
Received 5 May 2023, accepted 28 May 2023, date of publication 9 June 2023, date of current version 29 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3284470

Convolutional Neural Network With Genetic
Algorithm for Predicting Energy Consumption
in Public Buildings
AHMED ABDELAZIZ 1,3, VÍTOR SANTOS1, AND MIGUEL SALES DIAS2
1Nova Information Management School, Universidade Nova de Lisboa, 1070-312 Lisbon, Portugal
2Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR, 1649-026 Lisbon, Portugal
3Information System Department, Higher Technological Institute (HTI), Cairo 44629, Egypt

Corresponding author: Ahmed Abdelaziz (D20190535@novaims.unl.pt)

This work has been supported by Portuguese funds through FCT-Fundação para a Ciência e Tecnologia, Instituto Público (IP),
under the project FCT UIDB/04466/2020 by Information Sciences and Technologies and Architecture Research Center (ISTAR-IUL),
and this work has also been supported by Information Management Research Center (MagIC)-Information Management School of
NOVA University Lisbon.

ABSTRACT Due to their capacity to improve energy consumption performance, intelligent applications have
recently assumed a pivotal position in the energy management of public buildings. Keeping these buildings’
energy consumption under control is a significant issue because of their irregular energy consumption
patterns and the lack of design criteria for energy efficiency and sustainability solutions. As a result,
it is essential to analyze public building energy consumption patterns and predict future energy demands.
Evidence like this highlights the need to identify and categorize energy use trends in commercial and
institutional dwellings. This research aims to identify the most effective intelligent method for categorizing
and predicting the energy consumption levels of buildings, with a specific study case of public buildings
and, ultimately, to identify the scientific rules (If-Then rules) that will aid decision-makers in establishing
the proper energy consumption level in each building. The goals of this research were accomplished by
employing two intelligent computing models, the Elbow technique and the Davis and Boulden approach,
to count the number of clusters of energy consumption patterns. We addressed clustering with K-means
and a genetic algorithm. The genetic algorithm was utilized to find the best centroid points for each cluster,
allowing the fitting model to function better. Determining which buildings consumed the most energy has
been easier thanks to extracting If-Then rules from cluster analysis. Convolutional neural networks (CNNs)
and CNNs combined with a Genetic Algorithm (GA) were also employed as intelligent models for energy
consumption prediction. At this point, we utilized a genetic algorithm to fine-tune some of CNN’s settings.
CNNwith genetic algorithm outperforms the CNNmodel regarding the accuracy and standard error metrics.
Using a genetic algorithm, CNN achieves a 99.01% accuracy on the training dataset and a 97.74% accuracy
on the validation dataset, with accuracy and an error of 0.02 and 0.09, respectively. CNN achieves a 98.03%
accuracy, 0.05 standard error on the training dataset, 94.91% accuracy, and 0.26 standard error on the
validation dataset. Our research results are useful for policymakers in the energy sector because they allow
them to make informed decisions about energy supply and demand for public buildings.

INDEX TERMS Energy consumption, public buildings, convolutional neural network, K-means, genetic
algorithm.

I. INTRODUCTION
Inefficient buildings, regarding energy performance, are the
primary causes of global energy consumption and greenhouse
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gas emissions [1]; hence we must construct buildings that
consume less energy and are better for the environment.
Energy use in buildings substantially contributes to global
warming, air pollution, and thermal pollution, all of which
have far-reaching consequences for human civilization [2].
Population growth and rapid urbanization in the last few
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decades have significantly increased the energy demand,
notably in public buildings [3].

Researchers’ interest in energy efficiency in buildings
has sparked innovative machine-learning applications [4],
[5], [6], [7], [8]. Predicting how much energy a build-
ing will need is crucial for saving resources and making
informed choices that will result, in time, in lower energy con-
sumption. However, energy consumption prediction is still
challenging due to the many factors that influence such phe-
nomena, such as the physical attributes of a building and the
energy-use behavior of its residents [9]. ASHRAE, the Amer-
ican Society of Heating, Refrigerating, and Air-Conditioning
Engineers, has divided models for predicting building energy
use into two broad classes: forward models and data-driven
models [10].

Forward models, also known as physics-based modeling
approaches, necessitate numerous inputs about the building
and its surroundings, including the HVAC (Heating, Venti-
lation, and Air Conditioning) system, insulation thickness,
thermal properties, internal occupancy loads, solar informa-
tion, and more [11]. DOE-2, Energy Plus, and TRNSYS are
the most common examples of simulation tools that use this
technique. Too numerous and often unobtainable parameters
are needed by these models. Therefore, these methods can
be ineffective because of the design and computing time they
take and the lack of data they require [1].

Data-driven models, on the other hand, rely entirely
on empirical data analysis. Many researchers have pro-
posed these models for estimating building energy usage
using machine learning algorithms [1], [3], [10], [12] since
they do not need many specific inputs to the building
structure. This technique is honed using data culled from
BMSs – Building Management Systems and smart meters to
create a large, comprehensive hourly or sub-hourly measure-
ment dataset [13]. Data amount, data quality, and machine
learning model selection are the three most important ele-
ments in determining how well these models can estimate
future building energy usage [9].

Researchers have estimated that public buildings might
reduce their overall energy use by 10%-30% if they had
access to an energy modeling system with precise fore-
casts [3], [18]. As a result, efforts to improve building energy
prediction must be maintained if we want more energy-
efficient structures. Progress in data-driven models has led to
accurate energy projections [19]. Greenhouse gas emissions,
the development of less energy-efficient buildings, energy
demand, and savings will all rise until a reliable algorithm
for predicting building energy usage is found [20].

Numerous machine learning techniques for estimating
future building energy use have been presented during the
past decade [1], [3], [10], [11], [13]. Machine learning
algorithms like Artificial Neural Networks (ANN), Support
Vector Machines (SVM), and Decision Trees have been used
for estimating building energy use or consumption. Most
of the data used to train and test these algorithms come

from datasets containing less than 1,000 buildings [1], [21],
[22], [23], [24]. Since it is well-established that more qual-
ity data leads to more precise results, the limited sample
size of these datasets may result in less-than-accurate model
predictions [25], [26], [27], [28], [29].

The excellent results of Artificial Neural Networks (ANN)
have led to their increased popularity in the field of energy
prediction. It is well-documented that large and curated
datasets provide the neural network with enough information
to train a model and provide a significant advantage [30].
Reviewing the use of ANN for hourly building energy fore-
casting, Fei [31] found that the ANN algorithm yields good
results in both single- and multi-step forward predictions [9].
Using a single dataset consisting of two six-story building
blocks, ANN’s prediction performance with the energy mod-
eling and simulation tool Energy Plus. The findings indicated
that data-driven approaches (ANN) are superior for building
energy consumption prediction [32].

