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ABSTRACT To effectively recognize the incipient potential faults caused by degradation of multiple
components in DC-DC converters, a fault diagnosis method that involves multi-dimensional feature fusion
and sensitive feature extraction is proposed. Firstly, the time-domain statistical characteristics of fault and
normal samples are extracted. TheKL divergence and normalized kurtosis of intrinsicmode functions (IMFs)
between them are calculated by empirical mode decomposition (EMD). In order to further improve the
feature discrimination, a sensitive feature extraction method based on Mahalanobis distance (SFMD) is
designed to screen out the key features. Finally, the sensitive features are used to construct the SA-LSSVM
(Simulated annealing-Least squares support vector machine) model to realize the fault diagnosis. The
accuracy of fault diagnosis in simulation and hardware experiment are 99.61% and 97.93% respectively.
Compared with other fault diagnosis and feature selection methods, the proposed method still has higher
accuracy and better engineering practicability.

INDEX TERMS DC-DC converter, incipient fault, SA-LSSVM.

I. INTRODUCTION
DC-DC converter is an important component of secondary
power supply, which is widely used in aerospace, new
energy, transportation, communication systems and other
fields [1], [2]. The degradation of the overall performance
of most circuits is due to failure of key components [3].
At present, the fault diagnosis methods for DC–DC converter
mainly focus on the soft fault and hard fault. Some faults
may be caused by the subtle parameter deviations of the
components in the early stage. This type of fault is called
the incipient fault in this paper. It means that the minimum
parameter change of the component is within the tolerance
range [4]. If not detected the incipient faults in time, it will
gradually deteriorate and cause the abnormal work of DC-DC
converter. Therefore, it is necessary to identify the potential
faults of DC-DC converter in the early stage.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu Wang .

The research on fault diagnosis of DC-DC converter can
be divided into three categories. Firstly, the model-based
methods need to know the exact mathematical model of the
DC-DC converter. Alexandre et.al proposed a real-time FDI
algorithmwith an integrated fuzzy logic scheme for detecting
sudden failure at unknown time [5]. In [6], the adaptive
sliding mode observer was designed for fault detection. The
expert system uses the rich knowledge base and the reasoning
mechanism separation technology. Aiming at the onboard
power system, the fault reasoning and location were resolved
by means of fault mode analysis and fault tree in [7]. For the
satellite power system, an expert system was proposed in [8].

With the emergence of integrated circuits, complex fault
causes are difficult to be fully covered by expert knowledge.
The data-driven methods can effectively solve this prob-
lem [9]. A deep transfer kernel extreme learningmachine auto
encoder (DKEA) model was designed to solve the problem of
insufficient data in [10]. The uncorrelated multi-linear prin-
cipal component analysis are used for fault diagnosis in [11].
In [12], the soft fault diagnosis method based on wavelet
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TABLE 1. Comparison with the existing method.

transform and fuzzy cerebellar model neural networks
(WT-FCMNN) was proposed. Expectation Maximization
Principal Component Analysis (EMPCA) and SVM were
applied to buck–boost converter in [13]. Yang and Yue [14]
proposed a soft fault diagnosis method for DC-DC con-
verter based on overlap evaluation. In [15], online anomaly
detection by Gaussian process regression (GPR) and genetic
algorithm (GA) was proposed. In addition, the deep learning
methods can realize the end-to-end fault diagnosis. In [16],the
multilayermultivalued neuron neural networkwith a complex
QR decomposition was proposed. A novel optimization deep
belief network (DBN) optimized by crow search algorithm
(CSA)was presented in [17]. In [18], convolutional neural
network (CNN) based on channel attention mechanism was
proposed. A fault feature extraction method based on multi-
scale CNN was designed in [19], which fused fault feature
extracted from convolution kernels of different scales.

This paper proposes an incipient fault diagnosis method for
DC-DC converter based on multi-dimensional feature fusion
(MDFF). The principle of this method is as follows: Firstly,
the paper calculates the output signals in the time domain.
The KL divergence and normalized kurtosis of intrinsic mode
functions (IMFs) between them are calculated by empiri-
cal mode decomposition (EMD). Then, the sensitive feature
extraction method based on Mahalanobis distance (SFMD)
is used to increase the feature differentiation and achieve the
feature fusion. Finally, simulated annealing (SA) is used to
optimize the hyperparameter and the fault diagnosis model is
con-structed based on it. The simulation and hardware exper-
imental results show the proposed method can efficiently
identify the faults of buck converter in the early stage.

