to learn without
being specifically programmed. Evolving a model by ML
techniques can forecast an initial-stage disease diagnosis and
render solutions. Effective treatment and initial diagnosis
are the optimal way to reduce death rates [4]. Hence, many
clinical scientists have adopted new methods for predicting
diseases depending on ML techniques.
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Artificial intelligence (Al) is defined as human intelligence
executed by machines [5]. In computer science, it is con-
sidered as the capability of machines to emulate intellectual
behaviour by itself, utilizing ML [6]. In medicine, AI appli-
cations are growing rapidly. In the medical field, Al is the
use of automated diagnosis and the treatment of victims who
need care. Generally, ML is classified as unsupervised (which
deals with clustering of various groups for specific inter-
ventions) or supervised (composed of output parameters that
are estimated from input variables) [7]. ML can determine
complex methods, expose innovative ideas to doctors, and
extract medical knowledge. In medical practice, ML predic-
tion algorithms can point out improved rules in deciding on
individual patient care. The infusion of such methods in drug
prescription can offer new medical openings in pathology
recognition and save clinicians [8]. The medical data quality
can probably be enhanced with ML methods, save medical
costs and lessen fluctuations in patient rates. Consequently,
these methods are often utilized for investigating diagnostic
analysis than other classical techniques [9]. Early recognition
and potential treatments will be the only solution for reducing
the mortality rates caused by chronic disease (CD). Thus,
many medical scientists were attracted towards the inno-
vative technologies of prediction approaches in forecasting
diseases [10].

This study presents an artificial rabbit optimization with
a machine learning-based healthcare data classification
(AROML-HDC) technique for EDs. The presented AROML-
HDC technique monitors and tracks the patient visit data,
treatment given, and length of stay (LOS). In addition,
the AROML-HDC technique designs an effective ARO
algorithm for optimal selection of feature subsets. Next,
class-specific cost regulation extreme learning machine
(CSCR-ELM) classifier is applied for effective medical data
classification. Finally, the grasshopper optimization algo-
rithm (GOA) is used to adjust the parameters related to
the CSCR-ELM classifier. The experimental outcome of the
AROML-HDC method is tested on a benchmark healthcare
dataset.

The rest of the paper is organized as follows. Section II
provides the related works and section III offers the pro-
posed model. Then, section IV gives the result analysis and
section V concludes the paper.

Il. RELATED WORKS

Kishor and Chakraborty [11] presented an ML-based health-
care method for accurate and early prediction of various
diseases. In this study, seven ML classifier techniques like
Random Forest (RF), decision tree, Naive Bayes, adaptive
boosting, K-NN, SVM, and ANN were exploited for fore-
casting the nine deadly diseases like hepatitis, heart dis-
ease, liver disorder, dermatology, thyroid, surgery data, spect
heart and diabetics breast cancer. In [12] presented a new
technique using ML (k-fold random forest) named Intelli-
gent Multimedia Data Segregation (IMDS) technique in the
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fog-computing atmosphere that separates the multimedia data
and the method computes total latency (computation and
network transmission).

In [13], devised a new healthcare monitoring structure
depends on the cloud environment and a big data analytics
engine to analyse and store medical data accurately and to
boost the classifier accuracy. The presented big data analyt-
ics engine depends on Bi-LSTM, data mining algorithms,
and ontologies. The presented ontologies afford semantic
knowledge regarding aspects and entities and their relations
in the fields of blood pressure (BP) and diabetes. To fore-
cast abnormal circumstances and side effects of drugs in
patients, Bi-LSTM is used that properly categorizes the health
care data. In [14], developed an IoT-based student health
care monitoring approach to identify behavioural and bio-
logical changes and check student vital signs through smart
health care technologies. Here, to detect the risks of students’
behavioural and physiological changes, vital data are gath-
ered through IoT gadgets and with the use of ML methods,
data analysis is enacted. Samantha et al. [15] meant to design
a precise technique to classify sleep phases by features of
Heart Rate Variability (HRV) from an Electrocardiogram
(ECQ). To forecast sleep stages proportion, the sleep stages
classification is applied. This sleep stage proportion data offer
insight into human sleep quality. The hybridized PSO and
ELM were applied to determine hidden nodes and choose
features.

