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ABSTRACT In Human–Machine interaction, the possibility of increasing the intelligence and adaptability
of the controlled plant by imitating human control behavior has been an objective of many research efforts
in the last decades. From classical control-theory human control models to modern machine learning, neural
networks, and reinforcement learning paradigms, the common denominator is the effort to model complex
nonlinear dynamics typical of human activity. However, these approaches are very different, and finding
a guiding line is challenging. This review investigates state-of-the-art techniques from the perspective of
human control modeling, considering the different physiological districts involved as the starting point. The
focus is mainly directed toward nonlinear dynamical system modeling, which constitutes the main challenge
in this field. In the end, transport systems are presented as a technological scenario in which the discussed
techniques are mainly applied.

INDEX TERMS Human–machine interaction, human-in-the-loop, decision making, human control model-
ing, machine learning.

I. INTRODUCTION
In any system characterized by a close human-machine physi-
cal interaction, providing controlled elements with the ability
to identify and understand what the human operator is doing,
is crucial to increase efficacy and safety. While this is an
ability that humans naturally learn over time, machines need
to be explicitly trained on how to do this. Such recognition
problem is heightened by the dissimilarities between humans
and controlled plants from a mental, computational, and
physical point of view. These differences imply that, when
faced with the uncertainty of the real world, machines cannot
always count on humans to behave as expected and cannot
always easily anticipate how they will react to an unexpected
event [1]. One way this challenge can be addressed is by
equipping machines with explicit models of their human
teammates. Many different techniques are used to model
human cognition and behavior, spanning different timescales
and levels.
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As detailed in [2], the first approaches in this research
field aimed at identifying the linear human control models
while keeping the focus on the background physiological pro-
cesses. Pilot models when controlling an aircraft were vastly
investigated both in the frequency domain and using optimal
control strategies, successfully describing unwanted Spatial
Disorientation scenarios or pilot’s limitations and internal
feedback loops. These techniques are the basis for model-
based human-in-the-loop control frameworks in intelligent
transport systems, robotics [3], and many other domains.

Despite the successes, such models lack in representing
nonlinearities typical of human control behavior, especially
when facing high-complexity scenarios. McRuer and Hess
described the evidence of a pulsive behavior of the pilot when
the demanded task is too complex, leading to the formulation
of Dual Loop control models. They describe human bimodal
control behavior, focusing on the error compensation (typ-
ical of classical crossover theory) and visual rate sensing
(used in pursuit tasks with predictable inputs) [4]. The dual-
channel structure proved to be more suitable for capturing
nonlinear dynamics in the pilot system during the information
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processing stage, represented by thresholds and saturation
elements, which were used for describing phenomena like
Pilot Induced Oscillations (PIO) [5] or Spatial Disorientation
(SD) [6].

In such a modeling technique, the human is considered a
controller, an element part of the control loop (Human-in-
the-loop control). Its sensing elements and muscle actuators’
dynamics are related to the external stimuli, the executed task,
and the controlled element. While executing a specific task,
the human subject tries to optimize its behavior to achieve its
goal while reducing efforts. If the difficulty increases, non-
linear dynamics is increasingly observable. Neuromuscular
dynamics can be considered one of the primary physiological
sources of nonlinearity in human control action. Modeling
techniques in this context are often based on optimal con-
trol theory, trying to identify the system’s objective function
that the human tries to optimize while executing a specific
motion.

Aside from classical model-based approaches, a deeper
focus on information processing and learning abilities is
necessary to have a complete overview of the human as a
controller. Different modeling and data-driven approaches
have been proposed with this goal in many research efforts,
even resulting in a combination of them. The model proposed
by Xu and Wu [7], for example, studied the origin of non-
linear PIO proposing a multi-loop human pilot model during
a multi-axis control task. Here, the pilot’s ability to sense
a changing situation, being based on experience and judg-
ment, is represented by a fuzzy logic control element, able to
modulate his strategy and, indirectly, the system input/output
characteristics (through the variation of model parameters).
Apart from multi-loop models, fuzzy logic techniques have
been used in association with other nonlinear system model-
ing approaches and control techniques in order to deal with
uncertainties in the external environment [8] or in model
parameters tuning [9]. For instance, Fuzzy systems and Arti-
ficial Neural Networks (ANN) have been successfully used
in hybrid models in the past for human operator tuning [10]
or parameter optimization of the controlled plant [11]. The
spread of such kind of hybrid models led to the development
of neuro-fuzzy systems, which will be discussed in detail in
Section V-C.

Due to their simple mathematical structure and low
computational cost when implemented, ANNs have been
successfully used in the presence of unstructured data in
learning, classification, and prediction algorithms in com-
puter vision [12], autonomous driving [13], medical [14],
[15], bio-informatics [16], industrial [17] and rehabilita-
tion [18], [19] robotics.

In human-machine interaction, however, it may be impor-
tant to capture temporal relationships between raw data in
order to identify the system model accurately. Special kinds
of ANNs, such as RNN [20], [21] and LSTM [22], are
very common for this purpose, thanks to their internal loops
between the hidden layers, which in the case of LSTM allows

capturing even long-term temporal relations. Further details
on these two architectures will be given in Section VI,
as well as another data-driven approach, such as Reinforce-
ment Learning, useful to model human decision-making and
the generation of its internal goal.

Classical supervised, unsupervised, and semi-supervised
learning methods are introduced to represent how a ‘‘human
controller’’ creates a strategy to achieve a long-term goal,
passing through several intermediate steps. There is a
vast variety of practical applications exploiting such tech-
niques [23], [24], [25], [26]. Remarkably, the optimal control
theory modeled the human control action by identifying its
internal cost function to minimize, similar to the reinforce-
ment learning approach. Indeed, in such a case, the human
decision-making process is modeled by describing its objec-
tive function, which is maximized by the subject during its
actions.

