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ABSTRACT Polycystic kidney disease (Autosomal Dominant Polycystic Kidney Disease, ADPKD) is the
most common genetic disease of the kidney, and the measurement of Total Kidney Volume (TKV) in clinical
research of this disease is essential to study the progression of ADPKD. At present, the volume segmentation
of polycystic kidneys mainly relies on doctors to manually outline the kidney boundary on the radiological
image. This process is time-consuming, labor-intensive, inefficient, subjective, and difficult to guarantee
consistency. In the research of this paper, A multi-module hybrid U-shape segmentation method is proposed
(HUNet), which introduces wavelet pooling, cascade residual, and efficient multi-head self-attention into
the U-shape structure. We use wavelet pooling instead of traditional down-sampling to reduce the loss of
detailed features, the use of cascaded residual modules can improve the ability of model feature reuse, and
the use of efficient multi-head self-attention modules can effectively capture global multi-scale information.
In the decoding process of the U-shape, the corresponding loss value of each decoder will be calculated,
and finally, the total loss value of the model will be obtained by weighted average. The method was trained
and tested on the polycystic kidney dataset provided by Shanghai Changzheng Hospital. We automatically
segmented the ADPKD in MRI images using the proposed method with a remarkably high Dice similarity
coefficient relative to the manual segmentation (mean=0.915). The percentage difference between the total
kidney volume values using manual and HUNet methods was only 0.4%. The proposed approach enables
fast and accurate TKV measurement.

INDEX TERMS Polycystic kidney, wavelet pooling, cascade residual, multi-head self-attention.

I. INTRODUCTION
Autosomal Dominant Polycystic Kidney Disease (ADPKD)
is the most common inherited disorder of the kidneys. It is
characterized by the enlargement of the kidneys caused by the
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progressive development of renal cysts. It is one of the leading
causes of end-stage renal disease (ESRD) [1]. Results from
previous studies have demonstrated an association between
total kidney volume (TKV) and renal function [2], and
researchers can use total kidney volume (TKV) as a measure
for early diagnosis and prognostic assessment [3], [4]. With
the development of Magnetic Resonance Imaging (MRI),
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FIGURE 1. Compared with healthy kidneys (right panel), ADPKD kidneys
(left panel) are difficult to segment due to severe morphological changes.
White arrows show surface cysts of different sizes and irregular surface
contours.

Computed Tomography (CT), and other medical imaging
technologies, high-resolution images of the renal region
can be acquired non-invasively layer by layer. Clinicians
perform manual segmentation of kidney region images to
segment kidney regions. However, there are inefficiencies,
poor consistency, and subjective experience in the way
clinicians manually segment kidney regions layer by layer.
It is therefore crucial to develop rapid and reliable methods
for TKV quantification. Polycystic kidneys are characterized
by their markedly irregular shape and size in comparison
to normal kidneys and sometimes surface irregularities are
prominent due to the presence of surface cysts of different
sizes. In polycystic kidney disease, as illustrated in Figure 1,
there are numerous and large cysts which may even rupture
and bleed, resulting in more image layers and irregular image
contours, thereby making outlining more challenging. For
clinicians without a background in polycystic kidney disease
research, it is necessary to undergo map recognition training
and software operation, which can be both time-consuming
and labor-intensive.

Therefore, developing fully automatic segmentation meth-
ods for fast and accurate TKV estimation remains a
challenging problem. At present, with the development of
artificial intelligence, especially deep learning has made
remarkable achievements in the field of image recognition
and semantic segmentation [5], [6], which has promoted the
application of deep learning in the field of medical image
segmentation.

II. RELATED WORK
In recent years, deep learning has been widely used in the
field of medical image segmentation, and many researchers
have made corresponding research and contributions in
kidney segmentation based on radiological images. Tradi-
tional segmentation methods usually refer to the use of
prior knowledge and imaging information to achieve target
segmentation. Pohle and Toennies [7] proposed an adaptive
region growing algorithm, which automatically learns its
homogeneity criteria according to the characteristics of
the kidney region, and designs region growth criteria
based on the selected seed points. Among semi-automatic
approaches to MRI, Daum et al. [8] used 3D random walks
while Racimora et al. [9]. proposed active contours and
morphological operations for the segmentation of polycystic
kidneys. Sharma et al. [10] proposed a random forest and

geodesic distance volume-based method for 3D segmentation
of polycystic kidneys in ADPKD patients with severe
renal insufficiency. Traditional methods generally require
human intervention. They cannot achieve fully automated
segmentation, and the processing process is cumbersome,
while the consistency is also poor.