To forecast electricity demand in a single hospital based
on weather data and time/day fluctuation, Chen et al. inves-
tigated the potential of multi-layer perceptron ANN. After
being implemented, ANN forecasting excelled during the
colder months [24]. Inga [21] was the first to propose a
Support Vector Machine (SVM) to predict building energy
consumption. When applied to predict monthly electricity
consumption using four buildings based on meteorological
data, the authors found that the SVM outperformed related
research using neural networks, with a coefficient of determi-
nation (R2) greater than 0.99. J. Lee et al. and Y. Long et al.
used support vector machines to predict the hourly cool-
ing demand of a single office building. Root Mean Square
Error (RMSE) results for hourly load prediction using SVM
showed good results [22], [23]. Moreover, Dong et al. tested
ANN and SVM for forecasting hourly energy usage of office
buildings using a dataset of 507 buildings. The model’s
input variables were dew point, atmospheric pressure, outside
temperature, wind speed, etc., and building data (floor area,
building type, etc.). According to Dong et al. [32], the RMSE
for ANN was 5.71, whereas it was 7.35 for SVM.

Our study addresses optimization methods like GA to
improve the accuracy of the clustering model and the CNN
model. A metaheuristic approach is particularly pertinent
when solving search and optimization challenges. It rep-
resents a procedure that uses one or more heuristics and,
as a result, inherits all the characteristics of each heuristic.
As a result, a metaheuristic method generally lacks strong
evidence of convergence to the optimal solution, (i) is com-
putationally faster than exhaustive search (ii), and (iii) tries to
identify a near-optimal solution rather than the precise ideal
answer. These techniques are iterative and frequently modify
one or more original candidate solutions using stochastic
procedures (usually generated by random sampling of the
search space).

Despite the importance of precise predicts in comprehend-
ing building energy efficiency, none of the literature research
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has used more than 1000 buildings in the dataset to train the
model for better prediction performance, and based on the
performance criterion used, none have achieved great predic-
tion. We´ve mentioned that accuracy is extremely sensitive
to the choice of modeling algorithm, data quality, and data
amount [9]. Because diverse data and varied situations would
yield distinct outcomes, the accuracy result of algorithms
implemented on the different datasets is not directly compara-
ble when assessing the optimal method [35], [36], [37], [38].
Therefore, it is not possible to say that one modeling method
is superior to another without first analyzing and comparing
them on the same dataset. A few studies have compared
the various algorithms using the same data to see which
provides the most accurate energy consumption prediction in
buildings. To establish the most accurate approach to achieve
this goal, our study applies the same dataset and conditions
to several modeling algorithms.

Most studies examine the overall energy usage of vari-
ous buildings. However, other influencing factors have yet
to be considered, such as the consumption patterns of the
buildings’ inhabitants at peak times or during vacant hours
(00h00-02h00; 06h00-08h00; 22h00-00h00). This research
presents a cognitive computing model that automatically
classifies energy use into discrete levels. To further mini-
mize energy consumption and aid decision-makers in guiding
the behavior of occupants in public buildings, we offer
a hybrid intelligent model that combines a convolutional
neural network with a genetic algorithm to predict energy
usage. Our paper’s impact is multifaceted, encompassing four
areas:

a) Combining K-means (KM) with a genetic algorithm
(GA) to create a unique hybrid model for categoriz-
ing building energy consumption into levels (e.g., low,
medium, and high). In addition, the best possible starting
centroids in KM are identified with the help of GA.

b) Combining a convolutional neural network (CNN) with
GA to develop a unique hybrid model for estimat-
ing building energy consumption. Additionally, CNN
parameters are optimized with the help of GA.

c) Using a large dataset on the energy usage of pub-
lic buildings in Portugal, collected in 2018 and 2019,
to train and test our suggested models and assess their
performance and accuracy (comprising 81 260 public
buildings in 238 Portuguese cities).

d) Proposing a state-of-the-art intelligent model for ana-
lyzing building-level energy consumption to improve
public building energy efficiency.

The paper is structured as follows. In Section II, we discuss
our relevant research. Research questions and methods are
presented in Section III. In Section IV, we present and dis-
cuss the outcomes of our modeling experiments. In the final
section, we conclude and make recommendations for further
research.

II. RELATED WORK
The purpose of this section is to provide context for our
proposal and to defend the choice of strategies to be compared
in the experimental section by reviewing relevant prior work
in the field.

To predict building energy use, Ouf et al. [16] fused a
Bidirectional Long Short-TermMemory (Bi-LSTM) network
with a Convolutional Neural Network (CNN). The dataset’s
discriminative feature values were extracted using a CNN,
and predictions were subsequently made using a Bi-LSTM
network. A novel ensemble-based deep learning model for
anticipating energy usage and demands was introduced by
Park and Son [17]. The dataset was first pre-processed with
standard approaches, including transformation, normaliza-
tion, and cleaning, before being input into the ensemble
model, where the CNN and Bi-LSTM network extracted
discriminative feature values. To enhance and guarantee the
prediction performance of the proposed model, an active
learning approach was developed in this study using the
moving window. Following this phase, the provided model
was evaluated on a Korean commercial building dataset using
MAPE, RMSE, MAE, and MSE values to determine its effi-
cacy. For predicting future electrical loads, Wen et al. [18]
combined an Extreme Learning Machine (ELM) with Vari-
ational Mode Decomposition (VMD) methods. The VMD
method was used to decompose the gathered electric load
series into components with varying frequencies, reducing
the impact of any inherent fluctuations, and improving the
whole predictability. Finally, a differential evolution method
was used in conjunction with ELM to forecast.

Salam et al. [19] integrated a Deep Belief Network (DBN)
with linear regression methods to make predictions about
time series data. In this investigation, the time series data’s
nonlinear and linear behaviors are captured using the linear
regression method. The difference between the actual data
and the anticipated data was first calculated using linear
regression, and then the DBN was given that value to make
its predictions. The DBN considerably isolates the character-
istics between self-organization qualities and layers, making
it useful for time series forecasting. For electric load forecast-
ing, McNeil et al. [20] utilized Support Vector Regression
(SVR) on time series data. The SVRmethod effectively mod-
eled target variables’ nonlinear relationship with exogenous
factors. Transportation, banking, aviation, and power/energy
are just a few of the many fields that have benefited from
Inga [21]. ’s novel multivariate temporal convolutional net-
work for time series prediction. The provided convolution
network markedly improved the outcomes in time series
data forecasting. In addition, the balance between forecast
precision and system complexity is investigated. To discover
the most accurate results for forecasting building energy
consumption, Lee et al. [22] used a genetic algorithm with a
Particle Swarm Optimization (PSO) method to choose ideal
hyperparameters in LSTM.

VOLUME 11, 2023 64051



A. Abdelaziz et al.: CNN With GA for Predicting Energy Consumption in Public Buildings

Long et al. [23] presented a novel oblique random forest
classifier for time series forecasting. The created classifica-
tion method swaps out each node of the decision tree for the
best possible orthogonal classifier depending on the features
available. Moreover, feature partitioning was accomplished
using the least square classification method. The effective-
ness of the oblique random forest classifier was studied using
five electricity load time series datasets and eight general
time series datasets. In addition, a novel deep-learning net-
work for anticipating near-term energy loads was presented
by Chen et al [24]. The achieved outcomes demonstrated
the deep energy model’s sturdiness and great generaliza-
tion capacity in data series forecasting. Chen et al. [25] also
used DBN in tandem with empirical mode decomposition
to predict future power usage. Before anything further, the
collected data series were decomposed into several Intrinsic
Mode Functions (IMFs). Each of the retrieved IMFs was then
modeled using the DBN for precise forecasting. Li et al. [26],
who used a random forest classifier, predicted energy con-
sumption using short-term energy consumption data. The
random forest classifier was evaluated for its efficacy on five
datasets spanning a year. As can be seen from the assessment
results, the random forest classifier described here achieved
higher MAE in terms of predicted accuracy.