The mentioned modeling techniques, from the classical
control theory based to the modern data-driven approaches,
have succeeded in representing a different aspect of the
human control strategy when interacting with a machine.
Application scenarios such as intelligent transport systems or
human-robot collaboration offered many examples of mod-
eling and control techniques which has been developed by
combining two or more of these approaches.

II. PAPER CONTRIBUTION
The investigations of human nonlinear dynamics when con-
trolling a machine are so diversified that finding a common
point between them is difficult. This work aims to give a
structured overview of the existing techniques, focusing on
the underlying physical and physiological human processes.

This human-centered review of the existing efforts will
highlight the strengths and limitations of the presented tech-
niques in their effort to model the intrinsic nonlinear dynam-
ics in the human-machine system. Such nonlinearities will be
referred to as spatial and temporal variables of functionals
which are identifiable within the human physiological control
districts involved in sensing and information processing, but
also deriving from the interaction with controlled element
dynamics and/or the external environment [27]. With respect
to the existing review works relative to each research field,
this effort will help find a guiding line between more tra-
ditional control modeling techniques and modern learning
algorithms.

The paper is structured as follows, in Section III discusses
the Dual loop control model, giving an overview of the human
controller when interacting with a controlled machine. Sec-
tion IV investigates the nonlinear muscular dynamics models.
Then in Section V, the focus will be directed toward mod-
eling techniques particularly useful for representing human
information processing stages. Then machine learning efforts
to model the human decision-making process are investi-
gated in Section VI. Lastly, in Section VII, practical exam-
ples of human-machine schemes in which the described
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FIGURE 1. Dual model of the human operator in a compensatory task.

techniques are applied to model complex nonlinear dynamics
are considered.

III. DUAL LOOP CONTROL
In the last decades of the last century, Hess investigated
human control strategies when interacting with a machine,
resulting in his first ‘‘structural model’’ [28]. After the first
linear version, Hess noted that often human operators’ control
strategies resulted in pulsive behavior, which was not linked
to any feature of classical linear models. In [29], the pulsive
behavior was linked to McRuer’s quasi-linear model hypoth-
esis in the frequency-domain context. The assumption was
that when faced with a demanding task combined with the
controlled element’s high-order dynamics, the human opera-
tor avoids the computational effort and reduces the number
of parameters by using a less computationally-demanding
nonlinear strategy rather than a linear one.

The above assumption was applied to the early version
of the Hess model, resulting in the Dual Model depicted
in Figure 1. Such a model resulted from an effort to link
the hypothesis behind the crossover theory with the optimal
control approach.

The described nonlinear factor results in the various
switching elements in Figure 1. The first one (S1) allows
selecting error or error rate tracking and is supposed to oper-
ate in unison with S2, which enables or disables the pro-
prioceptive feedback loop. The physiological reason behind
this is that after a triggering event, the pilot control strategy
regresses to simple tracking behavior, where the error rate is
controlled without the help of proprioceptive feedback. Right
after the two described sensing channels, there is a time delay
element due to the information processing occurring in the
central nervous system, present right before the neuromuscu-
lar actuation and internal feedback stages.

Moreover, switch S3 allows modeling both displacement
and force sensing inceptors. Ultimately, S4 allows using
vestibular rate or acceleration inputs for control, with gain

elements dependent on the perceived velocityKṁ or accelera-
tionKm̈ [30]. Ultimately, only neuromuscular and propriocep-
tive elements need parametrization, lowering the model com-
plexity level. The neuromuscular block is often represented
using second-order dynamics [31].

The neuromuscular force output is sensed and transformed
into an estimation of the output rate of the controlled element
using an internal model of its dynamics. This process is done
by the proprioceptive system, which can be described in the
Laplace domain using the following equation:

Hps(s) =


Kps(s+ a)
Kps
Kps

(s+ a)
,

(1)

where s is the Laplace variable in the complex plane, and
a ∈ R. In other words, the proprioceptive system transfer
function Hps can be defined, depending on the controlled
element dynamics, as a derivative term multiplied by a gain
element Kps (first case), through a simple proportional rela-
tionship (second case); or as integration (third case). If we
indicate the controlled element transfer function as HC , the
proprioceptive system’s dynamics would be chosen in order
to satisfy the following relationship around the crossover
frequency:

Hps(s) ∝ sHC (s). (2)

This concept well represents the operator’s adaptability
to external dynamics. This human’s internal representation
of machine dynamics expresses the hypothesis behind the
crossover model and is equivalent to the Kalman estimator
in the optimal control model [32].

The last case of Equation 1, in which the inner loop
feedback signal is generated by integrating the force applied
to the controlled element, is the one in which the effect of
the pulsive control behavior on the time integrability of the
human is more evident. In fact, the integration of a pulsive
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input signal can be approximated by

Yps =

n∑
i=1

Ai1Ti, (3)

being Ai and 1Ti the equivalent calculated amplitude and
time duration of the ith pulse, and Yps the resulting propri-
oceptive output signal. The computational burden of such
an operation, if compared to integration over time, is sig-
nificantly lower. In order to represent the discussed pulsive
control effect on the inner loop feedback in the most simple
and realistic way, the following logic is can be added before
the neuromuscular system dynamics:

dq̂
dt

= 0 if |
dq
dt

| < α

q̂ = βq if |
dq
dt

| ≥ α. (4)

where q and q̂ represent input and output variables, respec-
tively, α and β are the only parameters that must be tuned to
reproduce pulsive behavior. The dependence of the model on
just two parameters allows it to avoid its over-parametrization
and simplifies its adaptability to experimental data. Basically,
the action of this nonlinear element causes the output q̂ to
remain constant until a sufficiently rapid change in the input
q occurs.