At present, the segmentation methods based on deep
learning mainly adopt a data-driven approach, and its
performance is closely related to the quantity and quality of
data. The model is trained by constructing a loss function
so that the model has the ability to efficiently extract
image features and can automatically segment the target
area. In recent years, Convolutional Neural Networks (CNN)
have shown excellent performance in computer vision tasks
such as image classification, object detection, and semantic
segmentation. The main advantage of CNNs over many other
machines learning basedmethods (e.g., Random Forests [11],
SVM [12]) is that they do not require handcrafted features.
Initially, Long et al. [6] proposed the Full Convolutional
Network (FCN), which replaces all fully connected layers
with convolutional layers to achieve pixel-by-pixel prediction
without fixing the image size, with good generalization
performance and high segmentation accuracy without any
post-processing. The first fully convolutional neural network
with an encoder and decoder structure was proposed by
Badrinarayanan et al. [13]. Ronneberger et al. [14] proposed
the classic U-net structure, which uses a skip connection
to fuse the output features of the encoder and decoder
and achieved good results in medical image segmentation.
Drawing on the network structure of the first 10 layers
of VGG, Sharma et al. [10] designed a fully convolutional
neural network for polycystic kidney segmentation. However,
due to cystic lesions, the shape of the kidney has changed
significantly, and the kidney region cannot be well located.
Although CNN methods have strong learning capabilities
in various medical image segmentation tasks, the locality
of convolutional layers in CNNs, limits the capability
of learning long-range spatial dependencies. Transformer
architecture using the self-attention mechanism has been
successful in natural language processing (NLP) [15], with
its capability of capturing long-range dependency. Recently,
multiple methods were proposed that explore the possibility
of using transformer-based models for the task of 2D
image segmentation [16], [17], [18]. Goel et al. [19] used a
U-Net architecture with an EfficientNet encoder for accurate
segmentation of polycystic kidneys on MRI, which reduced
the time required for expert contouring. Raj et al. [20] used a
deep learning model based on attention mechanism that can
automatically segment the kidney images, and used a new loss
function called the cosine loss function that can effectively
address the class imbalance problem in deep learning models
and improve their performance. Kim et al. [21] proposed a
deep learning model that incorporates a U-Net architecture
with residual connections to achieve better segmentation
accuracy. Additionally, they introduced a loss function called
the Dice-Sørensen coefficient, which is more effective in
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FIGURE 2. The hybrid architecture of the proposed HUNet.

handling class imbalance and boundary misalignments in
segmentation tasks. The proposed deep learning model was
trained and tested on a dataset of CT scans from patients with
ADPKD.

In this work, we present a multi-module hybrid U-shape
model (HUNet), a simple yet powerful hybrid architecture
for the automatic segmentation of polycystic kidneys,
trained end-to-end, on slice-wise axial-MRI sections. The
innovations of the HUNet method are as follows: a) The
multi-scale analysis of wavelet transform [22] is introduced
into the U-shape structure, and the use of wavelet pooling
replaces the traditional Max/Mean pooling, thereby reducing
the information loss of feature maps during the pooling
process. b) We design a cascaded residual module to avoid
network degradation while improving the model’s ability to
reuse features. c) Towards enhanced quality of segmentation,
we seek to apply self-attention to extract detailed long-range
relationships on high-resolution feature maps. d) In this
paper, the HUNet segmentation model is constructed in a
multi-module cascade way, which can realize the plug-and-
play of each module.

In addition, in the decoding stage of HUNet, the output
result of each decoder is fused as the final segmentation
result of the model using weighted average. The experimental
results show that the model proposed in this paper can
effectively segment polycystic kidneys and has a high
consistency with the segmentation results of doctors. Given
the design of HUNet, our framework is expected to generalize
well to other medical image segmentation.