Qavidel Fard et al. [27] developed an ensemble classifier
for foretelling time series in large datasets using a mixture
of random forests, gradient-boosted trees, and decision trees.
After being put through its paces, the built ensemble classifier
was shown to perform well when tasked with predicting
time series data. Goyal et al. [28] introduced a novel stacking
multi-learning ensemble model to predict time series data.
The provided model incorporates three primary approaches
(SVR, linear regression, and a backpropagation neural net-
work), while the presented ensemble model incorporates four
basic processes (integration, pruning, generation, and ensem-
ble prediction tasks). For energy consumption prediction,
Kabir et al. [29] established a hybrid model that combines a
firefly algorithm with an Adaptive Neuro-Fuzzy Inference
System (ANFIS) classifier; nevertheless, the enhanced search
space diversity in the given model improves its predictive
accuracy. For time series forecasting that considers sev-
eral seasonal trends, Bourhnane et al. [30] presented a novel
LSTM Multi-Seasonal Net (LSTM-MSNet). The results of
the evaluation demonstrated that the given LSTMMSNet
model outperformed state-of-the-art methods in terms of
both computing time and prediction accuracy. To make
accurate predictions of time series data, Fei et al [31]
coupled multi-head attention with LSTM networks. Out-
lier, redundant, and null values were originally removed
from the datasets using min-max and conventional trans-
formation approaches by Dong et al. [32]. Then, a Gated
Recurrent Units (GRUs) model was implemented in a
Convolutional Neural Network (CNN) to predict energy
use. The experimental assessment using MAE, RMSE,
and MSE demonstrated the provided model’s substantial
performance.

Attempts have been made in the written literature to
develop a computationally intelligent model for categorizing
building energy use according to a variety of parameters that
vary with the time of day and the state of the structure in
question [6]. Stakeholders that want to increase the energy
efficiency of buildings might benefit from identifying and
categorizing energy load patterns of users in public buildings
based on such consumption profiles. One of the techniques
employed in the reviewed literature is K-means clustering.
However, it does highlight a few problems. If the data you’re
trying to group is of varied volume and density, for instance,
K-means won’t be able to help you [32]. Second, outliers can
cause centroids to shift [33]. To sum up, K-mean presumes
that every variable is the same in terms of its variance [34],
[36]. Therefore, the goal of our study is to improve upon the
K-means clustering technique by discovering a more precise
way of clustering. In addition, prior studies have shown that
big data enabled considerable gains when employing a con-
volutional neural network to forecast building energy usage.
Therefore, this research suggests a convolutional neural net-
work and genetic algorithm (CNN-GA) hybrid intelligent
model for estimating future energy needs. To improve accu-
racy and decrease the error rate, the GA was used to train the
network to determine the ideal weights in network training.
Therefore, the suggested model’s adoption by energy sector
stakeholders to make the appropriate judgments regarding
high-energy-consumption buildings and to rationalize the
inhabitants of such buildings to supply the required energy
consumption.

By reviewing the literature, we learned that past research
has struggled to locate data depicting building inhabi-
tants’ behavior throughout time. Furthermore, some articles
employ conventional clustering approaches and statistical
models like regression analysis without considering how
well these methods cluster energy consumption into com-
parable groups or make predictions about those groups’
levels. The decision-maker can be misled in several ways by
inaccurate classification and prediction of energy consump-
tion, including (1) the inability to find buildings with high
energy consumption, (2) the inability to anticipate the energy
required to cover the needs of public buildings adequately,
and (3) the inability to identify the best energy providers.
To address these gaps, in 2018 and 2019, a dataset on energy
use in Portuguese public buildings was compiled. Public
building energy usage classification and prediction models
were trained and tested using this dataset. Our approach can
help the energy industry’s decision-makers make educated
choices about the public sector’s energy usage.

III. RESEARCH QUESTIONS AND METHODOLOGY
We posed the following questions to guide our investigation:

• RQ1: What data sources may we adopt to profile a
building’s energy consumption?

• RQ2: Which method(s) of intelligent computing may
be adopted and/or modified to determine the energy
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FIGURE 1. Our suggested model for categorizing and estimating building energy use.

consumption dataset’s cluster size and cluster character-
ization?

• RQ3: Which method(s) of intelligent computing may be
adopted and/or modified to cluster and predict building
energy consumption?

• RQ4: When analyzing the data on energy consumption,
what are themost notable and distinctive trends that have
emerged?

A hybrid approach (see figure 1) combining deep learn-
ing and optimization techniques, namely KM with GA [4],
is proposed to address the posed research questions, with the
KM-GAmodel and the CNN-GAmodel capable of clustering
and predicting energy consumption in buildings, and a proof
of concept of its application to public buildings in Portugal.

Steps to cluster and predict building energy use are shown
in Figure 1. The stages that will be addressed in the method-
ologically detailed approach are as follows:

1. We gathered data on variables like energy usage and
building features, including but not limited to deliv-
ery point IDs, delivery addresses, contractual electrical

power, electricity usage, and billing information broken
down by month. The goal of this stage is to check that
no significant changes were made to the underlying
structure of the data, that all units of measurement are
uniform, that sampling rates are sufficient, that the time
series is stable over time, and that it is consistent with
previous data. There are two parts to this:

• The makeup, behavior, and energy efficiency of the
building’s data.

• Use of resources (electricity data).

2. In this data preparation stage, we performed a thorough
analysis of the data and, if necessary, changed it to
disclose its information better. Outliers were removed
using Isolation Forest (ISF), and missing values were
filled inwith polynomial interpolation. Three partsmake
up the whole process:

• Clean up the data.
• Treatment of missing data.
• How to deal with extreme data (e.g., outliers).
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FIGURE 2. Structure counts in our data collection, with usage months ranging from 1 to 29.

3. Profiling energy consumption can be automatically
sorted by categorization algorithms applied to the data.
The Elbow approach and the Davis and Bouldin method
were applied to our dataset to determine the total
number of clusters. After this process, all samples
(rows) in the energy consumption dataset have had
their consumption levels classified using our KM-GA
technique.

4. Two deep learning models, CNNs and CNN-GAs were
used to train the data on energy use. These two models
providedmore precise and reliable energy usage predict-
ing.

5. The two suggested models (CNN and CNN-GA) were
tested for accuracy and error rate. We then picked the
best model and proposed it to cluster energy consump-
tion levels and assist stakeholders in making informed
decisions about energy consumption.

6. Use the proposed methodology to build a report that
predicts energy use, including which buildings will be
more efficient and which will use more energy. As a
result, this analysis aids decision-makers in the energy
sector in three distinct ways:

• Identify the highest energy-consuming buildings.
• Estimating the energy consumption of future
buildings

• Assistance in switching energy providers, given
the proper classification, and predicting the energy
consumption of buildings.

A. DATA COLLECTION
This section analyses the energy consumption of public
buildings (NPB) in Portugal, and the following features are
considered in the analysis: The dataset comprises a total of
2,775,082 recordings, gathered monthly between 2018 and
2019, from 77,996 buildings in a variety of public sectors

throughout 238 cities in Portugal. The number of records used
in this study was 1,222,695, corresponding to 26,624 public
buildings, after excluding records of public lighting (since it
is outside the scope of our study) and excluding buildings that
do not contain consumption data for the full observed period
of 24 months, as shown in figure 2.