Pulsive control as a result of the ‘‘ease of integrability’’
principle, as hypothesized by Hess, found a physiological
interpretation in [33]. In particular, while proportional and
derivative control feedback can be actuated using direct sens-
ing organs, such as muscle spindles and Golgi tendon organs,
integral control does not have similar sensing input sources
and requires higher-level cognition in the central nervous
system [29]. Consequently, when performing acceleration
control, the human operator tends to generate a pulsive force
rather than a continuous one to facilitate the integration pro-
cess, being the computational cost of the latter much higher.
Different explanations of the same phenomena are possible,
being, for example, linked to energy saving strategy when the
required force peak value is low enough.

IV. NEUROMUSCULAR DYNAMICS
The latter consideration suggests the importance of neuro-
muscular actuation mechanisms as a source of nonlinearity
in the human controller. Several dynamical system modeling
approaches of the neuromuscular system have been proposed
in the literature, starting from simple state-space descrip-
tions [34]. Neuromuscular dynamics are typically nonlinear;
for instance, we consider the model of a human limb, and its
characteristics can be described in state-space form as

xt+1 = f (xt, t,u) + ω(t)

yt+1 = h(xt, t) + ϵ(t). (5)

where x is the state vector representing two angles and two
angular velocities, u is the control input corresponding to the
two applied joint torques, ω is the process noise, while ϵ the

observation noise. The general solution adopted in this non-
linear problem has been to linearize the nonlinear dynamics
around a specific operating point, or a series of active topics,
in state space. The resulting linear time-varying dynamics can
be used only in a small interval around the operating point;
in the case of the above example, neglecting the noise terms
would be equivalent to

xt+1 = Atxt + Btut
yt+1 = Htxt. (6)

Here, A is the state transition matrix and B the control
transition matrix, while H represents the output measurement
matrix.

Most control-theory-based neuromuscular modeling app-
roaches aim to find the correct series of control inputs
u1 . . . uT , corresponding to muscle forces and joint torques,
which will make the system execute the desired trajectory
in the time horizon t = T . Such a control system is an
open loop; thus, if susceptible to disturbances, the controller
would fail to reach the desired state, not sensing any state
change. Moreover, the direct measurement of trajectories in
state space can be problematic in high-dimensional systems,
where part of the state may not be directly observable.

To overcome such shortcomings, optimal control appro-
aches have been proposed [35], [36], where the dynamical
system is controlled by optimizing an objective function.
According to optimal control theory, the controller can
directly access output and state variables or estimate their
values to implement an optimal control law to maximize the
system’s performance. A general mathematical expression of
the objective function to optimize to achieve this goal is

J (x) = minu

(
φ(xtN ) +

∫
∞

t0
q(x) +

1
2
uTRu dt

)
. (7)

The system states are u and x, the control torques, forces,
or neural commands, and x, often expressed as joint angles,
velocities, or muscle activation. Moreover, φ is the cost term
dependent on the state, describing how a given target was
reached. At the same time, q is a state-dependent cost term
considered over the whole time horizon tN , and uTRu is the
cost dependent on the control input (also considered over the
time horizon tN ). The velocity value and the control effort
used to perform a given trajectory can be good examples of
the last two mentioned cost terms in a practical application.

Optimal control approaches for adapting classical linear
techniques, such as Linear Quadratic Gaussian Regulator
(LQG), have been proposed for nonlinear dynamics typical
of muscles and multi-body limbs. In [37], an Iterative Lin-
ear Quadratic Regulator (ILQR) was introduced based on
linearizing nonlinear muscular dynamics. An advantage of
this approach is that it does not need any predefined target
trajectory in the state space to work. ILQR method was also
extended in [38] for nonlinear stochastic systems character-
ized by state-dependent and control-dependent noise. Here,
the ILQR technique permitted the description of the nonlinear
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relation between muscle force, fiber length, and contraction
velocity. Further developments led to the use of Extended
Kalman Filters (EKF) in systemswhere there is additive noise
in sensory feedback loops [39], [40].

V. INFORMATION PROCESSING AND DECISION-MAKING
The discussed models helped describe the human-machine
system dynamics in a control-theory fashion. The involved
physiological districts, sensing, and actuation systems were
put in relation, considering the human as an element of the
control loop, and the nonlinear dynamics present in motion
command actuation and feedback were put in evidence. How-
ever, to understand how human beings act as a controller
when interacting with a controlled machine, a deep focus on
the information processing stage is crucial to understand how
its central nervous system integrates pieces of information to
make decisions, learn, and generate commands.

A. FUZZY CONTROL MODELS
Processes such as human decision-making, inference, and
judgment are challenging to characterize precisely. A mod-
eling technique specifically meant to capture this concept is
Fuzzy control modeling. If we represent a human controller
as a fuzzy subsystem, the core of its control model would be
described by the fuzzy rules it will set. Specifically, fuzzy
rules describe the human decision-making process starting
from formulating a hypothesis and successively mapping the
fuzzy set from an input to an output space [41]. Such a
mapping process can be defined as the ‘‘fuzzification pro-
cess,’’ while the reverse transformation will be called the
‘‘defuzzification.’’ The physiological equivalent of this pro-
cess is when the neuromuscular system receives an abstract
decision from the central nervous system and consequently
emits a force to the controlled device/machine. Fuzzy logic
control models have been used to represent various human
control activities in many research works, achieving good
results in overcoming the limitation of approaches relying
on a strict categorical division, especially in classification
problems. In [42], fuzzy logic classification was used to
represent radiologists’ reasoning and decision-making pro-
cess when recognizing breast cancer types from the analy-
sis of medical images. While in [43], a fuzzy architecture
was implemented for malware detection and classification in
IoT applications. In the aeronautic domain, fuzzy control is
suitable for developing a mental model of the pilot during
a flight activity [44], [45], primarily referring to a compen-
satory type of sub-tasks [46]. The fuzzy logic control model
was applied to study changes in simulated activity fidelity in
aircraft control and Dynamic Multi-attribute Decision Mak-
ing (DMADM) applications [47]. Additionally, fuzzy con-
trol theory was used for the safety evaluation of landing
operations considering aircraft [48], [49] and rotorcraft [50].
However, the computational efficiency of fuzzy control sys-
tems is limited in cases in which a vast number of rules is
present [51]. Moreover, it can be challenging to determine the

rules when their number is high, and subjective model tuning
will make its validation more challenging.