Compared with the state-of-the-art research in Table 1.
Firstly, a few methods can identify the faults of the multiple
key components at the same time,most of them are just capac-
itor. However, the proposed method can recognize capacitor,
inductor and MOSFET simultaneously. Secondly, the faults
in the other studies are mainly caused by the lager parameter
deviations. The output changes caused by these failures are
observable. However, some incipient faults are caused by

subtle degradation of key components. These studies are dif-
ficult to extract the incipient faults, and their accuracy are not
satisfactory. The minimum identifiable parameter deviations
of the proposed methods are relatively smaller than most
methods, which can be up to 5%. It can effectively identify
more fault types and incipient faults in the early stage.

The innovative contributions are summarized as follows.
Firstly, it can solve the potential incipient faults of multiple
components in DC-DC converters. All diagnosis accuracy is
higher than other feature selection and fault diagnosis meth-
ods. Secondly, a feature selection method based on Maha-
lanobis distance is designed to get sensitive features, which
can increase the feature differentiation and achieve the feature
fusion. Thirdly, it has good generalization ability, which is
suitable for different DC-DC converters, such as buck con-
verter, boost converter and buck converter with the memris-
tive load. In addition, the hardware experimental results show
that the method has good anti-noise ability, which is close to
the engineering practice.

The remainder of this paper is as follows. The principle of
fault diagnosis method is presented in Section II. Section III
introduces the experiments and analysis. Section IV draws the
conclusion of this paper.

II. MDFF METHOD FOR INCIPIENT FAULT DIAGNOSIS
The proposed incipient fault diagnosis method consists of
three steps. First is the multi-dimensional feature fusion
including the statistical features, EMD-KL divergence and
kurtosis. The second is the SFMD method, which eliminates
redundant features and retains key features. Finally, the SA-
LSSVM fault diagnosis model is used to carry out secondary
dimension reduction and realize the incipient fault diagnosis
for DC-DC converter.

A. FAULT FEATURE EXTRACTION
1) FEATURE EXTRACTION BASED ON TIME DOMAIN
As time goes by, the change of the temperature, humid-
ity and pressure of the circuit will lead to the degradation
of key components, thus forming the incipient faults of
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FIGURE 1. The process of SA-LSSVM.

FIGURE 2. Procedure of fault diagnosis method.

DC-DC converter. Feature extraction based on statistical
characteristics can directly reflect the change of the response.
This paper calculates the six-dimensional statistical char-
acteristics including mean, ripple voltage, RMS, variance,
kurtosis and skewness, all of them are normalized. The u =

[u1, u2, . . . , uN ] denotes the output response. The total num-
ber of sampling points is N.

Equation (1) expresses the mean m of output signal, which
reflects the overall trend of the output response.

m = E(u) =
1
N

N∑
i=1

ui (1)

The ripple voltage p refers to the change between the
maximum and minimum values of the stable waveform,

as expressed in (2). When the components degrade, the ripple
varies linearly.

p = max(ui) − min(ui) (2)

Equation (3) expresses the RMS c of the output signal.

c =

√√√√ 1
N

N∑
i=1

u2i (3)

The variance v is used to measure the deviation between
the sample and the mean, as expressed in (4).

v =

√
E(u− m)2 =

√√√√ 1
N − 1

(
N∑
i=1

u2i − N (E(u))2) (4)

The larger the kurtosis is, the greater difference between
the fault and the normal state, and it is defined as (5).

k = E(x4) − 3[E(x2)]2 =

√√√√ 1
N

N∑
i=1

u4i (5)

Equation (6) expresses the skewness s, which denotes the
asymmetry of the output signal distribution.

s = E[(
u− m
v

)3] = (
1
N

N∑
i=1

u3i )/

√√√√ 1
N

N∑
i=1

u2i (6)

The time domain analysis of DC-DC converter is intuitive.
Then statistical features of Nf samples are calculated and
normalized respectively, which forms the original feature
vectors Fs of (6 × Nf ).

Fs = [m.p, c, v, k, s] (7)

2) FEATURE EXTRACTION BASED ON EMD-KL DIVERGENCE
The statistical features can’t fully reflect the circuit degra-
dation information. The traditional signal processing method
will cause that the fault features are not accurate. In this
paper, IMFs are obtained by EMD of the output signal, and
their KL divergence and normalized kurtosis are calculated
to constitute fault feature vectors.

