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ABSTRACT Agricultural production is on most countries’ national agenda because climate change affects
crops, fruits, vegetables, and insect infestation. Therefore, achieving maximum production results is a
challenge faced by professional growers, who have seen greenhouses as a very good option to guarantee these
results. By using new technologies inside greenhouses, farmers can reduce the damaging effect of insects on
plants and improve indoor cultivation through climate control. However, to efficiently manage agricultural
fields and greenhouses today, farmers have to apply technologies in line with Industry 4.0, such as: robots,
Internet of Things devices, machine learning applications, and so on. In this context, deploying sensors
plays a key role in collecting data and finding information supporting the farmer’s decision-making. As a
feasible solution for small farms, this paper presents an autonomous robot that moves through greenhouse
crop paths with previously-planned routes and can collect environmental data provided by a wireless sensor
network, where the farmer does not have previous information about the crop. Here, an unsupervised learning
algorithm is implemented to cluster the optimal, standard, and deficient sectors of a greenhouse to determine
inappropriate growth patterns in crops. Finally, a user interface is designed to help farmers plan both the
route and distance to be traveled by the robot while collecting information from the sensors to observe crop
conditions.

INDEX TERMS Smart farming robot, environmental monitoring, applications of intelligent sensors,
integrated sensors, the Internet of Things.

I. INTRODUCTION
Agricultural production plays a fundamental role in the
welfare of society and economic exchange between coun-
tries [1]. Therefore, food demand is continuously growing;
by 2050, farms will need to produce 70% more than the
current years [2]. Nevertheless, some production estimates
tell countries that the agriculture sector can produce only 3%
more because farmers have postponed seeding several crops
on their lands because of climatic changes (e.g., droughts
and/or floods) [3]. Furthermore, it also has diminished their
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profits. Therefore, to counteract undesirable environmental
conditions and crops damages because of infestations of
insects, in some cases, farmers use fertilizers and pesticides to
speed up the sowing and harvesting of crops. Unfortunately,
in some cases they use substances and materials without the
knowledge to manage them on a large scale [4]. As a result
of the incorrect use of fertilizers and pesticides, the quality of
the land decreases as well as the crops cultivated on it (e.g.,
fruits and vegetables, among others) lose essential nutritional
properties [5].

In this context, greenhouses are considered an appropri-
ate choice to maintain environmental conditions within a
desirable range. This prevents crops from being exposed to
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uncontrolled external factors and yields much better harvest-
ing results [6]. However, inhomogeneous and uncontrolled
conditions inside a greenhouse can cause it to fail. Further-
more, ensuring the uniformity of the climate is an important
issue since greenhouses have areas drier or more humid than
others, and irregular soils. What is worse, differences in the
type of irrigation and geographical location, added to the
problems mentioned above, can make the greenhouse unprof-
itable [7]. Moreover, if the farmer lacks sufficient experience,
his work, while carrying out the crop management process,
could be liable to err [8]. For this reason, accurate and effi-
cient monitoring and automation are keys to turning a failed
greenhouse into a profitable one.

Having said this, to avoid the above-mentioned concerns,
advanced technologies have been introduced in the agricul-
ture sector to make it more efficient and manageable [9].
These technologies have brought novel solutions that both
reduce and optimize the use of fertilizers and pesticides [10].
Among these technologies, the Internet of Things (IoT)
stands out. In short, IoT is well worth using because it allows
the connection among sensors, machines, and humans [11].
Besides, IoT constitutes the foundations of smart farming,
merging emerging technologies with machine learning (ML)
applications [12]. Nevertheless, smart farming requires sev-
eral on-site or remote sensors to collect data and find patterns
that humans cannot recognize by themselves.