B. ARTIFICIAL NEURAL NETWORKS
For nonlinear dynamical system modeling, Artificial Neural
Networks have grown significantly in many research activi-
ties in the last years due to their flexibility and ability to imi-
tate human learning, and decision-making. Moreover, when
building a model from unstructured data, ANNs proved to be
useful to build a reduced low-order model [52] and for their
classification capability [53]. Artificial Neural Networks are
composed of a linear combination of fundamental units
(i.e., neurons), which can provide a linear transformation
from the input data x to output y through several intermediate
hidden layers. Each ANN scheme can vary significantly if the
input vector dimension is known. The user usually chooses
the dimensionality of the hidden and output layers. The input-
output relationship of a single-layer neural structure with m
inputs (being m a positive integer greater than 1) and single
output would be, in the linear case:

y =

m∑
i=1

xiwi + q. (8)

where variable xi(i ∈ (1, 2, . . . ,m)) represents the input
signal of the model, y represents the output signal, wi(i ∈

(1, 2, . . . ,m)) is the weight of each input signal and q is the
threshold of the activation function f . Nonlinear activation
functions can be used to represent a wider range of dynamics.
The more general definition of an ANN constituted by M
layers, providing a nonlinear mapping between input and
output data, would be:

y = fM (AM, . . . , f2(A2, f1(A1, x)) . . . ). (9)

Here, theAM toA1 matrices contain the weight coefficientswi
that map each variable from one layer to the next. Theweights
are chosen to fit the function:

argminAj
(fn(An, . . . f2(A2, f1(A1, x))) + λg(Aj)). (10)

Human behavior and information processing representation
are based on the weights of neural networks. Such mod-
eling technique is advantageous in aeronautical applica-
tions, for example, when mapping pilot control in research
works where extensive data to process are available [54].
In [55], ANN and quasi-linear approaches are confronted in a
two-axis tracking task, verifying neural network accuracy in
describing nonlinear pilot behavior in aircraft control. In [56],
an adaptive neural network controller is used by combining
the trained network and a proportional-integral controller in
an attempt to find a model-based method for control determi-
nation of unknown dynamics.

C. NEURO-FUZZY SYSTEMS
Generally, neuro-fuzzy systems can be defined as all the
modeling techniques involving artificial neural networks
and fuzzy logic. These techniques can be categorized into
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three classes, depending on the combination of the two
elements [57]:

• Cooperative neuro-fuzzy systems
• Concurrent neuro-fuzzy systems
• Hybrid neuro-fuzzy systems

In a cooperative system, the neural component is only
present in an initial phase and determines the blocks com-
posing the subsequent fuzzy system using training data. After
this stage, only the fuzzy system will be executed.

In concurrent systems, on the other hand, the neural and the
fuzzy components work simultaneously. This means that the
information is pre-processed by one of the two components
and then given in input to the other.

The most promising and utilized models belong to the
hybrid systems category. A hybrid neuro-fuzzy system can
be imagined as a fuzzy system in which parameters, such
as fuzzy sets and fuzzy rules, are determined using a learn-
ing algorithm inspired by the neural network theory. Such
a neuro-fuzzy system can be entirely created starting from
measured input-output data without the a-priori knowl-
edge needed to develop fuzzy rules with the traditional
approach.

An example of a commonly used model of this type is the
Adaptive-Network-Based Fuzzy Inference System (ANFIS),
which was proposed for the first time in 1993 [58]. Its
structure is composed of five layers. The first hidden layer
maps the input variable relative to each membership func-
tion. The output layer calculates the global output as the
summation of all the signals coming in the input. In partic-
ular, input membership function parameters are determined
using back-propagation learning algorithms, and the least
mean square method is used to determine the consequent
parameters. The first advantage is to show both characteris-
tics of neural networks and fuzzy logic, comprising if-then
statements more suitable for human-like decision-making
logic. In addition, its structure is not a black box, as in the
case of neural networks, and therefore can be more easily
debugged and improved. Moreover, it has smaller parame-
ters to be determined to provide faster training without loss
of generality [59]. The such model recently found diverse
domains of application aside from human-machine interac-
tion, such as electric distribution systems [60], [61], speech
recognition [62], and economics [63]. In [64], the ANFIS
model was used for human fall detection in comparison with
other neuro-fuzzy techniques, such as the Local LinearModel
Trees (LOLIMOT) model [65].

In LOLIMOT models, each neuron is a local linear
model (LLM) and an associated validity function that deter-
mines the region of validity of the LLM. The normalized
validity functions form a partition of unity for any model
input z are:

M∑
i=1

φi(z) = 1. (11)

While the output of each LLM is calculated as follows:

ŷ =

M∑
i=1

(ωi,0 + ωi,1x1 + . . . + ωi,nxxnx)φi(z), (12)

where x = [x1, x2, . . . , xnx]T . Here, the local linear models
depend on x, while the validity functions depend on z and
are typically chosen as normalized Gaussian. The overall
LOLIMOT network output is computed as a weighted sum
of the LLMs outputs, where the φi(0) can be interpreted as
the operating point-dependent weighting factors. The net-
work interpolation between different LLMs is performed
with the validity functions, where weights wi,j are linear
network parameters. Again, LOLIMOT models were used in
various domains of application, such as transportation [66],
medicine [67], complex systems [68] and identification of
time-variant nonlinear dynamics [69].