The principle of EMD is to make original signal relatively
stationary. According to the local characteristic structure of
the original signal f (t), IMFs of single frequency and one
residue res(t) are decomposed from it, which realizes the
multi-resolution analysis of DC-DC converter.

f (t) =

N∑
i=1

IMFi(t) + res(t) (8)

KL divergenceD(p||q) denotes the difference between two
probability distributions, as expressed in (9).

D(p||q) =

∫
x∈X

p(x) log
p(x)
q(x)

(9)
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FIGURE 3. Electrolytic capacitor degradation model.

FIGURE 4. Schematic of buck converter.

FIGURE 5. Output waveforms of N1-F5.

p(x) and q(x) are the probability density function of fault
and normal sample for DC-DC converter respectively. By cal-
culating KL divergence between them, faults be detected. Its
steps are as follows:

Step 1: Calculate total energy of each IMF, as expressed in
(10), where n is the length of the output signal.

Et =

k∑
i=1

(IMFn(i))2 i = 1, 2, . . . , n (10)

Step 2: Divide each IMF into m segments on average, and
calculate the energy of each segment.

Eln =

l2∑
i=l1

(IMFn(i))2 m = 6 (11)

where l1 and l2 are starting and ending points of the segment.

TABLE 2. Fault classes of buck converter.

Step 3: Calculate energy distribution pf (k) of the signal by

pf (k) =
Eln
Et

(12)

Then the KL divergence of IMFs between fault and normal
signal can be expressed as:

KL =

m∑
k=1

pf (k) × log
pf (k)
pn(k)

(13)

where pf and pn refer to the probability distribution of IMFs
of the fault and normal signal.

Step 4: Calculate the kurtosis k of IMFs and normalize
the kurtosis and KL divergence respectively in order to use
them to construct SA-LSSVMmodel for incipient fault diag-
nosis, which can simplify the computational complexity and
improve the accuracy. The feature vectors Fe are defined as
follows:

Fe = [
KL1

max
i
(KL)

, . . . ,
KLi

max
i
(KL)

,
k1

max
i
(k)

, . . . ,
ki

max
i
(k)

]

(14)

B. SENSITIVE FEATURE EXTRACTION BASED ON
MAHALANOBIS DISTANCE (SFMD)
For the incipient fault diagnosis of DC-DC converter, extract-
ing sensitive features from high-dimensional features is the
premise to improve the diagnosis accuracy. The original
feature vectors have a large amount of information, but the
uncorrelated features increase the sample size. It leads to the
curse of dimensionality and reduces the effectiveness of fault
identification. To solve these problems, the paper proposes
the SFMD method. Calculate the sensitive factors of the
feature vectors to screen out the key features according to the
corresponding threshold value.
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FIGURE 6. Time domain statistical characteristics.

FIGURE 7. EMD decomposition results of N1.

FIGURE 8. EMD decomposition results of F1.

TABLE 3. Energy distribution of IMFs of N1 and F1.

Using theMahalanobis distance (MD) to denote the covari-
ance of the feature vectors, which can calculate the similarity
between features. Compared with Euclidean distance, it is not
limited by dimension, which can eliminate the correlation
interference. The principle of SFMD is as follows: the fea-
tures have a strong inter-class distinction between different
fault samples and a good intra-class cohesion between sim-
ilar fault samples. The steps of the proposed method are as
follows:

Step 1: By multi-dimensional feature fusion of 6 dimen-
sional statistical features and 12 dimensional EMD features,

TABLE 4. EMD feature vectors of F1.

FIGURE 9. EMD-normalized characteristic parameter atlas.

FIGURE 10. Results of SFMD in the ideal condition.

the 18-dimensional features F are shown as (15):

F = {Fi,j,l, i = 1, 2 . . . ,Nf ,

j = 1, 2 . . . ,M , l = 1, 2, . . . ,L} (15)

where Nf ,M and L denote the 800 samples, 8 fault types, and
18 features respectively.