Table 1 displays the attributes and dimensions of the two
components of our dataset:

building characteristics and energy consumption.

B. DATA PREPARATION
This section presents our approach to data preparation,
including treating missing data and addressing the exclusion
of outlier values, using the Isolation Forest (ISF) method.
Interpolation was adopted as a last resort in our research.

Much like random forests, ISF is constructed with decision
trees. Without any externally provided labels, their imple-
mentation is unsupervised. The concept of ‘‘few and distinct’’
data points was crucial in developing isolation forests to
detect outliers in our dataset. Information criteria like the
Gini index or entropy were used to construct decision trees.
Subtle differences are found after the more visible ones have
been sorted out at the tree’s base and farther into its branches.
An isolation forest processes the randomly subsampled data
in a tree structure based on randomly selected criteria. There
is a minimal chance that samples that go further into the tree
and need more cuts to separate them are outliers. Similarly,
samples closer to the tree’s root are likelier to be outliers since
the tree differentiated them from the rest of the data on energy
use.

ISF has two stages: (a) During the modeling stage, subsets
of the energy consumption dataset are randomly selected
to build the iTrees collection. (b) The evaluation phase
uses iTrees to perform tests on data and keeps track of
the path length for each test instance before calculating the
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TABLE 1. Informational aspects of government buildings’ electrification use.

out-of-the-ordinary result. Then, it separates and detects any
out-of-the-ordinary test findings [40].

iTrees are built in the modeling phase by periodically
segmenting the provided dataset until all instances are sep-
arated or the tree achieves its maximum depth (MaxD) [35].
An abnormality score is then assigned to each instance based
on the iTrees obtained in the previous modeling step. Here
are the specifics of this stage:

• Let x. go through each iTree in the model, recording its
location at the end. At the root of every iTree.

• First, using Eq. 1 and 2, calculate the path length of
instance x and the abnormality score S; Then, in Step 2,
use the abnormality score to estimate instance x [41].

S (x, n) = 2(E(h(x)))/(c(n)) (1)

c(n) = 2h(n1)(2(n− 1))/n (2)

The average path length of instance (x) in each iTree is indi-
cated in Eq.(1) by E (h(x)). The average of h(x) is represented
by c(n). It is used to normalize h(x). Three situations can be
found in E(h(x)) [42]:

• E(h(x)) equals zero, (s) equals one, which indicates that
the likelihood of an abnormality for (x) increases if (s)
score is very close to one.

• This suggests that if (s) reaches 0.5, (x) is not an essential
anomaly. E(h(x)) equals c(n), (s) equals 0.

• E(h(x)) equals (n,1), (s) equals zero, which indicates
that (x) is more likely to be a standard instance if (s)
is smaller than 0.5.

Authors often resort to interpolation, a pliable mathemati-
cal approach to determine compensation values or estimate
unknown values based on related known values [43]. The
energy consumption of public buildings may be represented
graphically by computing unknown points using a consistent
trend over a dataset.

Analyzing the ISF findings, we found that in some cases,
the energy provider added zero and negative numbers to
the consumption figures. This was due to compensating
for prior consumption estimations in those buildings that
lack smart meters and require periodic manual energy con-
sumption readings, that deviate from the real consumption
figures. We also understood that if we ignored these values,
the total number of public buildings would drop to 10361,
significantly reducing our sample size and making it more
difficult to apply our models. This necessitated an inter-
polation technique to impute consumption values replacing
the mentioned null and negative numbers. The Difference
Table and the Lagrange method are only two of the many
accessible interpolation techniques. Considering that the gaps
between adjacent data points are not uniformly spaced,
we used the Lagrange technique to fix the mentioned prob-
lems with negative and zero values. Building A, for instance,
has a monthly energy usage of 500 kW in the first month,

VOLUME 11, 2023 64055



A. Abdelaziz et al.: CNN With GA for Predicting Energy Consumption in Public Buildings

TABLE 2. Polynomial degree structure [43] - various forms.

200 kW in the second month, and 280 kW in the third month.
Considering this, the disparities between the three months are
not comparable.

We used the Lagrange approach to account for negative
and zero values in our dataset, which requires three primary
inputs, as shown in Algorithm 1 below.
The various types of polynomial degrees are shown in

Table 2. Equation (3) [44], shows how the RMSE metric
was used to determine the polynomial degree. Set n points at
(x0, y0), . . . , (xn − 1, yn − 1) and provide the corresponding
function values in (c) to represent the array of f (a) at each
of the n points. Step 6 then involves computing the Lagrange
polynomial that is built so that xi is substituted for x to have
a value of zero whenever (j ̸= i), and a value of yi when j= i.
The Lagrange polynomial obtained by summing these terms
has the form p(xj) = 0+ 0+ . . .+ yj + . . .+ 0 = yj for each
of the coordinates (xj, yj). The interpolation results are then
displayed using the equation in step 9 in Algorithm 1.

RMSE =

√∑n
i=1 (Pi−Oi )2

n
(3)

where:
• The predicted value (compensation values for numbers
less than 1 and 0 values) for the ith observation in the
dataset is represented by the symbol pi.

• The observed value (energy consumption dataset) for the
ith observation in the dataset is denoted by the symbol
oi.

• The size of the sample is n.
Algorithm 1: Calculating offsets for the energy consump-

tion dataset’s negative and zero values using the Lagrange
interpolation method.

C. FINDING THE NUMBER OF CLUSTERS
We have utilized two literature approaches to find the best
number of clusters for energy usage data: the Elbow method
and the Davis and Bouldin method (DB). Finding the ideal
number of clusters has been the focus of previous research
using these techniques, particularly in the context of building
energy use.

Regarding the Elbow method, if we plot the average
inner per-cluster sum-squared-error (SSE) distance against
the number of clusters, we may see an ‘‘elbow,’’ highlighting
the optimal number of clusters. According to Eq. 4 [11], the

average distance between centers inside a cluster equals the
average inner whole of squares (4).

Wk =
∑k

r=1

1
nr
+ Dr (4)

where:
• The distance between each pair of points in a cluster is
denoted by Dr.

• Where k is the total number of clusters and
• nr is the total number of points in cluster r.
TheDB score is defined as themean similarity between any

two clusters. The similarity is defined as the ratio of distances
between nodes inside a cluster, and distances between clus-
ters. Thus, a better score is achieved by groups that are further
apart and less dispersed. In Eq. (5) and (6) [16], scores closer
to zero indicate better grouping.

DB(c) =
1
k

∑k

i=1

(
maxj≤kj̸=iDij

)
, k = |C| (5)

For the ith and jth clusters, Dij represents the within-to-
between cluster distance ratios.

Dij =
di− + dj−

dij
(6)

Dij is the Euclidean distance between the centroids of the
two clusters; dij is the average distance of all data points in
cluster I to its centroid.