A dual fuzzy neural networks (DFNNs) model constituted
by two equal neural networks has been used to simulate the
physical nervous system in [70]. The advantage of dual fuzzy
neural networks (DFNNs) is related to their close similitude
to functioning and flexibility typical of humans. As in the case
of ANNs, DFNNs can choose a suitable nonlinear mapping
of input/output features through an iterative learning phase,
in which neuron weights are updated. Such a model was
implemented to simulate the relationship between the control
signal and human perceived input [71]. Its performances were
evaluated to provide insight into the pilot’s decision-making
process [72]. Moreover, [73] proposed a risk evaluation pro-
cedure founded on ANNs with the fuzzy control approach.

Even though in the Neuro-fuzzy model, neural networks
and fuzzy logic are integrated, its drawback is to increase
the computation and tuning time potentially. Besides, the
experimental validation of the obtained model parameters
may be tricky.

VI. DATA-DRIVEN APPROACHES
Data-driven approaches have attracted more and more atten-
tion in recent years in various application scenarios in non-
linear dynamical system modeling and identification [74].
In human-machine interaction, learning processes starting
from unstructured data using different types of Artificial
neural networks (ANN) have been used for their processing
classification by imitating human learning capability and
decision-making, often combined with other learning algo-
rithms, as we will discuss later in this section. A widely used
type of network is the Convolutional Neural Network (CNN),
traditionally used for capturing spatial relations in data, valid
for applications with robust image processing, which are very
common in human-robot collaboration [75] or autonomous
system navigation [76].

However, for the study of nonlinear dynamics introduced
by the human into the system during its control activity,
aspects such as its temporal delay [77], or temporal rela-
tions in general within the given data series, might be more
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FIGURE 2. General structure of a Recurrent Neural Network and its
internal feedbacks.

relevant. Recurrent neural networks (RNNs) are the primary
ANNs suitable for processing time series and other sequential
data types. RNNs can extract a sequence’s contextual infor-
mation by defining the mutual dependencies between vari-
ous time stamps. As shown from the scheme represented in
Figure 2, standard RNN is composed of numerous successive
recurrent layers and has a lot of feedforward and feedback
connections in the time direction, allowing it to sequentially
model its layers to map a sequence with other sequences. This
makes it a good choice for dynamic system identification and
control.

Concerning its structure, an RNN can be defined as an
extension of feedforward ANN with internal loops in hidden
layers. The activation of the state of a recurrent hidden layer
at each time instant is dependent on that of the previous one.
At a given time frame, each non-input unit computes the
current activation as the nonlinear function of the weighted
sum of all the activation of every connected unit [78]. They
have been successfully applied in natural language process-
ing (NLP), image captioning, speech recognition, and other
fields. In [79], the authors investigated the approximation
capability of continuous-time RNNs to the time-invariant
dynamical systems. They proved that such network perfor-
mances for approximating any finite time trajectory of a
time-variant system were high. However, despite its suitabil-
ity to model temporal variations present in the input, depend-
ing only on the current information and the previous output,
a standard RNN may encounter difficulties when it comes to
capturing long-term dependencies of time sequences.

To overcome this limit, a popular type of RNN which was
proposed in a lot of research works is the Long Short-Term
Memory network (LSTM), An LSTM network is a modi-
fied RNN, mainly designed to improve its ability to cap-
ture long-term relationships by avoiding premature gradient
disappearance in error back-propagation algorithms through
time.

LSTM is composed of a combination of units, represent-
ing internal structure in Figure 3. Each unit simultaneously
receives an input vector x(t) and the state of the hidden layer in

FIGURE 3. Internal structure of an LSTM unit [80].

the previous time instant h(t−1) and updates, as output infor-
mation, the cell state C(t) and the current state of the hidden
layer h(t). This operation is done through three embedded
layers in each LSTM unit: the input, output, and forget gates.
The three gates have different roles and work in coordination:
the forget gate f(t) determines the probability that certain
information has to be canceled from the cell state vector; the
input gate i(t) identify the new information to be stored, while
the output gate o(t) controls the output of the current hidden
state h(t). Translated into mathematical expressions, LSTM
unit operations are the following:

f(t) = σ (Wfh(t−1)
+ Ufx(t) + bf)

i(t) = σ (Wih(t−1)
+ Uix(t) + bi)

C̃(t)
= tanh(WCh(t−1)

+ UCx(t) + bC)

C(t)
= C(t−1)

⊙ f(t) + i(t) ⊙ C̃(t)

o(t) = σ (Woh(t−1)
+ Uox(t) + bo)

h(t) = o(t) ⊙ tanh(C(t)). (13)

where W, U, and b represent respectively the recurrent
matrix, input weight matrix, and bias vector, σ and tanh are
sigmoid and hyperbolic tangent functions, and ⊙ represent
the element-wise Hadamard product.

Yeo and Melnyk [81] implemented LSTM networks to
build a simulation model of noisy nonlinear dynamical sys-
tems using experimental data. Their goal was to identify
the best fit of the probability density function of a given
stochastic process and to represent the underlying nonlinear
dynamics. Chen et al. [80] used LSTM networks to learn the
characteristics of strongly nonlinear external dynamics of Van
der Pol and Lorenz systems.

As said, neural networks used for unstructured learning
have increased their potential by combining them with other
learning algorithms. The most promising technology in this
sense is Reinforcement Learning.

Unlike supervised and unsupervised learning, reinforce-
ment learning has arisen as the third kind of machine learn-
ing paradigm. Using computational Reinforcement Learn-
ing algorithms allowed us to quantitatively describe several
previously abstract concepts in neuroscience, cognitive, and
behavioral science [82].