Wireless sensor networks (WSN) traditionally deploy sen-
sors in situ to gather crop data. However, this rigid electronic
design requires checking the batteries constantly, and WSN
nodes can be damaged when farmers work near them [4].
The above justifies the need to apply flexible remote sens-
ing techniques using autonomous robots, because unmanned
aerial vehicles (UAVs) have to face many problems to fly
inside indoor environments [9]. In fact, autonomous robots
can move through crop lines collecting data while traveling
along planned routes [13]. In addition, they can acquire data
in specific hours, return to their initial point to recharge
batteries, and check the current performance of sensors [14].
However, they have to deal with extreme scenarios when
moving on certain wet or uneven grounds [15]. This harsh
environment could inject noise and drift to sensors when they
are collecting data. Besides, due to erroneous readings of
sensors, sensors wear, and unpredictable events, this could
be a non-easy task to detect/remove them. This task is tra-
ditionally carried out in powerful servers allocated far away
from the greenhouse [11]. As a result, this fact brings about
an open communication challenge, because greenhouses are
usually placed outside cities and do not have high-bandwidth
wireless-communication channels to send the information.
Additionally, this procedure of storing information remotely
consumes energy in WSN nodes [16].

Furthermore, working with robots requires a robust cen-
tral node to coordinate, plan routes, and reprogram tasks.
Moreover, in greenhouses, robots face maintenance require-
ments due to the fact that they use microcontrollers, sensors,
and actuators which might be worn or damaged in outdoor

activities. Therefore, farmers need to deal with managing
these existing technologies rather than manual tools [17].
Lastly, the robot itself cannot collect data, because it needs
sensors. This brings about another concern to synchro-
nize/prioritize tasks into the microcontroller [18].

This research is focused on developing an ML application
that works with an autonomous robot, which collects data
from crops in a small-medium-scale greenhouse, on showing
farmers relevant information on changes in environmental
conditions to support decision-making. This is done to detect
specific areas inside a greenhouse where crops do not grow in
optimal conditions. The above-mentioned autonomous robot
has two well-defined subsystems and planned routes to reach
an unsupervised ML application in a decentralized network
where the greenhouse lacks a stable internet connection.
The first subsystem collects data with information on the
greenhouse’s environmental conditions and sends them to
a central node by LoRaWan protocol. The second subsys-
tem is in charge of the design and control of the robot to
guarantee its correct performance while it moves through
planned crop routes. To achieve this, a proportional-integral-
derivative (PID) controller controls the DC motors that reg-
ulate the robot’s movement. The PID controller is designed
so that the robot can move over uneven terrain and in harsh
environments, traveling at low speed along crop lines and
without losing the grip provided by the chassis and tracks.

All the information is stored in a central node in charge of
training unsupervised algorithms since farmers do not have
previous knowledge of the crops. The results are presented
in a graphical user interface (GUI) without exchanging infor-
mation with the cloud or big servers. The farmer can plan the
robot route and traveling distance on this GUI, before taking
each data acquisition sample and observing crop conditions.
In addition, to compare the farmer’s decision-making, the
robot has a trained model to detect inadequate environmental
conditions in real-time monitoring. Consequently, this local
decision allows double-checking with the farmer’s experi-
ence to make future decisions.

As the main results of this research, the k-means algo-
rithm is defined as the unsupervised machine learning algo-
rithm to build three clusters. These clusters represent the
optimal, standard, and deficient growth patterns. Finally, the
main contributions of this paper are as follows:

• Here, it is presented an intelligent autonomous robot that
is capable of planning routes by using lightweight PID
control in uneven paths, without interfering with usual
cultivation activities in greenhouses.

• An entire ML pipeline is defined for facing situations in
which the farmer does not have previous data about the
crop, and needs to improve the harvesting process with
limited bandwidth to send information to the cloud. For
this reason, the central node runs the ML application,
representing a local computation.

• AGUI is developed in the central node to be an interface
between the farmer and the robot, to work together to
improve decision-making in the harvesting process.
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The rest of the paper is organized as follows. Related
research is presented in Section II. Section III shows the
design of the electronic system. Section IV presents the plan-
ning routes design and its visualization. Section V presents
the ML pipeline. Section VI shows the results of this paper.
Section VII presents the discussion of this work and the
conclusions are provided in Section VIII.

II. RELATED RESEARCH
This section shows the related work to, first, autonomous
robots in greenhouses and, second, the new trend to imple-
ment ML models with robots to make decisions locally.
The following papers presented electronic systems applied
to smart farming. However, there are still open problems,
such as implementing early stages of ML applications when
farmers have not yet applied smart technologies to improve
crop production in their greenhouses. Moreover, presenting
ML applications running on the device is still an open space
for innovations.