In [16], a general structure has been modelled for disease
prediction in the field of medicine. This system has experi-
mented through enhanced SVM-Radial bias kernel approach
with less set features of Heart Disease, Chronic Kidney Dis-
ease, and Diabetes dataset, and this system has compared
with other ML approaches like Random forest, SVM-Linear,
Decision tree, and SVM-Polynomial in R studio. In [17],
the authors have implemented various ML approaches and
considered public data of healthcare saved in the cloud to
construct a system which allowed remote health monitoring
constructed on IoT structure and linked with cloud comput-
ing. The authors devised a structure to expose knowledge in
databases, and lightening disguise patterns help in credible
decision-making.

Oskvarek et al. [18] assessed and developed variation in
an emergency department (ED) admission intensity mea-
sure proposed for value-based payment methods. The mea-
sure involves ED diagnosis amenable to evidence-related
protocol and where admission decisions change related to
physician discretion. Kadri et al. [19] introduced a DL-driven
method to forecast the patient LOS in ED utilizing a GAN
approach. The GAN-driven method flexibly learned appro-
priate data from nonlinear and linear processes without pre-
ceding assumptions on data dispersion and enhanced the
forecasting accuracy. Kavitha and Ravikumar [20] devise
a four-module structure containing a context-aware module
(CA-M), an IoT module (IoT-M), data preprocessing mod-
ule (DP-M), along with decision-making module (DM-M)
to store and process several cumulative sensor datasets.
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Goto et al. [21] inspect the performance of ML methods for
forecasting medical outcomes and disposition in children in
the ED and to compare performance with old triage methods.
Nymoen et al. [22] study intends to inspect the prevalence of
drug-oriented emergency department (ED) visits and related
risk factors.

Ill. THE PROPOSED MODEL

In this study, we have presented a new AROML-HDC
technique for medical data classification and monitoring in
the EDs of the KSA hospitals. The presented AROML-
HDC technique monitors and tracks the patient visit data,
treatment given, and LOS. In addition, the AROML-HDC
technique performs medical data classification via differ-
ent sub-processes, namely min-max normalization, ARO-
based feature subset selection, CSCR-ELM classification,
and GOA-based parameter tuning. Fig. 1 represents the work-
flow of the AROML-HDC approach.

Transport

Transfer

-~ =® 2

Emergency Unit

L

Hospital

Feature Selection Process: Artificial Rabbits Optimizer Algorithm
Medieal Data Classification: Class-Specific Cost Regulation Extreme Learning Machine
Hyperparameter Tuning Process: Grasshopper Optimization Algorithm

Performance Measures: Accuracy, Precision, Recall, F-Score, MCC

FIGURE 1. Workflow of AROML-HDC approach.

A. DATA PRE-PROCESSING
Min-max normalization [23] was broadly used to scale the
data to unit variance. This can be used to compute the
similarity degree in-between the points. Assume A as data
that can be mapped from data range from Amin to Amax,
utilizing Eq. (1):

A — Apin

Anormalized = m (1)
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The min-max normalization usage confirmed that the feature
has been exacted to similar scales.

B. ALGORITHMIC DESIGN OF ARO-BASED FEATURE
SELECTION APPROACH

The ARO algorithm is utilized in this work to choose optimal
features. The survival strategy utilized by rabbits in nature
draws inspiration towards the ARO technique [24]. Rabbits
looking for food far from their nest is named detour forag-
ing behaviour. It makes them burrow around their nests and
arbitrarily hide to escape from the hunter and predator; this is
named the random hiding behaviour. They decide to make
random hiding or detour foraging relies upon the energy.
Once they have lower energy, they hide randomly in the
nearby burrow around their nest, and once they have sufficient
or high energy, they find food at a location far from their nest
(detour foraging).

1) ENERGY SHRINK (SWITCH BETWEEN EXPLOITATION

AND EXPLORATION)

The rabbit decides to make either a detour foraging or random
hiding. This relies on the quantity of rabbit energy. Hence
the energy factor A(#) can be evaluated based on Eq. (2) for
stimulating which one the rabbit performs. If A(¢) < 1, they
perform random hiding and if A(r) > 1, rabbits perform
detour foraging.

Ay =4(1- L)1l 2
ay_(—F)% @

In Eq. (2), r refers to a number selected randomly
within [0, 1].