Step 2: Calculate themeanMDwithin the class d inl for each
feature by:

d inl =
1
M

M∑
j=1

1
N × (N − 1)

×

∑N
i = 1
n ̸= i

(md(Fi,j,l − Fn,j,l)) (16)

md(Fi,j,l,Fn,j,l) =

√
(Fi,j,l − Fn,j,l)T

−1∑
(Fi,j,l − Fn,j,l)

(17)

Then calculate the weight ratio V in
l of the intra-class dis-

tance of 8 faults by:

V in
l =

max(d inl )

min(d inl )
(18)
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FIGURE 11. The confusion matrix in the simulation experiment.

FIGURE 12. Hardware experiment platform.

FIGURE 13. Waveforms of the fault states HF5 HF7 HF10 in the hardware
experiment.

Step 3: Calculate the mean MD between classes dbetl for
each feature by:

dbetl =
1

M × (M − 1)

∑M
i = 1
i ̸= n

(|mi,l − mn,l | (19)

mi,l =
1
N

∑N

i=1
Fi,j,l (20)

TABLE 5. Each characteristic sensitive factor in the ideal condition.

TABLE 6. Precision, Recall, and F1 in the simulation experiment.

Then calculate the weight ratio V bet
l of the inter-class

distance of 8 faults by:

V bet
l =

max(dbetl )

min(dbetl )
(21)

Step 4: The sensitive feature factor sl for each feature is
calculated and normalized as follows, where θ is the scale
factor.

sl = θ ×
dbetl

d inl
sl =

sl
max(sl)

(22)

θ =
1

V inl
max(V inl )

+
V betl

max(V betl )

(23)

If sl is close to 1, the feature is more sensitive for DC-DC
converter, which can effectively distinguish different incip-
ient faults. If sl is close to 0, the feature is less important,
which is irrelevant to the circuit degradation.

The proposed method SFMD has two advantages: Firstly,
the calculation is simple and time-consuming. For the incip-
ient faults, the original features have poor recognition effect,
but the selected features have a good distinction between
subtle faults, which can avoid the overlap of features from
the perspective of quantitative analysis. Secondly, when the
data is obtained through Monte Carlo analysis, the param-
eter changes in the tolerance range will not affect the good
cohesion of the features. The selected sensitive features can
continuously and stably reflect the properties of the degraded
converters.

C. FAULT DIAGNOSIS BASED ON SA-LSSVM
LSSVM is an extended algorithm of SVM, which is used to
solve the optimal classification problem of nonlinear sam-
ples in high dimensional space and avoid the dimensional
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disaster when training large samples. For the training set
S = {(x1, y1), (x2, y2), . . . , (xn, yn), } and nonlinear mapping
ϕ(x), the optimal decision function of LSSVM is as follows:

y = ωT
· ϕ(x) + b (24)

where ω is weight vector and b is constant.
According to the principle of risk minimization, the con-

straint problem is established:
min
ω,e,b

φ(ω, e) =
1
2
ωTω +

1
2
γ

N∑
k=1

e2k

yk = ωT
· ϕ(xk ) + b+ ek

(25)

where γ is regularization parameter, ek is error.
Use Lagrange multiplier to solve the constraint problem,

function estimation of LSSVM is as follows:

y(x) =

N∑
k=1

αkK (x, xk ) + b (26)

where K(x, xk ) is kernel function, such as Radial Basis func-
tion, Gaussian kernel and Linear kernel. The suitable kernel
function can improve the performance of LSSVM.

In order to further improve the accuracy of fault diagnosis,
SA algorithm is used for parameter optimization of LSSVM.
The SA algorithm has strong global search ability. It simu-
lates the annealing process to optimize the hyperparameters
γ and σ in LSSVM. Firstly, set the current solution to its
initial value and new solutions are obtained by cooling. Ran-
dom search is conducted by the Metropolis criterion and the
optimal solution of LSSVM is obtained by repeated sampling
with decreasing temperature. The process of SA-LSSVM is
shown in Fig.1.

D. PROCEDURE OF THE FAULT DIAGNOSIS
Step 1: Construct the degradation model of key compo-

nents and determine the incipient faults. Collect the normal
and fault samples by Monte Carlo analysis in PSpice.

Step 2: Calculate the multi-dimensional fusion features
including the time-domain statistical characteristics and
EMD-KL divergence and kurtosis.

Step 3: Calculate the sensitive feature factors and select the
key features by the SFMD method.

Step 4: Train the SA-LSSVM fault diagnosis model by
the sensitive features to realize the incipient fault diagnosis
of DC-DC converter. The specific procedure of the proposed
method is shown in Fig.2.