A. AUTONOMOUS ROBOTS IN GREENHOUSES
Smart farming by IoT devices has become an important
research area. Therefore, several researchers have presented
novel contributions. For example, Han et al. [13] presented
a data collection system to measure soil moisture to train
a prediction algorithm that activates the water repository
and keeps the crop under adequate conditions. In addition,
Singh et al. [8] showed the tradeoffs of energy use and effi-
ciency mechanisms in monitoring systems using wireless
sensor networks in greenhouses.Mohamed et al. [19] defined
a real-time self-tuning motion controller for mobile robot
systems. Jiang and Moallem [20] presented an intelligent
control system for mixing color ratios using LED lights in a
greenhouse. Additionally, in [20] proposed testbed provides
an easy-to-use plant growth system with IoT-enabled control
and monitoring features.

Furthermore, using autonomous vehicles, Durmus and
Gunes [7] presented a mobile robot to gather data from
agricultural fields or greenhouses and then send this data to a
web application. Rosero-Montalvo et al. [14] showed a design
of a quadruped robot for monitoring rose crops using super-
vised learning algorithms. In addition, [21], [22], [23], [24]
presented advances in harvesting by data acquisition schemes
in smart farming. Moreover, [25], [26], [27] were focused on
collision avoidance in the movements of the robots within the
greenhouses.

B. ML IN AUTONOMOUS ROBOTS
Fernando et al. [28] presented a greenhouse farming support
system with robotic monitoring that measures temperature,
soil moisture, humidity, and pH through a cloud-connected
mobile robot which can detect unhealthy plants by using
image processing and machine learning (ML) techniques.
Therefore, this work needs a good communication channel
to establish the connection between the greenhouse and the
cloud. Then, [29] and [30] presented systems to collect data

in greenhouses, and they used ML models to improve their
robots’ movements. Next, using new and small cameras,
Ge et al. [31], presented a fruit localization and environment
perception for strawberry harvesting robots by deep learning
techniques.

Nowadays, there are works focused on detecting disease
in specific crops. In this scenario, Fernández et al. [32] pre-
sented an automatic detection system of field-ground cucum-
bers for robotic harvesting with images. Finally, workingwith
external datasets, works such as [33], [34], and [35] have
presented ML models with high accuracy and well-defined
deep learning architectures. Despite the fact that the above-
mentioned systems have at their core architectures based
on machine learning techniques through the use of artificial
intelligence, we believe that more can still be done in terms
of providing help to farmers with little or no experience in
managing of IoT-based systems.

III. ELECTRONIC SYSTEM DESIGN
The electronic system presented in this research has been
divided into two subsystems. The first subsystem is the
autonomous robot that is designed to move within the green-
house by distance control marks. The greenhouse is digitized
to plan routes and decide the distance for each data gathering
point, which we call marks. The second subsystem is a wire-
less sensors network (WSN), which is developed to gather
and send data to a central node when the robot reaches amark.

A. AUTONOMOUS ROBOT
The robot is designed to move at low speed over paths with
irregularities, sectors with wet terrain, and obstacles such as
some small stones, lumps of earth, potholes, and so on [36],
and [37]. Therefore, a D-type (intelligent-sensory) rolling
robot approach is employed with caterpillar-shaped gears,
which gives grip to the robot and better weight distribu-
tion to avoid stalling [38], [39]. Therefore, a double bear-
ing shock-absorbing SZDoit Smart Robot type track
is used, with dimensions 27.99 × 24.99 × 11.51 cm and
1.1 kg of weight that can support up to 5 kg. The gear
motors are Metal Gearmotor 25Dx65L mm HP 12V
with 48 CPR Encoder and they are used to move the
chassis. In addition, they have a speed of 150 ± 10% rpm
at 12 V, a torque of 9.5 kg and 1.200 mA of current con-
sumption, with two quadrature encoders that use Hall effect
magnetic sensors [40].