2) DETOUR FORAGING (EXPLORATION)

Rabbit finds food far from their nest, securing their nests from
predators. Eq. (3) represents that rabbits randomly find food
based on the position of others.

pit+1) = xi+Rx (Xi (t) — x; (1))

+ round (0.5 x (0.05 4+ ry)) x ny,1i,j 3)
=1,....,nandj#i
R=Lxc 4)
L=(e—e"T" xsin@rr) )
Lif k=g ()
=1,... =1,...
(k) = k , ,dand! , ,
[r3-d]
0 else
(6)
g = r and perm (d) @)
n;p ~ N (0, 1) (3

where rq, 2, and r3 denotes three random integers between
(0, 1), pi(t+1) shows the candidate’s location of i-th rabbits at
t+1 time, L shows the movement pace of rabbit, x; indicates
the i — th location of rabbit at ¢ time , n denotes the population
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size of the rabbit, d denotes the number of variables in the
problems that should be enhanced, n; is subjected to the
uniform distribution, and 7 indicates the maximal iterations.
R characterizes the running operator that mimics rabbits’
running characteristics indicating the mapping vector.

3) RANDOM HIDING (EXPLOITATION)
Every rabbit has d burrow near the nest to randomly choose
one of them to hide in and escape from predators.

b(t) =3(t)+H x g xX(t),i=1,....,nand j

=1,....d ©)
T—t+1

H:TJFXM (10)
lifk=j

=V 1TR=I 0y g (11)
0 else

Pt + 1) =%+ RX (ra xbi,()—Fi=1,....,n (12)
1if k =[r; xd]

k=1,...,d 13
0 else (13)

grk) = [

bir()=X ) +Hxg x¥%@®),i=1,....n (14

. fi < Gia+ 1)
tn=1’ : ) 15
ferh [ma+nfma»>fma+n) (>

where I;,-, j shows the jth burrow for the ith rabbit, H refers to
the hiding parameter, I;,; + represent the burrow chosen ran-
domly for hiding for the ith rabbit, demonstrated in Eq. (14),
and r4 and rs represent the random number within (0, 1).

Eq. (12) denotes that the ith rabbit attempts to change
the location based on the randomly chosen burrow. Finally,
in random hiding or detour foraging, the rabbit leaves the
existing location and persists at the candidate location once
the fitness of the candidate’s location of ith rabbit is better
than the preceding one, as demonstrated in Eq. (15).

In this method, a present weight finds all objective signif-
icance by integrating the objectives into a single objective
formula [25]. Here, a fitness function (FF) is applied, which
merges both objectives of FS as exposed in (16).

IRI)
v (16)

Fitness (X)) =a -E(X)+ B % (1 - N

Here, |N| and |R| is the count of original features and the
count of selected features in the dataset; Fitness (X) refers to
the fitness value of subset X, 8 and « indicate the weights
of the reduction ratio and classifier error, « € [0, 1] and
B = (1 — o), E(X) signifies the classifier error rate utilizing
the chosen features in the X subset.

C. MEDICAL DATA CLASSIFICATION USING

CSCR-ELM MODEL

In this work, the CSCR-ELM method is utilized for medical
data classification. The input bias and weight of SLFN are
created randomly [26]. An equivalent output matrix of hidden
state was calculated concerning the output weighted with
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some steps. Thus, the computational cost of ELM was lesser.
Fig. 2 defines the structure of ELM. Consider that there are
N instances determined by (X;,y;),i = 1,2,...,N.X; =
[xi1, X2, ..., Xin]T2R™ and yi = [yi1, Y2, - .-, Yiml 2R™.
Consider a; and B; correspondingly as input and output
weighted. b; denotes the bias of hidden units. The SLFN
having L hidden node is modelled by Eq. (17):

L
Z,ng(aj,bj,xi)=0i,i=l,...,N (17)
j=1
where g(e) indicates the activation function and usually
exploits nonlinear functions such as radial sine, basis func-
tion, sigmoid, and so on. The error amongst estimated output
0; and the actual output y; is zero if the SLFN exactly evaluate
the data feature.