III. METHODS
A. NETWORK ARCHITECTURE BASED ON U-SHAPE
STRUCTURE
Fig.2 highlights the architecture of HUNet, we use
wavelet pooling, cascaded residuals, and efficient multi-head

self-attention as the basic modules of U-shape to construct
a HUNet for polycystic kidney segmentation. The encoder
pathway is similar to the typical classification network to
extract more high-level semantic feature layer by layer. Then
the decoder pathway recovers the localization for every voxel
and utilizes the feature information to classify it. These
segment outputs would be compared with corresponding
resolution labels and then used to calculate the final loss
function. Such supervision encourages the network to predict
correctly from the low-resolution feature maps which will be
up-sampled to be full-resolution feature maps.

B. WAVELET POOLING & CASCADE RESIDUALS
The two most popular forms of pooling are max pooling and
average pooling. Max pooling involves taking the maximum
value of a region and selecting it for compressing the feature
map. Average pooling involves computing the average of
a region and selecting it for a compressed feature map.
While max and average pooling both are effective and
simple methods, they also have drawbacks. Depending on
the data, max pooling can remove details in images. This
happens if the main details have less intensity than the
insignificant details. Furthermore, max pooling commonly
overfits training data [23], [24]. Depending on the data,
average pooling can dilute relevant details in the image. The
averaging of data with values much lower than significant
details causes this action [23], [24]. Figure 3 illustrates these
shortcomings using the toy image example:

The classic fast discrete wavelet transform (DWT) [25]
is an efficient implementation of the two-dimensional
discrete wavelet transform. Because wavelet transform has
the advantages of fast, simple, and no redundant infor-
mation after transformation, it is widely used in the field
of image processing [26], [27]. Two-dimensional wavelet
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FIGURE 3. Shortcomings of Max & Average Pooling.

FIGURE 4. Schematic diagram of wavelet pooling.

decomposition will down-sample the image along with the
row and column directions, so after a scale transformation, the
image size becomes a quarter of the original, thus achieving
the same effect as traditional pooling. Since the wavelet
decomposition preserves the high-frequency components lost
in the low-frequency components, it can make up for the
detailed features lost in the pooling process. Based on this
theory, wavelet pooling is used to replace the traditional
Max/Mean pooling, and the high-frequency components of
wavelet decomposition are also introduced into the U-shape
structure, so as to make up for the detailed features lost in
the pooling process. In this paper, we only use one-level
wavelet decomposition for the feature map, so as to obtain the
low-frequency and high-frequency information of the feature
map. We take the low-frequency components as the pooling
result of the feature map and add three high-frequency
components to the next layer by means of skip connections.
The wavelet pooling module is shown in Figure 4.
where LL denotes the low-frequency component,

which is an approximation of the image, HL denotes
the high-frequency horizontal component of the image,
LH denotes the high-frequency vertical component of
the image, and HH denotes the high-frequency diagonal
component of the image.

The wavelet pooling has a simple structure and can
be introduced into any CNN network architecture to
achieve a plug-and-play effect. It is mainly divided into
a low-frequency part and a high-frequency part, and the
low-frequency part obtains L through a convolution opera-
tion. The values of the three high-frequency parts are added
to obtain H. Finally, add the values of L and H again, and
keep the number of channels unchanged to get the final output
result.

In addition, this paper also improves the traditional
residual module [28] and designs a cascade residual module.
In cascaded residuals, 1 × 1 convolution is first used to
perform cross-channel information fusion, followed by an
identity mapping to achieve direct transfer of intra-layer

FIGURE 5. Cascaded Residual Modules.

information, to improve the ability of model feature reuse,
as shown in Figure 5.