III. EXPERIMENTS AND ANALYSIS
The proposed method is used for incipient fault diagnosis of
DC-DC converter. In order to verify the validity of it, the
simulation and hardware experiments are carried out. The key
components of DC-DC converter are electrolytic capacitor,
inductor and MOSFET. Therefore, it is necessary to analyze
the degradation mechanism of these components in DC-DC
converter.

FIGURE 14. The confusion matrix in the hardware experiment.

FIGURE 15. Sensitivity of features by different feature selection methods.

The electrolytic capacitor is used to realize energy storage
and filter during voltage conversion. Its failure mechanism
includes suddenness and gradualism. The equivalent circuit
includes capacitor C and equivalent resistance RC . Influ-
enced by stress and environment, RC and C will gradually
increase and decreases respectively. The degradation model
of electrolytic capacitor is shown as (27) and (28), and the
degradation curve is shown in Fig.3.

ESR(t) =
ESR(0)

(1 − 5673 · t · exp( −4700
T+273 ))

=
ESR(0)

1 − 0.00134t

(27)

C(t) = C(0)[1 − 0.01(e0.01t − 1)] (28)

where RC (0) and C(0) refer to the nominal value of the RC
and C . T denotes the temperature.

The temperature of the coil increases overtime, which
results in the decrease of the inductor value. The equivalent

circuit of inductor includes L and equivalent resistance RL ,
whose degradation model is shown as (29).

L(t) = L(0) − 0.031t (29)

MOSFET switches on and off, which is controlled by the
driving signal. MOSFET undertakes 30% power loss. The
on-resistance of MOSFET is Ron, and Ron(0) is the nominal
value. Its degradation model is defined as (30).

Ron(t) = Ron(0) + 0.0035 ∗ (e0.00495t − 1) (30)

The buck converter is selected as the object of study, and
its schematic is shown in Fig.4. The simulation circuit is built

58828 VOLUME 11, 2023



W. Han et al.: Incipient Fault Diagnosis for DC–DC Converter Based on Multi-Dimensional Feature Fusion

TABLE 7. Soft fault set in the hardware experiment.

in PSpice. The MOSFET is IRF540, the diode is D1N5819.
The DC signal source Vin is+28V, the period of PWM signal
is set to 50 ηs, and the duty cycle is 54%. The tolerance of the
components is set to 5%.

The component parameters of the buck converter are cal-
culated as follows:

D =
Uo
Ui

=
15
28

= 53.57% (31)

whereD refers to the duty cycle,Uo andUi represent the input
and output voltage respectively. The switching frequency
fs = 20kHz.

R =
UO

Io
=

15
0.27

= 55� (32)

whereR refers to the load resistance, and Io denotes the output
rated current.

L =
(Ui − Uo) ∗ D

fs ∗ dl
= 200µH (33)

where L refers to the value of the inductor, and output current
ripple dl = 1.74 A.

C =
Uo ∗ (1 − D)

8 ∗ fs2 ∗ Vpp ∗ L
= 47µF (34)

where C refers to the value of the capacitor, and output
voltage ripple Vpp = 0.23 V.

According to the degradation model of components, the
normal and fault sets are injected into the simulation circuit.
The fault classes are shown as Table 2. The tolerance of
the components is set to 5%. So the minimum identifiable
parameter deviation of each faults is 5%. N1-N2 is the normal

TABLE 8. Precision, Recall, and F1 in the hardware experiment.

FIGURE 16. Schematic of boost converter.

FIGURE 17. Output waveforms of boost converter.

set of parameter variation within the tolerance, F1-F5 is the
set of subtle incipient soft faults, and F6 is the hard fault.

Collect the stable output voltage for 19.5 ms-20 ms, the
sampling interval is set to 0.5 ηs. The output waveforms of
N1-F5 are given as Fig.5. It is difficult to identify the incipient
soft faults because they have large overlap. 100 fault outputs
of incipient faults are collected by Monte Carlo analysis.

A. DC-DC CONVERTER FAULT DIAGNOSIS
1) SIMULATION EXPERIMENT
The paper obtains the multi-dimension feature fusion, and
the steps of fault feature extraction are as follows. In first,
to realize rapid diagnosis, six time-domain features including
the mean, the ripple voltage, the RMS, the variance, the
kurtosis and the skewness of output voltage are calculated
and normalized. The time-domain features of 800 samples
are shown in Fig.6. 1-200 and 201-700 of each feature denote
N1-N2 and F1-F5 respectively, and 701-800 denotes F6.
Obtain IMF1-IMF6 of 800 samples by EMD method, which
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FIGURE 18. Results of SFMD for boost converter.