L
Z'ng(ajvijxi)=)’i,i=1,...,N (18)
j=1

Consider 8 = [B],.... 11T and Y = [yr,....yyr]".
The abovementioned technique is denoted by HB = Y.

glar, b1, X1) ... glar, br, X1)

H = (19)

glay, by, Xn) ... glar, b, Xn)

In Eq. (19), H indicates the supposed output matrix of the
hidden state. h;; shows the output of j™ hidden node corre-
sponding to input X;. In the trained procedure, the parameter
of hidden nodes encompassing a; and b; couldn’t be adapted
then primarily constructed. Equal output weighted is esti-
mated by:

l T —1 4T
- (-+H"HY'HTY,L <N
p=Hy=1] ¢ (20)

i
H'(-+H'H) 'Y, L>N
C

In Eq. (20), H' indicates Moore-Penrose generalization
inverse of H. C represents the present parameter, intends to
provide trade-offs between minimalizing the trained error and
maximizing marginal distance. I represent the unit matrix.
The best output weighted is attained by minimalising the cost
function | O —Y |.

R : _—
— E E—
Input Layer Output Layer

Hidden Layer

FIGURE 2. Architecture of ELM.
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After establishing class-specific regulation costs,
CCR-ELM was projected to resolve the class imbalance
issue. The 2 trade-off factors encompassing C* for minority
positive instances and C~ for most negative instances are
exploited to rebalance both classes. Consider the amount of
minority positive instances and majority negative instances
formulated by /; and I, correspondingly. CCR-ELM was
modelled by Eq. (21):

1 1 a 1 2
. 2 + 2 - 2
min(3 8%+ 5C >0 &+3C7 > &)
i=1ly;— 41 i=1ly;— 4
st.hixp)Bp=y;,—§&,iD1,...N. 2D
Correspondent output weighted Eis evaluated by:
l

l T —1 T
—+—+H"H)"'HTY,L <N
B=H'y = (C+lC—l ) =
H'(— +— +H"H) 'Y, L>N
(C+ c- ) =

(22)

To binary classifier issues, the decision function of the
CCR-ELM-based classifier was f(x) = signh(x)g.

. 1 1 Tyn—1 4T
sign h(x)HT (— + — + HTH)"'Y,L>N
gnh(H (o3 + ==+ ) >
(23)

In CCR-ELM, 5 key parameters have direct feature on
the classifier performance, including the amount of hidden
nodes L, biases b;, C * for minority positive instances, input
weighted a;, and C™ for most negative instances. The previ-
ous 3 variables define the architecture of SLFN and usually
was present by humans.

fx) =

D. PARAMETER TUNING USING GOA

Lastly, the GOA optimally selects the parameters related to
the CSCR-ELM model. The grasshopper is a beetle. Because
of the harm it causes to crop and agriculture production,
it can be assumed to be a pest [27]. The two significant
stages in the life cycle of a grasshopper are adult and larva.
The equations define the mathematical methods exploited to
simulate grasshopper movement:

Xi=S8i+Gi+A; (24)

N —~
Si=2 = (dy) dy (25)
s(r)y=fe T —e (26)
E.G; = —gé; Q27)
A; = ué,, (28)

Here X;, G;, A;, and S; indicate the grasshopper position,
gravitational force, wind advection and social interaction
forces, 21\, ,d and did denote the unit vector and distance from
the ith to the jth grasshopper, where f intensity of attraction
and / means the attractive length scale , s(r) refers to a social
force among two grasshoppers. In Eq. (27), e.g. means the

VOLUME 11, 2023

TABLE 1. Details of the dataset.

Class No. of Instances

Cleveland Dataset Statlog Dataset

Absence 160 150
Presence 137 120
Total No. of Instances 297 270

unity vector toward the earth’s centre, and g is the gravita-
tional constant. In Eq. (28), é,, denotes unity vectors in the
wind direction, and « is a constant drift. An altered version
of the equation to resolve optimization issues was expressed
below:

N
ubg — lby Xji—X
Xid =c Z cTsﬂxf —xlfi|) jd-~l
J=1.j#1 v
+ 1T, (29)

Here ub; and lb; are the upper and lower bounds in
the dth dimension, ¢ was a diminishing coefficient to shrink
the comfort, repulsion and attraction area, and 7/“:1 signifies the
dth dimension value in target. The formula utilized to update
the parameter c is as follows:

€= Comax — l.cmax — Cmin (30)
L

where cmax denotes the maximal value, cpin indicates the
minimal value, { is the index for the current iteration, and

L implies maximal iterations.
The GOA method derived a FF to reach enriched classifier
performance. It determined a positive integer to denote the
superior outcome of candidate solutions. The minimalized

classifier error rate was the FF, as Eq. (31) specified.