D. K-MEANS WITH GA
Informed by Charles Darwin’s notion of natural evolution,
GA is a computing methodology that can be applied to sev-
eral problems. The strongest and healthiest members of a
population are encouraged to have children, ensuring that
only the strongest and healthiest members of the following
generation are born. Using GA speeds up implementing any
fitness function, such as Euclidean distance, in the energy
consumption dataset because of its proficiency in dealing
with many points and its robustness in noisy situations. The
formulae for the three fitness functions—Euclidean distance
(ED), Manhattan distance (MD), and Cosine distance (CD)—
show how GA was used to locate the best centroids in KM to
expedite convergence between energy consumption locations
(7, 8, 9). In addition, it contributes to a rise in KM’s precision
in our approach.
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Algorithm 1 Lagrange Interpolation Method to Find Compensation Values to Negative and Zero Values in the Energy
Consumption Dataset
Input: n-Degree, Points: a1, a2, . . . . . . . . . . . . , an, Function values: f (a1), f (a2), . . . . . . . . . ., f (an),

Evaluation point: X
Output: The value of the nth-degree Lagrange interpolant at point X
1. Answer = 0;
2. For I to n do
3. Product = 1;
4. For j to n do
5. If I ̸= j
6. Product = (Product)× X−aj

aI−aj
7. End
8. End
9. Answer = Answer+ (Product)× f (ai)
10. End
11. Return Answer

In GA, selecting the fittest members of a population is the
first step in natural selection. They give birth to children who
carry on their parent’s traits and join the following generation.
More physically fit parents will produce children who will
outperform them and have a higher chance of surviving.
The fittest generation will eventually emerge as this process
iterates repeatedly. AGA considers the following five phases:
1) initial population: The process starts with a population
group of individuals. Every individual is a component of
the answer to the issue we are trying to address. 2) Fitness
function.

The fitness function assesses an individual’s level of fitness
(the ability of an individual to compete with other individ-
uals). Everyone receives a fitness rating from the system.
Based on its fitness score, an individual’s likelihood of being
chosen for reproduction is calculated. 3) Selection: Dur-
ing the selection phase, the best candidates are chosen and
allowed to pass on their genes to the following generation.
Two sets of individuals (parents) are chosen based on their
fitness ratings. High-fitness individuals are more likely to be
chosen for reproduction. 4) Crossover: The most important
stage of a GA is crossover. A crossover point is picked ran-
domly from the DNA for each set of parents to mate. Parents’
genes are exchanged until the crossover point is achieved,
at which point offspring are produced. 5) Mutation: In some
newly produced offspring, there is a small chance that one or
more of their genes will experience a mutation. This suggests
that a few bits in the bit string could be reversed. Mutation
takes place to preserve diversity throughout the population
and avoid early convergence.

The coordinates (x1, y1) of one point are used in the ED
formula, while the coordinates (x2, y2) of another point are
used to calculate the distance between the two points (x2, y2).

ED =
√
(x2 − x1)2 + (y2 − y1)2 (7)

MD represents the total absolute value of the coordinate
differences. Here’s an illustration of how to calculate the MD

between two data sets: say X = (E, M) and Y = (B, K).

MD = |E− B| + |M− K| (8)

CD determines the cosine of the angle formed by vectors
X and Y.

CD =
X.Y
∥X∥ ∥Y∥

(9)

where:
|| X || = Mean Euclidean Distance of a Vector, X = (X1,

X2, . . . . . . . . . ., Xn)
|| X || = An example of a vector’s Euclidean norm,

Y = (Y1, Y2, . . . . . . . . . , Yn)
The procedures used by algorithm 2 to calculate the best

KM centroids using GA are shown in the following scientific
explanation. A sizable number of chromosomes (the energy
consumption dataset, or ECD) are present at the outset of the
ensemble. The goal of the GA is to select the best ECD cen-
troids via the minimum standard error and the best possible
chromosomal variance. This is done by computing ECD’s
fitness function (ED, MD, and CD). Assume the execution
has terminated after the given number of repetitions. ECD
allows us to locate the most suitable centers. In this case,
we must run the selection procedure and pick the two best
chromosomes (2 ECD) from the population based on their
fitness function value. We then choose any two chromosomes
(ECD) at random from the population. The next step is to
carry out the crossover procedure and locate the point of
exchange: the parent exchange is a subset of a set of detached
exchange points represented by binary values. We select two
unrelated chromosomes at random from the pool of potential
candidates. The resulting progeny would next undergo the
mutation procedure, but with the bit positions flipped. Finally,
we employ an elitist approach to ensure the continued pres-
ence of good chromosomes (ECD), create a new population
from which to derive a fitness function, and repeat the pre-
ceding steps until the best centroids in KM are found.
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Algorithm 2 GA Steps for Finding the Optimal Centroids in KM
Input: Size α of population,

Number σ of Iterations
Output: β← (Optimal Chromosomes (OptimalCentroids)).
1. Count I = 0
2. Ck = Create random σ solutions
3. Compute fitness function (i) for each I$Ck
4. While (σ ̸= 0)
5. For I = 0 to σ do
6. Pick chromosomes (ECD) for the contest.
7. Detect chromosomes (ECD) with the lowest fitness value.
8. Avoid chromosomes (ECD) with the lowest fitness value.
9. Estimate novel chromosomes (ECD)
10. End For
11. Execute the mutation method.
12. Estimate (mutated chromosomes((ECD)).
13. Compute fitness function (i) for each I$Ck
14. End While
15. β = fitness values from Ck
Returnβ

Algorithm 2: Techniques for Locating the Best Centers in
KM Using GA:

Clustering similar data points together to reveal hidden
trends is one of KM’s primary goals. It faces several difficul-
ties. One of them is finding the sweet spot between the Elbow
approach and the Davis & Bouldin method for settling on the
ideal number of existing clusters. Secondly, we use GA to
find where the centroid should be inside each cluster. For this
reason, KM has been employed to predict the labels assigned
to clusters across all ECD buildings, effectively clustering the
level of energy consumption of each building. We built better
KM clustering with the third algorithm by combining the
Elbow technique, the Davis & Bouldin method, and the GA.
To increase the accuracy of cluster label prediction across
all ECD buildings, upgraded KM performs steps 1 through
4 to identify new centroid positions inside each cluster (see
algorithm 3).

Algorithm 3: Cluster label predictions in each structure
have been improved thanks to enhanced KM:

E. CNN WITH GA
In machine learning, CNN belongs to the deep learning cat-
egory of algorithms. CNN’s format was conceived with the
brain in mind. Its name, ‘‘Convolutional,’’ comes from the
fact that rather than just multiplying matrices, it conducts a
linear mathematical process known as convolution [27]. It is
well-known for its efficacy in handling data with a grid-like
architecture [27]. Dimensions range from one (for processing
signals and text) to three (for processing images, audio, and
video) and beyond.

To summarize, a CNN has an input layer, an output layer,
and a set of hidden layers that comprises numerous convo-
lutional layers, normalization, pooling, and fully connected
layers. Consistently, a convolutional layer is used as the

initial hidden layer, and a fully connected layer is used
as the final one. The input data’s associated characteristics
are identified with the help of the convolutional layer and
then compared features are combined in the pooling layer.
When N is the number of classes being categorized, the fully
connected layer transforms the input into a vector with N
dimensions [28]. The fundamental structure of a CNN is
depicted in Figure 3.

A loss function is used to measure the quality of the classi-
fication at each iteration of the learning process. The network
predict is compared to the current data, and a similarity mea-
sure is computed. The term ‘‘Local Receptive Field’’ refers
to the fact that the neurons in the first hidden layer of a CNN
are only coupled to a localized portion of the input (LRF).
The weights and biases of each LRF are first generated at
random [29].