Furthermore, as a controller (uC), an Arduino
Nano 33 BLE sense is used for the control of the robot
movements by using DC motors. Additionally, HC-SR04
sensors are used to avoid obstacles in front of the vehicle,
and a L298N dual full-bridge driver is used as a control
interface between the uC and gear motors. Moreover, the
power supply is a 12 V/9000 mA LiPo battery with its
respective charger. The diagram of the connection of all the
electronic components is shown in Fig. 1.
As a result, by combining the caterpillar-shaped gears,

chassis, and PID control, the autonomous vehicle can
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FIGURE 1. Diagram of the connection of all the electronic components of
the autonomous robot.

satisfactorily handle roads in rough situations. In addition,
ultrasonic sensors (HC-SR04) are placed on the front part
of the robot to alert obstacles, measure the distance between
the crop and the robot, and obtain the location of the robot to
make turns, which will be explained in Section VII.
It is worth mentioning that the robot uses the sensors men-

tioned above, because alternative sensors, such as LIDAR
sensors, usually use PWM signals to measure the distance
between the sensor and the object, and we do not want to
use the PWM pins for this, because we want to keep them
available for other applications that will use cameras.

On the other hand, in order to carry out the differential
motor control, the velocity of the gear motors is determined.
To do this, we take advantage of the fact that the quadrature
encoder generates two digital signals out of phase by 90◦,
due to the rotating magnetic disk installed at the bottom
of each motor. Therefore, two-pin change interruptions are
used in the Arduino Nano 33 BLE sense controller
to receive the pulses of the encoder input signal, detect the
changes in their logic states and establish the rotation of the
shaft of the motor. Next, the encoder resolution, in pulses per
revolution (ppr), is determined by using (1) [41].

R = mH sr (1)

where mH = 75 is the number of pulses per revolution,
s = 4 is the numbers of states of the encoder, and r = 20.4 is
the gearbox ratio. These data were obtained from the specifi-
cations of the manufacturer [40]. As a result, R = 6120 ppr is
the resolution of the encoder. Consequently, with the value of
R, the angular velocity is set for the PID controller design (2):

ω =
2πn
tR

(2)

where n is the total amount of Hall sensor turns in the encoder,
t = 100 ms is the sample rate, and ω the angular velocity
(rad/s).

For the tuning of controllers in a feedback control loop,
it is necessary to determine the dynamic behavior of the plant
to be controlled, which in this case is a DC motor. And in
order to do this, for convenience, very often a reduced-order
system model is used, which could also have a transport
lag. This model can be given by (3), which is the transfer
function of the plant used in this paper, because here (a) the
PID-controller design is aimed at guarantying that the system

response to a step change is monotonically increasing, while
reaching the new balance point, and (b) the microcontroller
has computational limitations.

Gp(s) =
kpe−Tls

Tps+ 1
(3)

where s ∈ C is a frequency parameter, kp is the gain of the
plant and is given by (4), Tl is the transport lag, and Tp is
determined from the closed-loop system response to a step
change in the input, which is an S-shaped curve [42].

The identification process uses information obtained from
an open-loop test, with a step input signal u(t) of size Ku and
the DC motor response y(t). Therefore, kp can be determined
by (4).

kp =
Yu
Ku

(4)

where Yu is the DCmotor response to a step change of sizeKu
in the input, and the output of the plant is given by (5) [43].

y(t) = kpKu
(
1 − e−(t−Tl )/Tp

)
χ[Tl ,∞) (5)

where χ[Tl ,∞) is the indicator function of the interval
[Tl, ∞) [44].

On the other hand, regarding the kinematic model of the
robot, this model explains the relationship between the point
of interest speed and the speed of the DC motors in a two-
dimensional reference plane. The Jacobian matrix (6) gives
the model for a point of interest (inside the robot) [45]. This
model can be graphically appreciated by digitizing the robot
and observing its displacement, in order to determine the
control point h(x, y) at the center of the vehicle (see Fig. 2).

ḣ(t) = J (q(t))q̇(t) ⇒

[
ḣx
ḣy

]
=

[
cosϕ

sinϕ

] [
u
w

]
(6)

where ḣx and ḣy are the linear velocities of the robot in the
directions of the x and y axes respectively, with orientation
vector u⃗ and angular velocity w, and ϕ is the robot inclination
angle. This can be seen in Fig. 2 using geometry functions for
the displacement in x and in y, and applying the derivative
to obtain velocities (i.e., ḣx = ucosϕ and ḣy = ucosϕ).
Additionally, the second derivative is applied to obtain the
acceleration (ϕ̇ = w).
Pruna et al. [46] establishes that for DC motors and the use

of embedded controllers, a standard PID-controller design
can be used (7).