No. of misclassified samples
fitness (x;) = f L Ld

100 (31
Total No. of samples * S

IV. EXPERIMENTAL VALIDATION
In this study, the experimental result analysis of the AROML-
HDC technique is examined on two medical datasets: the
Cleveland dataset [28] and the Statlog dataset [29]. Here,
the Cleveland dataset includes 297 samples, and the Statlog
dataset comprises 270 samples, as represented in Table 1. The
attributes involved in Cleveland dataset are age, sex, chest
pain, resting blood pressure, cholesterol, fasting blood sugar,
resting electrocardiographic results, predicted attribute, thal,
number of major vessels, slope, old peak, exercise induced
angina, and maximum heart rate achieved. The Statlog dataset
has 13 attributes such as age, sex, chest pain, resting blood
pressure, serum cholesterol, fasting blood sugar, resting elec-
trocardiographic results, maximum heart rate achieved, exer-
cise induced angina, old peak, slope of the peak exercise
ST segment, number of major vessels (0-3) colored by
flourosopy, and thal.

A set of measures used to examine the classification results
are accuracy (accuy), precision (precy), recall (reca;), and
F-score (Fscore)-
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Cleveland Dataset - Training Phase (80%)

Cleveland Dataset - Testing Phase (20%)

Absence
Absence

Actual

Actual

Presence
Presence

Presence

Absence
Predicted

Absence Presence
Predicted

(b)
Cleveland Dataset - Testing Phase (30%)

(a)
Cleveland Dataset - Training Phase (70%)

Absence
Absence

Actual

Actual

Presence
Presence

Absence Presence

Predicted

Absence Presence
Predicted
(c) (d)

FIGURE 3. Confusion matrices of AROML-HDC technique on Cleveland
dataset (a-b) 80:20 of TRP/TSP and (c-d) 70:30 of TRP/TSP.

Precision measures the proportion of correctly predicted
positive instances out of all the instances that were predicted
as positive.

- TP
Precision = —— 32)
TP + FP
Recall measures the proportion of positive samples correctly
classified.

TP
Recall = —— 33)
TP +FN

Accuracy measures the proportion of correctly classified
samples (positives and negatives) against the total samples
(number of samples that have been classified).

TP + TN

Accuracy = (34)
TP 4+ TN 4 FP 4+ FN

F-score is a measure combining the harmonic mean of preci-
sion and recall.

2TP
F—score= —————— (35)
2TP + FP + FN

The confusion matrices of the AROML-HDC technique on
the Cleveland dataset are revealed in Fig. 3. On 80% of
TRP, the AROML-HDC technique recognizes 114 absence
samples and 93 presence samples. Next, on 20% of TSP,
the AROML-HDC approach recognizes 31 absence samples
and 24 presence samples. Along with that, on 70% of TRP,
the AROML-HDC technique recognizes 113 absence sam-
ples and 80 presence samples. Finally, on 30% of TSP, the
AROML-HDC algorithm recognizes 39 absence samples and

45 presence samples.
In Table 2 and Fig. 4, the overall outcomes of the AROML-
HDC approach on the Cleveland dataset are exhibited.
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TABLE 2. Classification outcome of AROML-HDC approach on cleveland
dataset.

Class Accu, Prec, Reca Fcore MCC
Training Phase (80%)

Absence  88.37 88.37 88.37 88.37 74.48
Presence  86.11 86.11 86.11 86.11 74.48
Average 87.24 87.24 87.24 87.24 74.48
Testing Phase (20%)

Absence  100.00 86.11 100.00 92.54 84.42
Presence  82.76 100.00 82.76 90.57 84.42
Average 91.38 93.06 91.38 91.55 84.42
Training Phase (70%)

Absence  96.58 91.87 96.58 94.17 86.29
Presence  88.89 95.24 88.89 91.95 86.29
Average  92.74 93.55 92.74 93.06 86.29
Testing Phase (30%)

Absence  90.70 95.12 90.70 92.86 86.70
Presence  95.74 91.84 95.74 93.75 86.70
Average  93.22 93.48 93.22 93.30 86.70

Cleveland Dataset

97.5
[ Training Phase (80%)
95.0 1 Testing Phase (20%)

I Training Phase (70%)
=3 Testing Phase (30%)

92.5
90.0
87.51 = = —
85.0

82.5-

Avg. Values (%)

80.0
77.5 1

75.0 1

725 H —

Accuracy Precision Recall F-Score MCC

FIGURE 4. Average outcome of AROML-HDC approach on Cleveland
dataset.