Initialization of the weights is investigated here. Each
convolutional layer’s output is then subjected to a nonlinear
activation function () in the layer that follows it. This is
done so that CNN may learn where to draw the limits of its
nonlinear decisions [26]. Activation functions like sigmoid,
tanh, and ReLU are available and may be applied in many
situations. Results may vary depending on the activation
function used. The pooling layer will receive the data once
the activation function has been applied. Pooling can be either
maximal or average. Max pooling is a popular type [30] that
uses the biggest value in each patch of each feature map
in a matrix. Alternatively, the average pooling method just
averages over all the cells in that region. The results of this
computation are displayed in Figure 4. It’s possible to add
more convolutional layers, but the final layer is always a fully
linked one, as seen in Figure 3.

The CNN classification model weights will be tuned with
a GA optimization technique. While training the data, GA is
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Algorithm 3 Improved KM to Predict Cluster Label in Each Building
Input: K = 3, // Specify the number of clusters using the Elbow method and the Davis & Bouldin method

Initialize σ of centroids using GA.
Output: β← predicting cluster label in each building in ECD
1. Repeat
2. Assign each point to its closest centroid.
3. Compute the new centroid of each cluster.
4. Until the centroid positions do not change.
Return β

FIGURE 3. CNN architecture.

FIGURE 4. The pooling layer types.

used to determine the optimal model and weight values.
To determine the classification accuracy, the training phase’s
best model is used to test data (see Figure 5).

The network weights are encoded in GA’s chromosomes.
The chromosomal count of the population is chosen at
random. There are as many weight vectors as there are
chromosomes. The training data’s loss function (Mean Abso-
lute Error; MAE) is the fitness function. Accordingly, when
employing CNN, reducing the MAE of the training set
becomes an optimization problem.

Python code that uses the fitness function to reduce loss
has been developed. Eq. shows that the fitness value is the
reciprocal of the loss value (10).

fitness value = 1.0/loss (10)

The following procedures determine the model’s fitness:
1. Get back the model’s parameters from a one-dimensional

vector.

2. Indicate the values for the model’s variables.
3. In other words, guess what will happen.
4. Determine the monetary worth of the damage.
5. Find out how to fit you are.
6. Provide the fitness score.

With the release of PyGAD 2.8.0, a brand-new module
known as Keras GA became available for use. Its full name,
Keras Genetic Algorithm, is a mouthful, but the initials KGA
suffice. Here are some of the features that may be accessed
using the module:

• Use the Keras GA class to construct a starting population
of viable solutions. All Keras model parameters are
available within each solution.

• Utilize the model weights as vector () method, to display
the Keras model’s settings as a 1-dimensional vector,
or chromosome.
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FIGURE 5. The proposed flowchart of the GA-enhanced CNN predictive model.

• The model weights as matrix () method in Keras
may be used to get the model’s parameters from the
chromosome.

Keras GA class generates three instance characteristics in
response to these two parameters:

• Reference to the Keras model.
• Num solutions denote the total number of solutions in
the population.

• Population weights: A doubly linked list containing the
model’s parameters. When a new generation is created,
this list is refreshed.

To get the best weight, use PyGAD and the code below
to construct the fitness function. PyGAD’s fitness function
is a standard Python function with two parameters. The first
stands in for the solution, while the second is the fitness value.
Knowing where a solution ranks among the population might
be helpful in some circumstances, which is why it appears as
the second argument.

A 1-dimensional vector representing the solution is given
to the fitness function. Step 1 demonstrates how to use the
pygad.kerasga.model weights as a matrix() function to get the
original Keras model parameters from the provided vector.

model=model, weights vector= solution, model weights
matrix = pygad.kerasga.model weights as matrix

(Step 1)
In step 2, we see how the set weights () function updates the

model to use the previously saved values for the parameters.
model.set weights (weights=model weights matrix)

(Step 2)
Step 3 demonstrates how the model uses the predict ()

function to predict future results based on the current set of
inputs.

model.predict(ECD) = predictions (Step 3)
The loss is determined by the accuracy of the predicted

outcomes. As seen in Step 4, the MAE is employed as a loss
function.

tens or flow. keras. losses. Mean Absolute Error () = mae
(Step 4)

As indicated in Step 5, if the loss value is 0.0, it is best to
add a small number, such as 0.00000001, to prevent a division
by zero when determining the fitness value.

equation: solution fitness = 1.0 / (mae(data outputs,
predictions)). numpy() + 0.00000001) (Step 5)

After the GA has been run and the optimal weights have
been obtained, the CNN is executed to predict the testing set
of buildings’ energy usage. CNNmay be employed with only
a single dimension. Nonlinearity is introduced via various
layers, such as Convolutional layers, Pooling layers, Activa-
tion functions, and the Fully Connected layer. The Rectified
Linear Unit (ReLU) activation function is used. Numerous
studies ( [22], [41], [42]) have shown its efficacy and excel-
lent accuracy in estimating energy use; hence it was selected.
In addition, max pooling is used, and there is a 50% chance
of drops. In addition, we use a maximum gradient of 5.0,
a learning rate of 0.0005, and 100 epochs to train the model.
Due to the one-dimensional nature of the ECD representation,
a 1D Convolutional Layer is used.

This is the structure that is used:
• Embedding Layer
• 1D Convolutional Layer (Conv1D)
• Max Pooling Layer (MaxPooling1D)
• Relu Activation •
• 1D Convolutional Layer (Conv1D)
• Relu Activation
• Max Pooling Layer (MaxPooling1D)
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FIGURE 6. Data Pre-processing: (a) raw energy dataset, (b) public buildings that have several months less or more than 24 months and
public lighting has been removed, (c) public buildings that contain negative and zero values have been interpolated, (d) outlier values have
been removed.

• 1D Convolutional Layer (Conv1D)
• Relu Activation
• Max Pooling Layer (MaxPooling1D)
• Flatten Layer
• Dense Layer

Regarding testing and verifying the proposed model, 70%
of the data is used for training, 15% for validation, and 15%
for testing. The model is ‘‘trained’’ using the training data.
Models are chosen based on the optimal solution (weight
vector) that achieves the highest accuracy, as measured by the
validation data. The suggested model is tested and evaluated
with the help of the testing data. In addition, the accuracy and
MAE are used to assess the proposed model, as indicated in
Eq (11 and 12).

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(11)

MAE =
1
2

n∑
i=0

|θ −9| (12)

where:
TP=how many predictions the classifier made where it

properly identified the positive class as positive.
TN=how many predictions the classifier made where it

properly identified the negative class as being negative.

FP=the number of forecasts in which the classifier erro-
neously forecasts a positive class for a negative class.

FN=how many times the classifier misclassifies a positive
class as a negative prediction.

θ = the actual/true value
9 = the predicted / estimated value

IV. EXPERIMENTAL RESULTS AND DISCUSSION
This part is divided into four sub-sections: (1) data prepa-
ration, (2) cluster discovery, (3) K-Means with GA classifi-
cation of ECD levels, and (4) CNN-GA prediction of ECD
levels.