C. EFFICIENT MULTI-HEAD SELF-ATTENTION MODULE
(EMSA)
The Transformer is built upon the multi-head self-attention
module [15], which allows the model to jointly infer attention
from different representation subspaces. The results from
multiple heads are concatenated and then transformed with
a feed-forward network. Since images are highly structured
data, most pixels in high-resolution feature maps within
local footprints have similar features, with the exception
of boundary regions. Therefore, the pair-wise attention
computation among all pixels is highly inefficient and
redundant. We design an efficient multi-head self-attention
mechanism (EMSA) for learning long-range dependency,
as shown in Figure 6. The key idea is to apply convolutional
layers to extract local intensity features to avoid large-scale
pretraining of attention mechanisms while using multi-head
self-attention to capture long-range association information.

The input feature map of EMSA is X ∈ RC×H×W , where
H, W are the spatial height, width and C is the number of
channels. Three 1 × 1 convolutions are used to encode X
to query, key, and value embeddings: Q,K ,V ∈ Rc×H×W ,
where c is the dimension of embedding in each head. In order
to reduce the computational complexity, a convolutional layer
with kernel size = s× s and stride = s adopted for reducing
to encode dimension.

The Q, K, V is then reshaped to Q ∈ RHW×c, K ∈ R
HW
s2

×c

and V ∈ R
HW
s2

×c. We use two downsampled convolutional
layers to encode K and V into low-dimensional embedding.

Multi-head self-attention is constructed by multiple inde-
pendent self-attention, and the output results of each
self-attention are connected on channels to achieve the
effect of integration. The proposed efficient multi-head self-
attention is now:

Attention (Q,K ,V ) = softmax
(
QKT
√
c

)
V (1)

EMSA = Conv (Concat (head1; head2, . . . ,

headh)) (2)

head i = Attention (Q,K ,V ) (3)

By doing this, we reduce the computational complexity from
O(n2c) to O(nkc), where n = (H ×W ) , k = (H × W )/s2,
and s is the sampling step size. The paper selects s = 32.
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FIGURE 6. The proposed efficient multi-head self-attention (EMSA).

D. LOSS FUNCTION
Due to the serious category imbalance problem in medical
imaging data, this paper adopts the Dice coefficient (Dice
Similarity Coefficient, DSC) [29] as the loss function of the
model, so as to overcome the imbalance problem of positive
and negative samples and accelerate the convergence of the
model. The calculation formula is as follows.

LDice =
2

∣∣Vseg ∩ Vgt
∣∣∣∣Vseg∣∣ +

∣∣Vgt ∣∣ (4)

where Vseg denotes the predicted segmentation result and Vgt
denotes the doctor-labeled segmentation result.

In order to constrain the boundary of the segmentation area,
we introduce the 95% Hausdorff Distance(HD) Loss [30],
the calculation formula is as follows. The 95% HD uses the
95th percentile of the distances between ground truth and
prediction surface point sets. As a result, the impact of a very
small subset of outliers is minimized when calculating HD.

L
(
Xseg,Ygt

)
HD

= max
[
max
x∈Xseg

min
y∈Ygt

∥x − y∥ ,max
y∈Ygt

min
x∈Xseg

∥y− x∥
]

(5)

TABLE 1. Dataset distribution.

where Xseg and Y gt denote prediction surface and ground
truth point sets.

The total loss function is:

Lseg = λLDice + (1 − λ )LHD (6)

where λ is weighting parameters to balance the different loss
terms.

In the decoding stage of HUNet, the 4 segment outputs
would be compared with corresponding resolution labels and
then used to calculate the final loss function. Finally, the
weighted average method is used to obtain the total loss value
of the entire network. The calculation formula is as follows.

Ltotal = L1seg + CosineDecay
(
L2seg + L3seg
+L4seg

)
(7)

CosineDecay =
1
2

(
1 + cos

(
tπ
T

))
α (8)

where the CosineDecay controls the second term weight, t is
the current step, T is the number of steps in the entire training,
α is the initial weight.