Gc(s) = Kpid

(
τiτd s2 + (τi + τd )s+ 1

τis

)
=
Kpid (τi + τd )

τi
+
Kpid
τis

+ Kpidτd s

= Kpid (1 + δ) +
Kpid (1 + δ)

Tis
+ Kpid (1 + δ)Td s

= Kpro +
Kint
s

+ Kders (7)
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FIGURE 2. Robot-movement kinematic-modeling in the plane.

where Kpro, Kint , Kder ∈ R≥0 are the proportional,
integral and derivative coefficients, respectively, of the PID
controller [42]. Furthermore, Ti ∈ R>0 and Td ∈ R≥0
are the integral time and derivative time, respectively, and
Kpid ∈ R≥0 is the gain of the transfer function of the PID
controller built as the series connection of a PI controller with
a PD controller.

The above-mentioned parameters can be updated after
carrying out experimental tests aimed at improving the per-
formance of the PID controller, and this process can be
performed using tuning functions such as: Lambda, Ziegler-
Nichols, and Integral Absolute Error (IAE) performance
index [46], [47], [48].

The robot has a LiPo battery for the power supply. This
battery has cells with a voltage between 3 V and 4.2 V to
achieve 12 V and 9000 mA. Therefore, a voltage divider is
built at 4 V as the maximum safe value, and 2.8 V as the
minimum value. This way, the microcontroller can monitor
the voltage and send alerts if the battery is discharging.

B. WIRELESS SENSOR NETWORK
The Food and Agriculture Organization of the United Nations
(FAO) shows that the climatic variables that directly influence
the crops inside the greenhouse are temperature, relative
humidity, CO2, and amount of UV rays [6], [13]. Thus, sev-
eral brand-new sensors are available to deploy WSN nodes.
Then, precision and accuracy are relevant in selecting a suit-
able sensor, especially for CO2. However, there are other
requirements to consider, such as: size and communication
protocols. As a result, the chosen sensors were as follows: (1)
The VEML6075 UVA / UVB / UV Index Sensor. This sensor
has a photodiode that measures ultraviolet (UV) radiation
levels, A (320 - 400 nm) and B (280 - 320 nm), allowing
the calculation of the UV index with a variation of ± 10 nm
and that sends information using I2C communication, with a
resolution of 16 bits. And (2), for the measurement of CO2,
humidity, and temperature the SCD30 sensor was used. For
the measurement of CO2, the accuracy of the SCD30 sensor
is ± 30 ppm ± 3% (25◦C, 400 - 10000 ppm). The humidity
has a variability of 3% on a scale from 0 to 95%, and the
temperature has a variability of 0.5◦C, with measurements up
to 70◦C.

FIGURE 3. Electronic system design.

FIGURE 4. Planned routes of the robot in a digitalized environment. Red
marks: data collecting points. Black marks: turns’ marks.

The above-mentioned sensors were chosen based on func-
tionality, features, and usability requirements. For example,
they have the I2C interface to send data to the controller. Also,
they have proper libraries to calibrate them and also put them
in sleep mode.

In addition, the SparkFun LoRa Gateway device was also
used as a controller, because it is a powerful 3-network capa-
ble device thanks to an onboard ESP32 WROOM module
and an RFM95W LoRa modem. The RFM95W handles the
915MHz band, while the ESP32 takes care of Bluetooth and
WiFi capabilities. The LoRa Gateway can act as either a
gateway (hence the name) or a device, but not both simul-
taneously. Finally, the Arduino Nano 33 BLE sense is the
controller that was used for the electronic design of the robot.
These microcontrollers communicate between them by serial
communication. Fig. 3 shows the block diagram of the pro-
posed electronic system.