TABLE 9. Fault diagnosis accuracy by using different feature selection
methods.

already contains abundant fault information to support the
subsequent fault diagnosis.

The IMFs ofN1 and F1 are shown in Fig.7 and Fig.8, which
are obviously different. Each IMF is divided into 6 segments
to obtain the energy probability distribution, as shown in
Table 3. The KL divergence and kurtosis of IMFs in the
same layer are calculated and normalized in order to use
the SA-LSSVM model. The EMD-normalized characteristic
parameter atlas are shown in Fig.9, which can effectively dis-
tinguish different kinds of faults. EMD fault feature vectors
of F1 are shown in Table 4.

Combined the 18 features to form the multi-dimension
features. Extract the sensitive features by the SFMD method,
which use sl to denote the sensitivity of features. The results
of sl of 18 features are shown in Table 5. The distributions of
intra-class distance, inter-class distance and sensitive feature
factors are shown in Fig.10. The horizontal axis represents
18 features. 1-6 represents time domain statistical features,
7-12 and 8-18 denote EMD-KL divergence and kurtosis. The
mean value of sensitive factor slm = 0.2312. The features
of sl > slm are left to form a 5- dimensional sensitive
feature set. It can eliminate useless features and obtain better
classification effect.

The configuration of the experimental platform is as
follows: Windows10 64-bit operating system, CPU is
i5-1135G7@2.40GHz, GPU is NVIDIA GeForce MX450.
The program runs based onMATLAB. The fusion features of
800 data are randomly divided into training data and testing
data by 3:1.The 600 samples are selected as the training set,
200 samples are used as the testing set. The training set is
used to obtain the optimal SA-LSSVMmodel. The confusion
matrix is used to represent the fault diagnosis results of the

TABLE 10. Fault diagnosis accuracy by using different diagnosis methods.

TABLE 11. Computation complexity of different diagnosis methods.

FIGURE 19. The confusion matrix of the boost converter.

buck converter. In the confusion matrix, columns represent
the true fault labels obtained by SA-LSSVM, and rows rep-
resent the predicted fault labels. The value in each column
shows the number of accurately predicted faults.

Confusion matrix has four basic indicators, namely TP
(True Positive), FN (False Negative), FP (False Positive)
and TN (True Negative). In this paper, the number of fault
samples belonging to a certain type is positive, while the
other is negative. The confusionmatrix also has the secondary
indicators, namely accuracy, precision, recall rate and F1. The
equations of the indicators are as follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(35)

Precision =
TP

TP+ FP
(36)

Recall =
TP

TP+ FN
(37)

F1 =
2 × Precision× Recall
Precision+ Recall

(38)

The confusion matrix in the simulation experiment is pre-
sented in Fig.11. The accuracy, precision, recall, and F1 val-
ues of the proposed method are given in Table 6. As displayed

58830 VOLUME 11, 2023



W. Han et al.: Incipient Fault Diagnosis for DC–DC Converter Based on Multi-Dimensional Feature Fusion

FIGURE 20. The simulator of the voltage-controlled memristor.

TABLE 12. Each characteristic sensitive factor of boost converter.

TABLE 13. Precision, Recall, and F1 of boost converter.

in Fig.11, in the F4 fault prediction, one sample is misjudged
as F5. Other fault labels are classified correctly. The fault
diagnosis accuracy of SA-LSSVM is 99.61%, which can
realize the identification of incipient soft fault, hard fault of
the buck converter.

2) HARDWARE EXPERIMENT
The hardware experiment is constructed to verify the effec-
tiveness of the proposed method in the actual condition. The
hardware platform involves the buck converter whose main
components are the electrolytic capacitor, inductor andMOS-
FET. The C and RC of electrolytic capacitor are 4.710 µF
and 1.452 �. The L and RL of the inductor are 1.071 mH and
1.423 �. The MOSFET is IRFP150 and Ron is 36 m�. The
DC power supply is +6 V. The frequency of the PWM signal
is set to 20 kHz, and the duty cycle is set to 0.5 ms. Fig.12
shows the hardware platform.