IV. EXPERIMENT AND RESULTS
A. EXPERIMENTAL DATA
The experimental data in this paper were collected fromMRI
images of clinical cases in Shanghai Changzheng Hospital.
The polycystic kidney region was manually outlined by two
experienced radiologists to determine the gold standard for
segmentation. The male-to-female ratio is 251:255, with an
age range between 15 and 72 years old and an average
of 41 years old. The data is in DICOM format, the pixel
spacing is 1.875mm, the slice spacing is 4mm, and the MRI
image size is 256 × 256×N (N is the number of slices
in the MRI sequence), a total of 506 cases of polycystic
kidney MRI sequences. The data distribution is shown in
Table 1. We perform head-to-tail closure and morphological
operations on the outlined contours to generate mask of the
target region. The MRI image and mask of the polycystic
kidney have the same matrix and voxel size. In order to
enable the HUNet network to focus on the learning of the
target region as well as to reduce memory consumption,
we eliminate the slice without the kidney region in the MRI
sequence. The preprocessed images and mask were finally
used for HUNet training and testing.

To mitigate overfitting and improve generalization,
we augment the data by translation, rotation, and horizontal
flipping, use adaptive histogram equalization to enhance
image contrast, and normalize the pixel value range to [0, 1].
Furthermore, slices were randomly shuffled before feeding to
the CNN. Using a sampling size of 32 (batch-size) for each
iteration.
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B. EXPERIMENTAL SETUP
The experimental configuration is as follows: training was
performed on a workstation with an Intel(R) Xeon(R)
Gold 5118 CPU@2.30GHz and 8 NVIDIA GeForce RTX
2080Ti, system is Ubuntu 20.04.1 TLS. Development tools
for Python and PyTorch deep learning frameworks. The
ranges of Dice loss and Hausdorff Distance (HD) loss
were calculated individually. Dice loss values were generally
between 0.0 and 1.0, whereas HD loss values typically fell
within the range of 0.0 to 4.0. Our objective is twofold: to
scale the losses within reasonable ranges and to ensure that
HD loss values surpass those of Dice loss. Consequently,
this enables additional constraints on the contours of the
segmentation results during the later stages of training. The
loss weights λ and α were set to 0.8 and 1. Each layer was
updated using error back-propagation with adaptive moment
estimation optimizer (ADAM) [31], which is a stochastic
optimization technique. The exponential decay rates for the
moment estimates B1 and B2 are 0.9 and 0.999 respectively,
with an epsilon of 10e-8. The learning rate for determining to
what extent the newly acquired information overrides the old
information was initially 0.0002. We initialized the weights
in the encoder and the decoder layers using the kaiming
initialization [32]. We maintain the same learning rate for the
first 100 epochs and decay the learning rate linearly to zero
for the next 100 epochs.

C. EVALUATION
In order to comprehensively evaluate the segmentation
accuracy of the model in this paper, we use the Dice
coefficient and the Jaccard coefficient as the main evaluation
indicators, which are defined as follows.

Dice =
2

∣∣Vseg ∩ Vgt
∣∣∣∣Vseg∣∣ +

∣∣Vgt ∣∣ (9)

Jaccard =

∣∣Vseg ∩ Vgt
∣∣∣∣Vseg ∪ Vgt
∣∣ (10)

where Vseg denotes the predicted segmentation result and Vgt
denotes the doctor-labeled segmentation result.

Since image segmentation can be regarded as a pixel-level
classification task, we also use Precision and Recall to further
evaluate the segmentation accuracy of the model, calculated
as follows.

Precision =
TP

TP+ FP
(11)

Recall =
TP

TP+ FN
(12)

where TP represents: the number of positive samples that
are correctly identified as positive samples; TN represents:
the number of negative samples that are correctly identified
as negative samples; FP represents: the number of negative
samples that are incorrectly identified as positive samples;
FN represents: the number of positive samples that are wrong
Number of negative samples identified. The higher the above

TABLE 2. Comparison results of different pooling methods.

evaluation indicators, the better the segmentation effect of the
model.

D. TOTAL KIDNEY VOLUME COMPUTATION
All MRI datasets were manually segmented by clinical
experts and trained personnel to obtain ground-truth annota-
tions for kidneys.We then performed amorphological closing
operation to recover potential holes within predicted kidney
regions and to remove any small isolated noise pixels wrongly
predicted as foreground pixels. Finally, TKV is calculated
as the number of foreground pixels multiplied by the pixel
spacing in x and y direction and the corresponding slice
thickness.