The outcomes indicate the effectual identification of the
absence and presence of class samples. For instance, with
80% of TRP, the AROML-HDC approach reaches average
accuy of 87.24%, precy, of 87.24%, reca; of 87.24%, Fscore Of
87.24%, and MCC of 74.48%. Besides, with 20% of TSP, the
AROML-HDC technique reaches average accu, of 91.38%,
prec, of 93.06%, reca; of 91.38%, Fscore of 91.55%, and
MCC of 84.42%. Also, with 70% of TRP, the AROML-HDC
technique reaches average accuy of 92.74%, prec,, of 93.55%,
reca; of 92.74%, Fcore of 93.06%, and MCC of 86.29%.
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Training and Validation Accuracy - Cleveland Dataset

— Training
—— \Validation

0.9

0.6 -

Accuracy

0.7

0.6

Epochs

FIGURE 5. Accuracy curve of AROML-HDC approach on Cleveland dataset.

Fig. 5 examines the accuracy of the AROML-HDC method
during the training and validation process on the Cleveland
dataset. The figure specifies that the AROML-HDC approach
reaches increasing accuracy values over increasing epochs.
Further, the increasing validation accuracy over training accu-
racy exhibits that the AROML-HDC method learns effi-
ciently on the Cleveland dataset.

The loss analysis of the AROML-HDC technique at
the time of training and validation is demonstrated on the
Cleveland dataset in Fig. 6. The results indicate that the
AROML-HDC technique reaches closer values of training
and validation loss. The AROML-HDC technique learns effi-
ciently on the Cleveland dataset.

Training and Validation Loss - Cleveland Dataset

= Training
0657 —— Validation

0.55 -

Loss
o
=
&

Epochs

FIGURE 6. Loss curve of AROML-HDC approach on Cleveland dataset.

The confusion matrices of the AROML-HDC technique
on the Statlog dataset are revealed in Fig. 7. On 80% of
TRP, the AROML-HDC approach recognizes 107 absence
samples and 96 presence samples. Next, on 20% of TSP,
the AROML-HDC technique recognizes 32 absence sam-
ples and 18 presence samples. In addition, on 70% of TRP,
the AROML-HDC technique recognizes 98 absence samples
and 74 presence samples. Eventually, on 30% of TSP, the
AROML-HDC method recognizes 52 absence samples and
24 presence samples.

In Table 3 and Fig. 8, the overall results of the AROML-
HDC system on the Statlog dataset are exhibited. The figure
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Statlog Dataset - Training Phase (80%)

Statlog Dataset - Testing Phase (20%)

107

Absence
Absence

Actual
Actual

Presence
o
©
>
Presence

Absence Presence Absence Presence

Predicted Predicted
(b)

(a)
Statlog Dataset - Training Phase (70%) Statlog Dataset - Testing Phase (30%)

Absence
Absence

Actual
Actual

17 74

Presence
Presence

Presence

Absence Presence Absence
Predicted Predicted
(c) (d)

FIGURE 7. Confusion matrices of AROML-HDC technique on Statlog
dataset (a-b) 80:20 of TRP/TSP and (c-d) 70:30 of TRP/TSP.

TABLE 3. Classification outcome of AROML-HDC method on statlog
dataset.

Statlog Dataset

Class Accu, Prec, Recq, Fcore MCC
Training Phase (80%)

Absence 93.04 95.54 93.04 94.27 87.97
Presence 95.05 92.31 95.05 93.66 87.97
Average 94.05 93.92 94.05 93.97 87.97
Testing Phase (20%)

Absence 91.43 96.97 9143 94.12 84.41
Presence 94.74 85.71 94.74 90.00 84.41
Average 93.08 91.34 93.08 92.06 84.41

Training Phase (70%)

Absence 100.00 85.22 100.00 92.02 83.25
Presence 81.32 100.00 81.32 89.70 83.25
Average 90.66 92.61 90.66 90.86 83.25
Testing Phase (30%)