Components with different values are selected to construct
the soft fault of the hardware experiment. The soft fault of

FIGURE 21. Schematic diagram of buck converter with memristor load.

HF1-HF8 is shown in Table 7. 200 outputs of each fault are
obtained from the actual circuit and the sampling interval is
1ms. From Fig.13, it can be seen that soft faults have obvious
influence on the output.

Adopt the SFMD method to calculate the sl of features in
the hardware experiment. The mean value of sensitive factor
slm = 0.6293. The features of sl > slm are left to form a
7-dimensional sensitive feature set. Then SA-LSSVM model
is used to diagnose incipient faults. As displayed in Fig.14,
there are some mistakes in the HF3, HF4, HF7 and HF8, and
other fault labels are classified correctly. The fault diagnosis
accuracy of SA-LSSVM is 97.93%, The accuracy, precision,
recall, and F1 are given in Table 8. Due to the noise in the
outputs of the hardware platform, the accuracy is lower than
the simulation experiment, but it still meets the reliability
requirements of the DC-DC converter.

B. COMPARISON OF DIFFERENT FEATURE
SELECTION METHODS
In order to solve the problem of high dimension of original
features in incipient faults of DC-DC converter, this paper
proposes the SFMDmethod, which avoids dimension disaster
and feature redundancy. To represent the superiority of this
method, the comparison experiments are made with other
feature selection methods including the Euclidean distance,
RandomForest (RF) andRelief Fmethods. Themethod based
on Euclidean distance means that the intra-class and inter-
class distance is calculated by Euclidean distance, which is
defined as (39).

Ed(Fi,j,l,Fn,j,l) =

√
(Fi,j,l − Fn,j,l)2 (39)

RF method calculates the average contribution of each
feature in the random forest. The Gini index is used as an
evaluation index to measure the contribution rate, which is
defined as (40). Its score VIM of each feature is calculated
respectively.

Gini(p) = 1 −

M∑
m=1

p2m (40)

whereM and pm indicate the number of fault classes and the
weight ofM .
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FIGURE 22. Output waveforms of buck converter with memristor load.

TABLE 14. Parameters of buck converter with memristor load.

The Relief F method randomly selects a sample R from
the training data, and finds K nearest neighbor sample H
from the same class. Find K nearest neighbor sample M from
the different class, and updates the feature weight. The fault
data with Gaussian noise from Section III-B are analyzed by
Monte Carlo for 100 times to obtain the original features. The
sensitivity of features by the four feature selection methods is
shown in Fig.15. The fault diagnosis results by using different
feature selection methods are shown in Table 9 combined
with SA-LSSVM.

The SFMD method still has a higher average accuracy of
99.00%, which is 8.0%, 15.5% and 22.5% higher than RF,
Euclidean distance and Relief F, respectively. The Euclidean
distance method calculate the inter-class distance simply, but
it is related to the unit of the index, and ignore

the influence of the total variation on the distance. The
Relief F method is limited by finding nearest samples, which
is not suitable for the multi-label classification. The RF
method is affected by the number of decision trees, the size of
training samples and internal node division, which will inter-
fere with fault diagnosis. Therefore, the other three feature
selection methods can’t extract sensitive features well for the
incipient fault diagnosis of DC-DC converter.

C. COMPARISON WITH OTHER DIAGNOSIS METHODS
To further demonstrate the superiority of this method, it is
compared with other fault diagnosis methods, including
extreme learning machine (ELM), linear discriminant analy-
sis (LDA) support vector machine (SVM) and convolutional

TABLE 15. Soft fault set in the buck converter with memristor load.

TABLE 16. Precision, Recall, and F1 of the buck converter with memristor
load.

neural network (CNN). Use the noisy data fromSection III-B,
and the original features consist of time domain statistical
characteristics, EMD-KL divergence and kurtosis. According
to Table 2, the method proposed in this paper and the other
four methods are used to construct diagnosis model. The
results by using different fault diagnosis methods are shown
in Table 10 combined with multi-dimensional feature fusion.

The proposed method still has a higher average accuracy
of 99.00%, which is 8.5%, 8.0% 25.6% and 10.5% higher
than ELM, LDA and SVM, CNN, respectively. The compu-
tation complexity of different diagnosis methods are shown in
Table 11. The proposedmethod has the least iteration step and
the least run time. Although the accuracy of ELM and LDA
method are higher than 90%, their run time is longer than the
SA-LSSVM method, and have more iteration steps. So the
proposed method has the minimum computation complexity.