E. BASIS FUNCTIONS FOR WAVELET POOLING
Different wavelet basic functions will get different low and
high-frequency components after wavelet decomposition.
In order to select the optimal wavelet basis function, this
paper compares and verifies the classic Harr, Biorthogonal
and Daubechies wavelet basis functions. Therefore, we built
a simple five-layer CNN network to perform binary classifi-
cation tasks on the CIFAR [33] public dataset to compare the
performance of different wavelet basis functions, as shown
in Figure 7. Figure 7(b) contains five convolutional layers
and two Max/Average pooling layers. Since a convolution
operation is also performed in the Wavelet Pooling (WD),
three convolution layers are shown in Figure 6(a), the purpose
of which is to ensure that the model parameters of the two are
consistent. After calculation, the training parameters of the
two models are both 589762.

It can be seen from the various evaluation indicators in
Table 2 that compared with the maximum pooling and aver-
age pooling, the introduction of the wavelet pooling module
in the network can significantly improve the classification
performance of the CNNmodel. From the comparison results
of different wavelet basis functions, the use of Biorthogonal
wavelet basis functions has the greatest improvement in CNN
classification performance.

F. RESULTS
The ablation experiment of the multi-module hybrid is
shown in Table 3. Unet was utilized as the baseline,
and the segmentation results were compared upon the
introduction of various modules. The segmentation results
obtained using cascaded residuals were comparable to the
baseline results, with Dice and Jaccard indices approximately
0.894 and 0.811, respectively. Introducing wavelet pooling
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FIGURE 7. Five-layer CNN structure block diagram. (a) CNN model
embedded in wavelet pooling block, (b) Traditional CNN model.

TABLE 3. Ablation Study of the Multi-Module Hybrid on the Polycystic
Kidney Dataset. The experiment employed the Unet architecture as the
baseline and incorporated wavelet pooling and EMSA modules, resulting
in noteworthy enhancements in the model’s performance. However, the
inclusion of cascaded residuals did not yield a substantial improvement
in the model’s performance. Conversely, the integrated model utilizing all
three modules exhibited superior segmentation results on polycystic
kidney MRI data.

and EMAS modules separately resulted in substantial per-
formance improvements, with the Dice index surpassing 0.9.
Furthermore, the integration of all three modules led to a
further enhancement in segmentation quality. The experiment
conclusively demonstrated that the integrated HUNet model
improved the segmentation performance on polycystic kidney
MRI data.

For the test phase, the HUNet model segmented 50 patients
in 32.8s, an average of 0.64s per patient, compared
to approximately 30 minutes per patient for clinicians to
segment manually. We could use the proposed method to
automatically segment kidneys in MRI images with a high

Dice similarity coefficient relative to manual segmentation
(mean±SD = 0.915±0.031 in the HUNet experiment).

Table 4 shows the average segmentation results of different
models on the test set. It can be seen that the segmentation
performance of HUNet with multi-module hybrid is sig-
nificantly better than SegNet, Unet and ResUnet. Figure 8
reports the boxplots of the Dice, Jaccard, Precision and Recall
metrics for 50 patient cases. From the analysis of Fig.8, one
can see that, the proposed HUNet method achieved higher
median values and mean values than other models on all four-
metrics considered. From the data distribution of the boxplot,
HUNet has a smaller variance than other models, indicating
that our model is stable for ADPKD segmentation. To assess
the statistical significance of these results, we performed
T-test for pairwise comparisons. HUNet showed statistically
significant differences, in terms of Dice and Jaccard,
when compared against the SegNet, Unet and ResUnet
(p < 0.0001).

In assessing Precision and Recall, we treated the regional
segmentation of polycystic kidneys as a pixel-level classifi-
cation. Since the Precision-Recall (P-R) curve focuses more
on positive samples than the ROC curve, the P-R curve can
more intuitively reflect the performance of the model on a
specific dataset. Therefore, the Average Precision (AP) value
of the Area Under the P-R curve is used to evaluate the overall
average classification performance of the model on the entire
test set, as shown in Figure 9. Compared with other models,
HUNet also achieves the best AP value of 0.969.