IV. ROUTES PLANNING WITH LoRa COMMUNICATION
Error-free PID control operation allows planning the robot
route in a two-dimensional chart. In this scenario, the farmer
can determine the distance of each data collection point
regarding the crop type. For example, the farmer can config-
ure the robot to collect data every 2 meters for small crops
or every 5 meters for large crops. In addition, knowing the
dimensions of the greenhouse and the beds of the crops,
we can decide on ‘‘marks’’ to make turns and keep collecting
data on the rest of the crop. Additionally, using a Python
interface developed in this research, the robot and its char-
acteristics were digitized to test the route and the accuracy of
reaching the data collecting point or the turns’ mark. Fig. 4
shows a simulation of the designed robot.
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The energy needed to send data through the sensor node
to the central node is closely related to how long the data is
in the air. Therefore, this parameter allows for defining the
transmission power of the network, the wireless protocol type
to be used, and the processing time required to send informa-
tion [49], [50]. The protocols with a connection range of one
kilometer to cover the distance between the greenhouse and
the central node are LoRaWan and ZigBee. However, ZigBee
is a restrictive protocol under design conditions since it is
necessary to implement additional hardware. Consequently,
we use a SparkFun LoRa Gateway with a U.FL con-
nector. Additionally, this protocol works in the 868 MHz
and 915 MHz band [51]. To define the transmission power
of each WSN node, the calculation of time on the air (ToA) is
given by (8). Lastly, the central node is a Raspberry 4.0 with
a SparkFun LoRa Gateway to receive data from the
robot; it is placed in the delivery room, which is 400 meters
from the greenhouse.

ToA = TT [100 − (duty cycle)] (8)

where TT is the processing time, which in this microcon-
troller is 200 ms, and the duty cycle is considered to be
just the 1% of the entire firmware. In this case, a ToA =

19.8 s is defined as the send time between messages to
avoid collisions. We define Ptx = 20 dBm as the transmis-
sion power, Ga = 10 dBm as the antenna gain, and Pc =

5 dBm as the cable loss. Then, a link power of 25 dBm
is obtained with a transmission speed between 0.3 Kbps
and 22 Kbps.

V. ML PIPELINE
This section shows the ML data analysis to support the
farmer’s decision-making. Therefore, given that the green-
house does not have previous information about the crop,
unsupervised learning was the suitable solution.

A. DATA COLLECTION
Given that the robot is designed to collect data from the
environmental conditions of the crops, with the farmer’s
support, the central started to store samples that the robot
sends by LoRa. The samples were taken in three different
schedules. First, in the morning, after the water pump sprays
the entire crop. Second, in the afternoon, when the crop
receives the maximum ray UV. And third, at night, when the
temperature decreases until its minimum value. Therefore,
there are 40 data collection points around the crop and 5 turn
marks. The WSN collects 10 consecutive samples in each
mark to save the average value to reduce sensor errors and
DC peaks. As a result, when the robot finishes its day route,
the central node receives 120 samples. The Ruscus crops,
which are large green leaves (around 1 meter) to add to the
flower buckets, need 6 months to harvest. Therefore, the data
collection stage took 4 months to have time to resolve the
crop’s issues. As a result, 13.440 samples were taken of each
variable, representing 215 MB.

B. MODEL DESIGN
One of the principal challenges in embedded systems is the
ability to recognize features to make groups with similar
characteristics. Therefore, k-means method aims to parti-
tioning a set of n observations into k groups with lightweight
computational cost. Due to its straightforward method, the
centroids of each cluster could be easily imported into robots
with constrained hardware [38]. Each value of n belongs
to a group of k whose mean distance value is the clos-
est [52]. However, the randomness of the k values can lead
to different forms of clustering. Therefore, it is necessary to
properly define its value to group only the data containing
the largest number of similar attributes. Consequently, the
version of k-means ++ allows eliminating this problem by
analyzing a set of observations (x1, x2, . . . , xn), where each
observation is a real d-dimensional vector, and the k-means
grouping aims at dividing the n observations into k ≤ n sets
S = S1, S2, . . . , Sk . Here, the variability of the observa-
tions is measured by using the within-cluster sum of squares
(WCSS) [53].

C. MODEL EVALUATION
k-means algorithm allows making groups division
approach quantitatively. Hence, the WCSS metric measures
the average square distance of all data to the centroid, which
determines the affinity of the groups. As a result, the distance
between them can be observed, and the value of k can be
better chosen. Therefore, we create weekly training tests to
define the k value (i.e., cluster numbers) with daily data.
We tested the k value from zero to ten, andwhenWCSS began
to level off (elbow method). As a result, k = 3 was chosen as
a suitable parameter. This process was carried out weekly to
confirm that the parameter remained constant. Then, with the
support from related researchers in the agricultural sector and
the farmer, it was possible to establish which group belongs
to each data sample for the clusters. Here, it is important to
point out that the k-means algorithm was developed and
tested in a Python environment due to the good libraries it
has for this purpose.