The reasons for the high accuracy of this method are as
follows: LDA method depends on the data with large inter-
class dispersion, which leads to the difficulty in identifying
the categories with small inter-class dispersion. ELM belongs
to the feedforward neural network, whose learning rate is
difficult to determine. It is easy to fall into the local minimum
dilemma and overtraining will also cause the performance
of generalization decline. When SVM is faced with large
data sets, the process of finding the optimal parameters will
increase the time cost of fault diagnosis. CNN needs a lot
of samples and the computation is heavy. In contrast, the
SA-LSSVM method in this paper has the advantages of fast
learning rate, high diagnosis accuracy and good robustness
under the noisy condition.

D. EXPERIMENT OF DIFFERENT DC-DC CONVERTERS
To prove the proposed method is suitable for the incipient
fault diagnosis of most DC-DC converters, the method is first
applied to the boost converter, whose schematic is shown in
Fig.16. The sampling time is set to 0.5 ηs, and the tolerance
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of components is set to 5%. According to Table 2, the exper-
iment is constructed in the ideal condition, and the output
waveforms are given in Fig.17, whose overlap amplitude is
less than 1V, which makes fault diagnosis more difficult.
The time domain statistical features and EMD features are
calculated. The results of the SFMDmethod and each charac-
teristic sensitive factor for boost converter are given in Fig.18
and Table 12. Input the top 10 features into the SA-LSSVM.
The accuracy, precision, recall, and F1 values of the boost
converter are given in Table 13. As displayed in Fig.19, in the
F4 fault prediction, two samples are misjudged as F1. Other
fault labels are classified correctly. The accuracy of the pro-
posed method is 99.47%, which demonstrates the proposed
method is suitable for the other DC-DC converter. The fault
diagnosis model has good portability and practicability.

The change in load type can indeed affect the nonlinear
behavior of the DC-DC converter. In order to realize the
stable and efficient operation of the system, it is important to
study the dynamic characteristics of DC-DC converter under
different power loads. As the fourth basic component, mem-
ristor has been widely used in engineering, biology, computer
and other fields [25]. The memristor is used as the load of
buck converter to verify the effectiveness of the proposed
method [26].

Firstly, a voltage-controlled memristor simulator is con-
structed. Schematic diagram of voltage-controlled memristor
simulator is shown in Fig.20. The nonlinear function model
consists of an amplifier and a multiplier, which is shown
in (41)-(42).

im = W (vo)Vm =
1
R8

(1 −
R7
R5

+
R7
R6
gvo)Vm (41)

dvo
dt

=
Vm
R3C0

−
vo

R4C0
(42)

where vo denotes the voltage of C0, im and vm are the current
and voltage of the memristor simulator.

Referring to Fig.21, the buck converter with thememristive
load composes of a switch, a diode, an inductance, a capac-
itor, an RS flip-flop and a comparator. The buck converter
with memristor load is built in PSIM and parameters are set
as shown in Table 14. According to Table 15, the output
waveforms of buck converter with the memristive load are
shown in Fig.22. Apply the proposed method to it, the fault
diagnosis accuracy can be up to 99.10%, which demonstrates
the proposed method is suitable for DC-DC converter under
different power loads. The accuracy, precision, recall, and F1
values of the buck converter with memristor load are given
in Table 16.

IV. CONCLUSION
This paper presents an incipient fault diagnosis method based
on multi-dimensional feature fusion of DC-DC converter.
1) The multi-dimensional features include the time domain
statistics and EMD features. The SFMD method is pro-
posed to obtain the sensitive features from the high dimen-
sional information, which can realize the feature selection.

2) In the simulation and hardware experiments, all incipient
fault states of different DC-DC converters can be diagnosed
effectively. 3) Compared with the RF, Relief F and Euclidean
distance method, the proposed SFMD method has better
effect of feature selection. Moreover, the method has higher
fault diagnosis accuracy and less time consuming than other
diagnosis methods, such as LDA, SVM and ELM. 4) This
method has good early warning ability for the incipient faults
of DC-DC converter, which can effectively identify the weak
degradation of components. It is also important for the health
management and life cycle intelligent monitoring of switch-
ing power supply.
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