In order to further intuitively compare the differences
between different network models for ADPKD segmentation
results, we selected some typical segmentation results for
intuitive qualitative analysis and compared them with the
gold standard manually marked by experts, as shown in
Figure 10. The red curve is the gold standard contour, and
the green curve is the contour generated by the deep model.
It can be seen that for larger MRI slices in the kidney region
(e.g., slice 24), all models have achieved high segmentation
accuracy, and the Dice coefficient can reach 0.930 or more,
but the segmentation results of HUNet are closer to the
gold standard. For MRI slices with small kidney regions and
low contrast (e.g., slices 9 and 11), it is difficult for the
segmentation model to achieve high segmentation accuracy.
From the segmentation results of difficult samples, it can be
seen that the HUNet model can also obtain relatively accurate
segmentation results when the target region is small and
low contrast, while other models are difficult to accurately
identify the kidney region. In addition, the size of the left
and right kidneys in humans is inconsistent. In slices located
at the top or bottom of the kidney, there may be kidney
tissue on only one side (e.g., slices 7 and 65), making the
model prone to over-segmentation (e.g., ResUnet, Unet, and
SegNet), while the HUNet model can accurately localize the
kidney and achieve high segmentation accuracy. We counted
the Dice value of slices with kidney tissue present on only
one side (the number of 397), and compared significant
differences using paired t-tests. HUNet showed statistically
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TABLE 4. Quantitative comparison of segmentation performance on ADPKD test dataset (mean±SD).

FIGURE 8. The boxplot of the segmentation outputs for the 50 patients in divided test dataset. Boxplots comparing Dice, Jaccard, Precision and Recall
metrics for test dataset held out for performance evaluation.

TABLE 5. Paired samples t-test were performed on Dice values for all unilateral kidney slices from the top or bottom of the kidney region.

FIGURE 9. Compare the P-R curves and AP values of different models on
ADPKD pixel-level classification.

significant differences, in terms of Dice, when compared
against the SegNet, Unet and ResUnet, as shown in Table 5.
Comprehensive quantitative and qualitative experimental

results show that in the case of the small target area, blurred
boundary and low grayscale contrast, other models have dif-
ferent degrees of under-segmentation and over-segmentation,
while the HUNet model has better segmentation accuracy.

Reconstruction the three-dimensional shape of the kidney
from the MRI sequence can accurately locate the kidney area
to obtainmore detailed information, which plays an important
role in auxiliary diagnosis. Therefore, in this paper, the
three-dimensional model of the kidney can be reconstructed
from the segmentation results of the MRI sequence, as shown
in Figure 11. The segmentation model is used to segment
each slice in the polycystic kidney MRI sequence in turn,
and then the segmentation results are stacked from top
to bottom to reconstruct the three-dimensional model of

the polycystic kidney, which provides strong support for
subsequent quantitative diagnosis. The visual result of three
example kidney subjects is presented in Figure 11. As it is
visualized, the proposed HUNet successfully segmented the
kidney, which is closer to the manual segmentation results of
doctors than other methods. Especially in the top and bottom
regions of the kidney, other methods are difficult to achieve
accurate segmentation, and our method performs better in
segmenting these difficult regions.

Finally, we performed volume measurements on kidney
segmentation from CNNs and compared automatic TKV
with real TKV in terms of accuracy and precision of
measurements.Manual and automated segmentationmethods
showed comparable performance in evaluation total kidney
volume measurements. Bland-Altman plots between total
kidney volumes generated using manual and automated
segmentation are shown in Figure 12. Bland Altman plots
were used to further determine the agreement between the two
methods. The Bland-Altman plot shows that the mean value
of the percentage difference in total kidney volume measured
by the automatic segmentation method proposed by HUNet
is closest to 0(mean=0.4%). Compared with other methods,
HUNet has higher consistencywithmanual inmeasuring total
kidney volume.