As detailed in [83], reinforcement learning (RL) can rely
on Markov Decision Processes as a learning framework in
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which a learning agent interacts with an external environment
and perceives its state, choose its actions to maximize a
numerical reward function. The reward function is a simple
numerical value for each time stamp, which can increase
or decrease by one unit in the future due to the agent’s
actions. Therefore, the goal to maximize the reward function
can be translated into maximizing the expected value of the
cumulative sum of the scalar reward signal. Being defined
from external information acquired from the environment
through sensory inputs (in the case of a human operator),
the goal to achieve is always defined outside the learning
agent. In the case of a human being, that means that the
learning agent can be defined as only the subsystem deputed
to process the external inputs to define a control strategy (i.e.,
the central nervous system). The sensory subsystems can be
considered part of the environment. In real-world complex
situations in which humans are confronted with a challenging
task, their duty is to derive efficient representations of the
environment from high-dimensional sensory inputs and use
them to generalize past experience and be able to use it in
new situations [84]. If we consider an episodic task in which
the agent-environment interaction can be decomposed into
sub-sequences of repeated interactions, there is also a final
time step, T. In this case, for a given timestamp t , the reward
function to maximize is:

Gt =

T−t−1∑
k=0

γ kRt−k−1. (14)

where γ , being 0 ≤ γ ≤ 1, is the discount rate. This parame-
ter determines the present value of future rewards. When γ is
close to zero, the weight of immediate rewards is higher and
mostly taken into account by the agent; as it approaches 1,
the goal takes future reward values more strongly weighted.
If we have a continuous interaction in which there are neither
definable intermediate steps nor a known final time frame,
the above equation can be rewritten with T = ∞.
Reinforcement learning algorithms were extensively used

in many research works relating to humans interacting with
a machine, with many reward functions designed and more
suitable for the different application scenarios. In [85],
a Deep Deterministic Policy Gradient (DDPG) reinforcement
learning algorithm is used to estimate human intentions in
a human-robot interaction framework using EMG sensory
inputs. At the same time, [86] integrated RL into the robot
motion planning in a multi-robot collaborative manufacturing
plant to implement human-in-the-loop control in teleoperated
robots through augmented reality and digital twin techniques.

In the transport field, [87] adopted microscopic traffic
simulation and reinforcement learning to implement the
lane-changing strategy in connected and automated vehi-
cles (CAVs). Reinforcement Learning has been successfully
used with model-based techniques for systems identification
in [88]. This was done to estimate the reward function from
online data by acquiring and processing linear and nonlin-
ear external dynamics. Mu et al. [89] used a reinforcement

learning algorithm for partially non-modeled nonlinear sys-
tems, coupled with two neural networks, to implement an
event-triggering dynamic strategy. In robotics, Deep Rein-
forcement Learning can be used for motion planning in coop-
erative applications with a human subject, learning how the
human interacts with a specific environment and adaptively
computing the best way to interact with him [90].

VII. NONLINEAR DYNAMICS IN HUMAN-MACHINE
SYSTEMS
The discussed modeling techniques and data-driven appro-
aches have been successfully used for describing nonlinear
dynamics in many application domains where humans inter-
act with a controlled element.

Transport systems, for example, are a particularly rele-
vant field of application for nonlinear dynamics modeling
in human-machine interaction for what concerns the non-
linear dynamics deriving human decision-making, from the
nonlinear nature of the controlled element and/or the system,
and from human body physical coupling with the controlled
system.

For what concerns the first point, connected and auto-
mated vehicle (CAVs) development has gained more and
more attention from companies and research centers in the
last few years. In studies dealing with automated lane chang-
ing, machine learning techniques were extensively used for
human decision-making modeling and its use in automatic
control strategies.

Let us consider the situation described by Figure 4,
in which Vehicle 1 (V1) has to choose a lane-change strategy
and is followed by vehicles 2,3, and 4. If we discretize the
CAV travel as a series of time steps t, and St are the state of
the external environment at each step t, we would have that:

St = {ã1L , ã1R, ã2L , ã4R, ã3, ν̃L , ν̃R, σ̃L , σ̃R}(t). (15)

Here, ã represents the acceleration difference of the con-
sidered vehicles (in the subscripts, numbers represent the
vehicle and the letter the lane change direction) after V1
lane change; ν represents the mean acceleration difference
between the central and the left or right lanes; σ represents the
difference between the standard deviations of the acceleration
differences. From a learning agent perspective, these accel-
eration differences represent the gain obtained after a lane
change. Therefore, the reward function could be formulated
as follows:

Rt = at+1
1 . (16)

The subscript number stands for vehicle 1, and t+1 represents
two consecutive simulation time stamps.

A lot of research efforts on this topic used simulation
environments such asMatlab toolboxes [91], [92] to represent
vehicles’ behavior, or robotic toolkits using partially observ-
able Markov decision processes (POMDPs), such as in [93].
A connected and automated vehicle does not rely on any
external supervisor but must autonomously learn with a trial-
and-error approach to decide when to make a lane change and
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FIGURE 4. Connected Automated Vehicles represented in a lane-change scheme.

how to execute it. One of the most challenging aspects is that
the vehicle must evaluate the long-term benefit of such an
action and become farsighted in its strategy to maximize the
travel’s efficiency. For this challenge, reinforcement learning
seems to be the preferential approach (as noticeable from its
formulation described in the previous section). For instance,
in a high-fidelity simulation environment, [94] used a deep
reinforcement learning training program for car following.
In [87], the authors also used reinforcement learning in a
microscopic traffic simulation environment [95] calibrated
using actual highway data. Li et al. [96] used an evolutionary
learning approach for lane change tested in a highway sim-
ulation environment. The optimization problem objective is
to maximize the velocity while minimizing the disruption to
the following vehicle; if it is impossible to reach this goal in
the current lane, a change-lane decision is taken. In this case,
the reward ri,t depends on the difference between desired
velocity vd and actual velocity vi,t of the controlled vehicle
and the acceleration of the following one (ak,t):

ri,t = −|vi,t − vd| + ak,t. (17)

If the velocity difference overcomes a certain threshold, the
lane is changed.