A. DATA PREPARATION
The success of any study involving intelligent machine learn-
ing methods depends entirely on the validity and use of
the dataset. As a result, the efficiency with which one may
construct and refine an intelligent model is greatly enhanced
if the given dataset is of high quality. Additionally, the data
on energy consumption comes from a real-world setting.
As a result, removing noise and outliers is an essential part
of the data preparation step. There are two phases in data
preparation. Figure 6 depicts the initial stage of the proce-
dure, which entails preprocessing and exploring the energy
consumption statistics. In (a), contractual power (Xi) versus
total energy consumption (Yi) is shown for a subset of the
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FIGURE 7. Data pre-processing (Stage 2).

raw dataset; (b) depicts public buildings with several energy
consumption months less than or more than 24months. These
were eliminated, as were public lighting structures, because
they were beyond the purpose of our research.

Figure (c) shows more negative and aero values that
appeared in our dataset; therefore, interpolation method has
been used to compensate these values to estimated values
to keep the volume of our dataset. Finally, in (d) ISF has
been used to eliminate outlier values; however, this has also
eliminated potentially dangerous or zero values. In our imple-
mentation of the ISF technique, we focus on the following
criteria:

• The ensemble size, or the total number of trees gener-
ated, equals the number of estimators (n estimators =
100). There is a default value of 100.

• The number of samples used to train each simple estima-
tor is denoted by the max samples value (max samples=
auto). When max samples are set to ‘‘auto,’’ it will be set
to min (n = 256 samples).

• The contamination (auto) variable in our dataset reflects
the expected fraction of extreme values. When the
‘‘auto’’ setting is used, the contamination level is set
to 0.1.

• To train a tree, take as many features as possible from the
complete set of features, which is represented by Max
features (set to 1 by default).

Stage 2 data pre-processing is shown in Figure 7 by a
selection of public buildings that show negative or zero
values. To prevent negative and zero readings, polynomial
interpolation was used to determine compensation values for
(Xi, Yi), where Yi = f (Xi), energy consumption, the depen-
dent variable is a function of Year/month, the independent
variable. Figure 7 represents a sample of a Portuguese public
building with zero and negative values and how to handle it
using polynomial interpolation. Each point in the proposed
building represents a month from the beginning of 2018 to
the end of 2019; therefore, there are 24 points in Figure 7.

For instance, the point representing November 2018 contains
a zero value, and the one representing September 2019 con-
tains a negative value. These points have been fixed by the
interpolation method and all zeros and negative values in our
public building dataset.

Each degree of the polynomial in the interpolation training
was evaluated by its root-mean-squared error (RMSE), and
the degree with the lowest RMSE was chosen for train-
ing. The degree-by-degree RMSE findings are displayed in
Figure 8. Quintic polynomials have been used since they are
considered the most reliable degree. There’s no way to reduce
overfitting by increasing the degree of polynomials.

Data pre-processing led to the final dataset, which was
used to identify distinct trends in energy usage across public
buildings.

Figure 9 depicts a subset of the final dataset showing the
relationship between contracted power and total energy use.
One can notice that there are no zero or negative energy
consumption values.

We now compare the Elbow approach with the
Bouldin-Davis method to determine the best possible cluster
size. As seen in Figure 10, after applying the Elbow and
Davis & Bouldin methods to our dataset, we identified three
clusters.

We conclude from our analysis of the Elbow technique and
the Davis-Bouldin approach that we can cluster the data on
energy consumption into three groups: low,medium, and high
consumption.

B. K-MEANS WITH GA TO PREDICT ENERGY
CONSUMPTION LEVELS
In this section, we present two approaches to calculat-
ing the distance between clusters: K-means clustering with
K-means++ initialization (KMCKI) is the first technique,
while K-means clustering with Gaussian averaging (KMGA)
is the second. Table 3 outlines the primary GA parame-
ters used in practice. The distance between clusters can be
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FIGURE 8. Degree of polynomials with root-mean-square-error.

FIGURE 9. Total energy use versus contracted power.

FIGURE 10. Comparison of the Elbow and Davis-Bouldin procedures on a dataset of energy consumption.
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FIGURE 11. Sample of clustering results, (a) between total energy consumption and contracted power (b) between full and contracted power (c)
between peak and contracted power (d) between empty and contracted power (e) between outside empty and empty (f) between full and peak.

calculated in three ways: ED, MD, or CD. We compared
the accuracy of KMCKI and KMGA using equation 13’s
standard error (SE) [11] and standard deviation (SD)
measures of performance. Table 4 demonstrates that CD
with KMGA outperforms all other approaches. Therefore,
CD with KMGA was used in this work to predict clus-
ter labels across all ECD structures and unearth hidden
trends.

SE =
STDEV(�)
√
COUNT(�)

(13)

where:
STDEV = Standard deviation
� = Distances between each center of clusters
Analytics on large amounts of data benefit greatly from

being visualized. The cluster analysis results have been
demonstrated using a variety of approaches, helping energy
professionals in Portugal making more informed choices

about the energy they use to power public buildings. In addi-
tion, our ECD has contracted power, a crucial consideration
for analyzing the time-of-use electricity consumption pat-
terns in public facilities. Figure 11 depicts the visualizations
used in ECD through CD using KMGA, demonstrating the
dimensions utilized in each. The centroid for each cluster
is calculated by taking the mean of all the data points in
that cluster. The algorithm would then repeat the process
of assigning data points to clusters based on the new cen-
troids and recalculating the centroids until the clusters no
longer change, or amaximum number of iterations is reached.
At the end of the process, the algorithm would have grouped
the data points into 3 clusters based on their similarity.
These clusters could then be used to gain insights into the
energy consumption levels in public buildings. Asmentioned,
3 clusters (low, medium, and high) can help stakehold-
ers determine the public buildings and municipalities that
consume the most energy.
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TABLE 3. GA parameters.

TABLE 4. A comparison between KMCKI and SPKG in terms of SE and
STDEV.

Table 5 displays the results of an analysis of the clustering
data, from which we derived key rules to aid stakeholders
in Portugal’s energy sector in distinguishing between the
various types of public buildings. Rules for energy use can
help decision-makers pinpoint public buildings in need of
direction from their tenants and in switching energy providers
for those buildings.

If-then rules can help public buildings control their energy
use in several ways, including:

1. Simple and easy to understand: even non-experts can
easily understand if-then rules. Building managers and res-
idents will find it simpler to comprehend how their choices
affect energy use as a result.

2. Modifiable: If - then rules can be altered to meet the
requirements of a structure or organization. This makes it
possible to manage energy in a more specialized manner.

3. Real-time feedback: If-then rules can give building man-
agers and residents real-time feedback about their energy
usage. They may be able to alter their behavior and choose
how to spend energy with better knowledge as a result.

4. Cost-effective: If-then rules are a cost-effective approach
to energy management since they can be implemented utiliz-
ing current building management systems and sensors.

5. Energy savings: If-then rules can be used to cut down
on energy usage and lower energy costs. Building managers
and residents can consume less energy and spend less money
by giving real-time feedback and supporting energy-efficient
behavior.

C. CNN WITH GA TO PREDICT ENERGY CONSUMPTION
LEVELS
This section addresses two intelligent computing models
for making energy consumption predicts. The first model
(CNN)was developedwithout optimizing the network’s start-
ing weights. In contrast, the second model (CNN-GA) was
developed by maximizing accuracy and minimizing the loss
curve by adjusting the weights of the network’s initial nodes.