Absence 100.00 91.23 100.00 95.41 86.89

Presence 82.76 100.00 82.76 90.57 86.89
Average 91.38 95.61 91.38 92.99 86.89

indicates the effectual identification of the absence and pres-
ence of class samples. For instance, with 80% of TRP,
the AROML-HDC approach reaches an average accu, of
94.05%, prec;, of 93.92%, reca; of 94.05%, Fcore 0f 93.97%,
and MCC of 87.97%. Besides, with 20% of TSP, the
AROML-HDC method reaches average accu, of 93.08%,
prec, of 91.34%, reca; of 93.08%, Fscore of 92.06%, and
MCC of 84.41%. Also, with 70% of TRP, the AROML-HDC
method reaches average accuy, of 90.66%, prec, of 92.61%,
recaj of 90.66%, Fcore of 90.86%, and MCC of 83.25%.
Fig. 9 examines the accuracy of the AROML-HDC tech-
nique during the training and validation process on the Statlog
dataset. The figure notifies that the AROML-HDC technique
reaches increasing accuracy values over increasing epochs.
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Statlog Dataset

TABLE 4. Accuracy outcome of AROML-HDC approach with other existing

98 methods.
[ Training Phase (80%) I Training Phase (70%)
96 1 Testing Phase (20%) =3 Testing Phase (30%)
Methods Accuracy (%)
94 4 — — —_—
AROML-HDC 94.05
2
= 921 MLMDMC-ED 91.87
]
H]
s 20 VNB-LR 87.71
5 88 1 Fuzzy-NN 80.36
86 1 DT 81.04
84 | ELM 86.87
82 SVM 86.42
Accuracy Precision Recall F-Score MCC
NB 69.31
FIGURE 8. Average outcome of AROML-HDC approach on Statlog dataset
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Training and Validation Accuracy- Statlog Dataset GA-NN 80.9
—— Training
0.925 —— \alidation DT‘GR 8449
0.900
0.875 1
> 100
g 080 [ AROML-HDC B SVM Model
- 1 MLMDMC-ED ) NB Model
951 L == VNE-LR Model mmm CART Model
0800 1 - [0 Fuzzy-NN Model [ GA-NN Model
90 — DT Model B DT-GR Model
11 - B ELM Model
=®
0.750 - i‘ 85 4
>
T T T T =4
o 5 10 is 20 25 E
Epochs 3 80
4
FIGURE 9. Accuracy curve of AROML-HDC approach on Statlog dataset. 75
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FIGURE 10. Loss curve of AROML-HDC approach on Statlog dataset.

In addition, the increasing validation accuracy over training
accuracy exhibits that the AROML-HDC technique learns
efficiently on Statlog dataset.

The loss analysis of the AROML-HDC technique at the
time of training and validation is demonstrated on Statlog
dataset in Fig. 10. The results indicate that the AROML-
HDC technique reaches closer values of training and valida-
tion loss. The AROML-HDC technique learns efficiently on
Statlog dataset.
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FIGURE 11. Accuracy outcome of AROML-HDC method with other existing
methods.

At the last stage, the betterment of the AROML-HDC
technique is confirmed by performing a comparison study
in terms of accuy in Table 4 and Fig. 11 [30]. These results
represent the improved efficacy of the AROML-HDC method
with an increasing accuy, of 94.05%.

On the other hand, the MLMDMC-ED, VNB-LR, fuzzy-
NN, DT, ELM, SVM, NB, CART, GA-NN, and DT-GR
methods accomplished reduced performance with accuy
of 91.87%, 87.71%, 80.36%, 81.04%, 86.87%, 86.42%,
69.31%, 83.23%, 80.9%, and 84.49% respectively. Therefore,
the AROML-HDC technique can be applied for effective
healthcare data analysis in the ED of the KSA hospitals.

V. CONCLUSION

In this study, we have introduced a new AROML-HDC
technique for classifying and monitoring medical data in
the ED of the KSA hospitals. The presented AROML-HDC
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technique monitors and tracks the patient visit data, treat-
ment given, and LOS. In addition, the AROML-HDC tech-
nique performs medical data classification via different
sub-processes namely min-max normalization, ARO-based
feature subset selection, CSCR-ELM classification, and
GOA-based parameter tuning. The design of the ARO algo-
rithm and GOA helps to intensify the overall performance of
the AROML-HDC technique in the medical data classifica-
tion process. The experimental outcomes of the AROML-
HDC technique were tested on a benchmark healthcare
dataset, and the results indicate the improved performance of
the AROML-HDC methodology with other recent methods
in terms of different measures. In the upcoming years, the
presented AROML-HDC technique can be extended to the
design of a fusion-based ensemble classifier to improvise
the classification performance.
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