However, the lane change has not a time-driven structure
but an event-driven one, described as a discrete dynamic
process, which can be well represented as a Markov Decision
Process. In [97], POMDPs were also used for an automatic
lane change in long-distance road experimental trials using
automated vehicles. Here, the decision-making process is
modeled, referring not only to the controlled vehicle but also
to the surrounding environment, inspired by the consideration
that human drivers change their behavior when interacting.
Reaction modeling is performed by measuring the temporal
evolution of the vehicle state, including in it also a reaction
and a deviation parameter.

Figure 5 represent the differences between the traditional
hidden goal method, which applies only to specific regions of
interest, and the reactive method, which models the group of
vehicles in general and their deviation.

FIGURE 5. Motion intention estimation as explained in [97], using hidden
goal (a) and reaction (b) methods.

FIGURE 6. Modeling of regret biasing (a) and probability weighting (b) at
a cognitive level as studied in [98].

A further aspect of human decision-making in a lane-
changing application is related to risk propensity. In [98],
the authors proposed a decision model that considered the
driver’s perception, reasoning, and emotions. Risk propensity
considers two mental processes: regret biasing and proba-
bility weighting, corresponding to the emotional aspect and
cognitive reasoning. Both functions’ nonlinearity increases
proportionally to the emotional bias and cognitive weighting.
The proposed model was tested with a dataset from a nat-
uralistic driving database. Figure 6 represents the obtained
fitted functions without considering regret biasing and prob-
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ability weighting (purple line) and with the two terms (green
dashed line). Figure 6a represents the regret q-functions,
which resulted in being linear, indicating the regret influence
is not evident in all cases. On the other hand, Figure 6b
shows a w-function divided into three intervals; in two of
them, the function overweights the objective probability (dot-
dashed line), indicating a general optimism and bent to take
risks.

As said, aside from human decision-making representa-
tion, the source of nonlinearity in the human-machine com-
plexmay be related to the dynamics of the controlled element.
If the human subject continuously controls such devices, this
will raise an essential challenge concerning system modeling
and control.

In cooperative teleoperated robotic systems, for instance,
many nonlinear control approaches have been developed in
order to deal with non-passive (and therefore unstable [99])
factors such as the uncertainty of the environment, the pres-
ence of variable communication delays, kinematics, and
dynamics parametric uncertainty. Such kinds of systems have
found vast applications in healthcare [100], space [101],
and exploration in dangerous environments [102] and dis-
aster scenarios [103]. Even if Linear control approaches
have been successfully developed for robust stability achieve-
ment in the presence of uncertain system dynamics, non-
linear controllers proved to guarantee good stability and
performance through the exploitation of special properties
of nonlinear rigid body dynamics of primary and secondary
manipulators [104].

In [105], nonlinear bilateral control of a teleoperation sys-
tem with a flexible-link secondary manipulator is performed
by designing a robust tip position tracking controller for
the secondary manipulator. The desired trajectory is deter-
mined based on the primary’s position signal, and a force
controller for the primary robot, which should track the
environmental force exerted on the secondary manipulator.
While [106] proposes a control strategy able to establish
position-position kinematic correspondence between primary
and secondary by incorporating in the adaptive controller
the models of operators, controlled robots, tools, and envi-
ronment, as well as their parametric uncertainty. Further
approaches, as in [107], enlarged this concept by mapping
the human arm stiffness references in a bilateral teleoper-
ation framework, building a ‘‘teleimpedance control’’, later
extended with a semi-autonomous contact detection strategy
in [108]. Moreover, another challenging aspect of bilateral
teleoperation systems control is related to the presence of
communication time delays, which may cause the system to
degrade its performance and even result in unstable behavior.
The time delays should therefore be considered in the design
stage of the controller. In [109], this problem is faced by con-
sidering adaptive neural synchronization control of bilateral
teleoperation systems with backlash-like hysteresis, one of
the most important nonlinearities in robots. While in [110],
a finite-time synchronization control method is proposed
based on fuzzy approximation of system uncertainties.

Another example of highly nonlinear controlled systems
interacting with an unknown external environment consists
in multirotor remote control. Multirotor applications were
carried out in several research activities, with practical appli-
cations like surveillance, photography, video-making, grasp
or motion of an object, or military [111]. The equation of
motion of a multirotor with a mass m and inertia tensor J can
be written as:

mẍ = −mge3 + fRe3
R = R�̂

J�̇ = −� × J� + τ . (18)

where f and τ are the force and torque inputs, x is the
multirotor position with respect to the inertial frame, � =

[pB, qb, rB]T is the angular velocity vector in the body frame,
g is the gravity force, e3 = [0, 0, 1]T and R is the transfor-
mation matrix from the body to an inertial frame.

Trajectory tracking control for such systems is not acces-
sible due to its nonlinearity, under-actuation, and highly cou-
pled states. Although simple linear controllers such as PID
or LQR have been successfully proposed in the past [112],
[113], [114], [115] for a limited number of non-agile move-
ments, controllers using feedback linearization, backstepping
or geometric control techniques are more suitable to handle
with the nonlinearity of the system. Various types of Feed-
back Linearization (FL) techniques were used for multirotor,
such as input-output and state-space linearizations [116] have
been used for finding the rotor’s dynamics linear approxi-
mation. In [117], FL performances were compared with an
adaptive sliding mode control technique. While in [118] FL
controller was combined with a Luenberger observer.