FIGURE 12. Accuracy of CNN architecture.

FIGURE 13. Loss of CNN architecture.

We compare these two models to choose the most effective
one based on the accuracy and loss curve, which may help
stakeholders in the energy sector estimate energy consump-
tion levels.

Training and testing loss and accuracy curves work as
follows:

Figures 12 and 13 indicate that at epoch 100, the CNN
design achieves the lowest training and validation accuracy
of 98.03% and 94.91%, respectively, with a loss of 0.05
and 0.26.

Figures 14 and 15 show that at epoch 100, CNN-GA archi-
tecture achieves its largest training and validation accuracies
of 99.01% and 97.74%, respectively, with a loss of 0.02 and
0.09.

Figures 16 and 17 represent visually the prediction per-
formance of the CNN-based GA model for the energy
consumption dataset. Analyzing these networks, we found
that the suggested CNN-based GA model yields reliable
predictions of energy use.

D. IMPLICATIONS AND PRACTICAL APPLICATIONS IN
BUILDING ENERGY CONSUMPTION PREDICTION
To predict future energy consumption in buildings, this article
presents a hybrid intelligent model, trained, and validated
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TABLE 5. Sample of energy consumption rules.

FIGURE 14. Accuracy of CNN-GA architecture.

FIGURE 15. Loss of CNN-GA architecture.

using a dataset of energy consumption of Portuguese public
buildings. Essential rules were derived from three distinct
categories of energy consumption patterns (cluster 1, clus-
ter 2, and cluster 3). Regarding energy policy, these guidelines
aid the decision-maker in ranking public buildings by energy
use. This article also facilitated estimates of future energy

FIGURE 16. CNN model testing and prediction in energy consumption
levels.

FIGURE 17. Evaluation of CNN-GA models for predicting energy use.

consumption in various public buildings. At last, the monthly
building energy consumption trends for 2018 and 2019 were
calculated. The decision-maker can use these findings to pre-
dict future energy needs in each territorial dimension, educate
building occupants on efficient energy use, and help switch
energy providers with informed decision support.
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Regarding experimental design, this paper proposes an
accurate and reliable building energy consumption predicting
model with an adaptive CNN at its heart. The proposed
energy-predicting approach has three distinct innovations
over previous deep learning models in that:

1) The energy consumption profiles of public buildings are
grouped into several clusters using k-means clustering with
GA, and the representative features are then extracted from
each cluster. The ideal architecture and weighting parameters
for one CNN sub-model can be determined using the datasets
in each cluster.

2) Neurons in CNN frequently link to one another. As a
result, the complete time correlation in the data series can be
revealed.

3) GA has been selected to optimize weights in CNN hid-
den layers network to improve the accuracy of the proposed
network and minimize the MAE metric, compared to the
state-of-the-art methods in previous works.

4) The dataset used to train and validate the proposed
energy consumption predicting model, spans two years
(2018, 2019) and includes data from 26,624 public buildings
in Portugal.

Precise energy consumption prediction is crucial for many
processes, such as monthly building energy management,
facility managers’ decision-making, the creation of building
information models, net-zero energy operation, and circular
economy.

Primarily, reliable energy demand predicting is essential to
monthly building energy management. For effective energy
device scheduling and management, which can increase the
building’s energy utilization rate, it is critical to estimate
peak and monthly demand accurately. Building managers can
make better judgments to judiciously manage all types of
energy devices with the help of an accurate building energy
consumption prediction.

Secondly, precise energy consumption predictions might
be the foundation for smart energy management and building
energy efficiency retrofitting. Building facility managers can
benefit from such predictions, giving the information needed
to estimate future energy expenditures and decide whether
to switch to a more efficient pricing structure or reduce
anticipated usage.

Moreover, performance-based building requirements are
increasingly common because they permit design flexibility
while maintaining or even improving the energy performance
demanded by prescriptive-based requirements. However,
estimating a building’s energy performance using precise
building energy prediction models is necessary to ascertain
whether building information model designs can achieve tar-
geted energy efficiency improvements.

Furthermore, achieving net-zero energy operation in build-
ings depends on precise energy prediction. Renewable energy
is gradually displacing conventional fossil fuels as the global
energy sector changes. The output of active energy devices
can be calculated using an accurate prediction of the energy
demand and different renewable energy generation. As a

result, the building’s energy supply and demand can be opti-
mally coordinated to help it operate at net-zero energy costs.

Finally, a key step in developing a circular economy is
precisely predicting the electricity load on the power system.
Accurate electricity consumption prediction can boost soci-
etal and economic advantages by lowering energy usage and
costs. Given that the energy demand from several buildings
continues to be high, reducing energy consumption is a sig-
nificant component that may impact economic growth.

The proposed CNN-GA model has been compared to
the state-of-the-art methods in previous works regarding the
MAE metric. Our proposed model outperforms Adaptive
Long-Short-Term Memory neural networks driven by GA
[LSTMGA] [37], and GA-enhanced Adaptive Deep Neural
Network [GADNN] [43] in terms of this metric. In our
proposed model (CNN-GA) MAE reaches 0.02 in training
and 0.09 in testing, whereas in LSTMGA figures are 0.51 in
training and 1.15 in testing, and in GADNN, this metric was
calculated with 0.63 in training and 1.71 in testing.

V. CONCLUSION AND FUTURE WORK
In order to estimate future energy consumption levels in
public buildings, this work presented a hybrid intelligent
model, focusing on fulfilling the four research objectives
we set out to investigate. In 2018 and 2019, raw data was
gathered monthly in 77 996 buildings across a wide range of
public sectors and 238 cities in Portugal. We employed an
isolation forest to eliminate outliers’ values from our energy
dataset, and we interpolated to discover compensation values
or estimate unknown values based on related known values.
After this data preparation, the final number of records used
in this work was 1,222,695, corresponding to 26,624 public
buildings, after excluding records of public lighting (since it
is outside the scope of our study) and excluding buildings that
do not contain consumption data for the full observed period
of 24 months.

K-means using a genetic algorithm was used to predict
cluster labels in each building. At the same time, the Elbow
technique and Davis and Boulden approach were employed
to determine the ideal number of clusters. Further, If-Then
rules have been derived from K-means data using a genetic
algorithm to aid in identifying the buildings with the highest
energy use. Finally, two intelligent computing methods, CNN
and CNN-GA, have been developed to predict future energy
consumption. There are four areas where this research makes
a difference. We present a unique approach for dividing the
expected energy consumption of public buildings into tiers
(e.g., low,medium, and high). Our research is based on a large
data source of public building energy consumption collected
in Portugal, in 2018 and 2019. We extracted sound scientific
If-Then principles for use by decision-makers in justifying
the energy use of public buildings and identifying the largest
energy hogs among them. Finally, we propose two intelligent
computing models to make predictions about future energy
use with an assessment of the models’ accuracy and standard
error.
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Recommendations for future research include using sta-
tistical methods like multiple linear regression or logistic
regression to identify important factors influencing public
building energy consumption, as well as combining cluster-
ing and optimization techniques (grey wolf, lion, and whale
optimization), to improve the accuracy of predictions for
cluster labels describing building energy consumption (low
- medium, and high). This study also recommends using
machine learning algorithms from the deep learning family,
such as long short-term memory and deep forest, to improve
the accuracy of predictions about a building’s energy use.
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