V. DISCUSSION
TKV is one of the important key indicators to evaluate
the severity of the disease in patients with ADPKD and
to predict the progression of the disease. The rapid and
accurate acquisition of TKV will greatly improve the clinical
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FIGURE 10. Qualitative comparison of different models in the ADPKD test set. Five segmentations
(green mask) of ADPKD from different slices of the same MRI sequence are shown. Corresponding
physician-annotated kidney segmentation (red mask).

FIGURE 11. Visualizing three-dimensional segmentation results of polycystic kidneys in
different segmentation models.

diagnosis and treatment status of ADPKD patients. This
study introduces a fully automated segmentation artifi-
cial deep neural network for kidney volume assessment.
It may provide an alternative to laborious, dedicated,
and expensive manual tracing, which is performed in our

clinical trials to assess kidney volume and needs high skill
currently.

This paper presented the application of U-shaped network-
based network in polycystic kidney volume measurement.
The polycystic kidney data set provided by Shanghai
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FIGURE 12. Bland-Altman plots between total kidney volumes, generated using manual and deep learning.

Changzheng Hospital was used for training and testing,
and the proposed model was compared with other models
with similar structures. As can be seen from Table 3, the
segmentation performance of HUNet with multi-module
hybrid is significantly better than SegNet, Unet and ResUnet.
The reason may be that SegNet achieves target segmentation
based on a simple encoding and decoding path and does
not fuse the underlying feature information; On the basis
of SegNet, Unet uses skip connection to fuse the feature
information in the encoder, but the feature information
between layers is not fully reused, resulting in a learning
bottleneck in the model. ResUnet uses a residual module
in the layer to overcome the learning bottleneck. However,
on the one hand, these models have the phenomenon of
feature loss during their respective pooling processes, and on
the other hand, they may be limited by the network receptive
field, making them too concerned about local information and
difficult to effectively learn global information, resulting in
difficulty in correctly segmenting the kidneys with kidneys
similar background region.

The HUNet proposed in this paper introduces wavelet
pooling into the U-shape structure to replace the traditional
pooling layer, and improves the residual module, which
further improves the ability of the model to extract feature
information by cascading residuals. The proposed EMSA
module allows us to apply Transformer to aggregate global
contextual information from multiple scales in the encoder
and decoder. The experimental results show that the HUNet
model achieves the best performance on all considered

evaluation metrics. In qualitative comparisons, this is illus-
trated in various cases inwhichHUNet accurate segmentation
difficult samples (e.g., Fig.10 and Fig.11).

Despite obtaining promising results, our research has
some limitations. Specifically, in some cases with several
liver cysts in close proximity of the kidney, the automatic
segmentation method may overestimate the kidney volume
due to the inclusion of liver cysts within the segmented kidney
region. To potentially overcome this issue, the proposed
method can be trained on 3D volumes of polycystic kidneys.
Another limitation of our study is that we only analyzed
MRI images. Future work is needed to extend the proposed
method to CT, by training the CNN and specifically tune the
parameters used during training for CT images. As future
work, the automated method can be trained on other affected
organs.

VI. CONCLUSION
This paper proposes an automatic segmentation model of
HUNet based on multi-module hybrid for ADPKD segmen-
tation of MRI images. It is characterized in that a wavelet
pooling module is designed, which introduces the multi-scale
analysis of wavelet decomposition into the CNN framework,
which reduces the loss of feature information during the
pooling process of the network. The cascade residual module
is used to further multiplex the feature information between
layers, which improves the model’s ability to extract features.
The novel self-attention allows us to extend operations at
different levels of the network in both encoder and decoder
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for better capturing long-range dependencies. Validated on
the test set, the HUNet model Dice, Jaccard, Precision
and Recall are 0.915, 0.844, 0.918 and 0.913 respectively,
thus demonstrating that the model can effectively segment
ADPKD and its evaluation metrics outperform other CNN
models with similar structures. The total kidney volumes
derived using manual and HUNet segmentation methods
were in high agreement. The percentage difference in total
kidney volume values measured using the manual and HUNet
methods was only 0.4%.

These findings demonstrate an automated segmentation
method that measures TKV as accurately as manual tracing.
The method may facilitate those studies in which TKV
measurements are needed to assess disease severity, disease
progression, and treatment response.
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