However, the rotorcraft nonlinearity cannot be eliminated
if a modeling error is present in feedback linearization.
Thus its stability is not guaranteed. Therefore, backstepping
control strategies with sliding mode techniques have been
increasingly used to overcome these problems, associated
with sliding mode techniques in [119], [120], and [121].
When roll and pitch angles were high, such as in [122],
and [123], the Lagrangian formulation was preferred, even
at a higher computational cost. Xian et al. [124] proposed a
different approach in which an energy-based passivity con-
troller controlled a quadrotor with a suspended payload. Also,
neural networks were used in multiagent trajectory tracking
applications, such as in [125], where an online RNN-based
controller enabled the formation of a multiagent system
characterized by a leader-follower structure. Such a control
strategy allowed each agent to have the same output even
with a different number of inputs, facilitating the system task
planning.

Extensive research efforts were also directed through mod-
eling unwanted human control behavior in transport systems,
particularly to Rotorcraft-Pilot Coupling (RPC) [126]. For
evaluating human-rotorcraft interaction in aspects such as
comfort and handling qualities, some performed modeling
efforts present in literature were directed towards studying
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the dynamical behavior of the human body. Understanding
such body dynamics, in this case, the upper body is fun-
damental to identifying potentially dangerous nonlinearities
in RPC. These approaches vary significantly and can be
classified into two main categories, such as finite element
models (FEM); and multibody dynamics (MBD) or lumped
parameter models (LPM).

Lumped parameter models are composed of elementary
mechanical subsystems, such as lumped masses and vis-
coelastic elements with linear or nonlinear properties. In the
linear case, parameters are relatively easy to identify, with a
low associated computational cost and can be easily tuned
to fit the biomechanical characteristics of a specific subject.
However, in LPM where nonlinear viscoelastic elements are
used, the cost of identifying its characteristics may increase,
depending on the applied force or displacement. In [127],
the authors used a piecewise LPM as an analytical tool to
perform a preliminary analysis of vehicle crashworthiness
in order to reduce the time required to assemble and tune
FEMs and perform a nonlinear finite element analysis in
crash testing. In the proposed LPM, the spring and damping
coefficients are defined as piecewise linear functions of input
displacement and velocity. Lumped parameters nonlinear
models are also present in works such as [128], in which
a one-degree-of-freedom model was applied for analyzing
human body dynamic response during a helicopter landing.
In works such as [129], and [130], previous state-of-the-art
linear models were optimized using a genetic algorithm to
capture the nonlinear effects of passengers’ dynamic response
when subjected to vibrations.

In [131], a multibody model of the upper body was
designed by connecting a model of the pilot’s arms to a model
of the spine. Such a spine model, as well as the scaling pro-
cedures, was used for studying seat-to-head transmissibility.
This coupled spine-arms model can be used to evaluate the
biodynamic response of the human operator in terms of invol-
untary motion induced on the control inceptors, including the
related nonlinearities.

Finite element models have been successfully used in
recent research to represent human body behavior during
an impact, often in relation to injury risk prediction and
vehicle safety. The Total Human Model for Safety (THUMS)
is a famous finite element human body model intended
for injury analysis [132]; it has been used in association
with a model of a vehicle’s internal structure, with the pur-
pose of simulating human body kinematics in response to
a large impact in a car crash. The geometries of the struc-
turally complex human body parts, including the head, torso,
ligaments, joints, and internal organs, are represented by
finite element meshes, and their impact responses have been
studied separately. Moreover, in relation to transport safety,
within the context of the European project ‘‘Human model
for safety two’’ (HUMOS2) [133] human body numerical
body models were constructed in order to create a database
able to represent the European population with high fidelity.

Portions of HUMOS2 models have been used in many
research efforts, such as [134] for which thoracic accidents
and [135] for head injuries in motorcycle crashes. Another
example of FEM used to provide kinematic and kinetic data
of the human body in a computationally efficient way has
been proposed in [136] by the Global Human Body Models
Consortium (GHBMC).

VIII. CONCLUSION
The presented modeling research efforts of nonlinear dynam-
ics in human-machine interaction successfully capturedmany
aspects of the human learning process, information process-
ing, and control action. From the classical control-theory
fashion of dual-loop control to the more recent machine-
learning techniques, many advances have been made in iden-
tifying the sources of nonlinearity in human control behavior
and in implementing models able to transfer such ability
to the controlled machines. Modeling and data-driven tech-
niques were presented in a human-centered way in order to
show how they succeeded in representing different aspects of
the human as a controller. For instance, the decision-making
process directed toward achieving an internal goal is well
described by reinforcement learning approaches, while opti-
mal control models of the neuromuscular system or bio-
dynamical models are most useful for nonlinear dynamics
deriving from human body actuation districts or from its
coupling with the controlled element. Moreover, data-driven
techniques associated with control systems were analyzed in
relation to nonlinearities that derive from the controlled ele-
ment dynamics and/or the external environment. As proved
by the discussed man-machine systems, the discussed algo-
rithms can be combined to increase the level of autonomy
and the usability of machines even in complex scenarios such
as connected vehicles, automatic lane changes, teleoperation,
or remote control of rotorcraft, This is done while acting
in an environment surrounded by humans, with consequent
potential issues regarding safety and adding unexpected phys-
ical interaction that requires a level of adaptability, which is
typical of human beings and constitutes one of the reasons
that motivated such modeling efforts. Despite the successes
concerning classical control theory models discussed in the
first sections, modern machine learning frameworks struggle
to capture the physiological context relying upon the human
learning process. Neural networks and algorithms based on
reinforcement learning or optimal control paradigm still have
almost a black-box approach to what concerns this aspect.
Advances in understanding the human brain are still a chal-
lenge that motivates many research activities.
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