VI. RESULTS
The autonomous robot’s outcome aims to collect data
from the greenhouse to represent three different levels of
the environmental conditions of the crops to support the
farmer’s decision-making. This section shows the PID control
designed to control DC motors while the robot moves around
the greenhouse. Therefore, the data collection process starts
by powering the robot with one switch attached to the elec-
tronic board. Then, the robot automatically sends messages
to the central node to establish wireless communication. Once
the communication is set, the farmer can put the robot on
the initial mark inside the greenhouse. Then, the robot moves
around the crop collecting data and sending data to the central
node to visualize those data. When the robot reaches the
final mark, since it stores the mark numbers that it needs to
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FIGURE 5. Some results of the tuning functions tests (Z-N stands for
Ziegler Nichols).

reach, it sends the final payload with an additional message
indicating that the job is done. Finally, the robot goes to sleep
mode until awake again if the central node sends an activation
message from the GUI.

A. PID CONTROL
The reaction time of the DC motors can be fine-tuned using
the previously described tuning functions, where a PID con-
trol is applied. The transfer function of each DC motor is
given by (9), and it is necessary to determine the best tuning
function for the case under study. In other words, it is desired
to determine which tuning function best adjusts the parame-
ters of the PID controller (i.e., Kpro, Kint , and Kder ) to obtain
the best performance from the motors.

Gp(s) =
1.8785 e−0.0897 s

0.0966 s+ 1
(9)

Therefore, tuning function tests were carried out to know
the response of the DC motors (see Fig. 5(a)) in several
real-life trial experiments. In this research, the Lambda and
Ziegler-Nichols tuning functions provided the best
results in the linear motor drive [46]. However, in curvilinear
paths, which depend on better motor control, when simulat-
ing a sinusoidal trajectory, the Ziegler-Nichols tuning
showed amore significant number of errors in dead time tests.
On the other hand, the Lambda tuning showed a better repre-
sentation of the path and fewer errors in the system activation.
The curvilinear path results can be seen in Fig. 5(b). Finally,
Table 1 shows the PID controller parameters obtained from
the above-mentioned fine-tuning methods.

B. ML PIPELINE
Agricultural experts take the collected data and annotate their
corresponding cluster’s names. They mention the cluster’s

TABLE 1. Parameters of the PID controller.

FIGURE 6. Graphical mapping by means of the k-means algorithm. Blue:
standard, green: optimum, and red: deficient.

characteristics, based on their knowledge and industrial tools,
to compare the results with high-level farming machines.
Furthermore, they recommend setting the cluster’s names as
follows: 1) standard (good humidity and temperature with
moderate UV rays exposure levels and normal CO2 emis-
sions), 2) optimum (good humidity and temperature with
low UV rays exposure levels and normal CO2 emissions),
and 3) deficient (high humidity and temperature with either
low or high UV rays exposure levels and either low or high
CO2 emissions). Then, we export the centroids to the robot
to decide the corresponding cluster to each mark. This model
is evaluated weekly to refresh the centroids and check the
decision capacity of the robot. In real scenarios, the robot
showed to choose the correct cluster over 90% of the times,
coinciding in good agreement with the true farmer experience
in each decision. Fig. 6 shows the graphical result of the
k-means algorithm in the greenhouse crops of this paper.
However, this local decision from the robot allows the farmer
to understand the differences between activating the water
pump in the exact schedules and different ones.

C. GUI AND WSN
To ensure the data obtained from the robot can be considered
trustworthy, we compared their values with reference-grade
instruments. For instance, for the CO2 variable, the Testo
315-3 - CO and CO2 meter took samples simultaneously with
the WSN inside the greenhouse. This comparison demon-
strated that the data obtained from theWSN had a 5% error in
representing the environmental conditions of each variable.
Then, the communication channel is checked to avoid los-
ing data. Therefore, the Received Signal Strength Indicator
(RSSI) is set into the central node to measure the communi-
cation power. We figured out the longest distance the robot
can send information is around 1.4 km, where the central
node received packages from the WSN between −80 dBm
and −90 dBm of power, and the package took around 120 ms
to reach the central node. As a result, LoRa communication is
enough to covert the greenhouse. The package’s payload has
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one array split by commas of each environmental variable,
the battery power, the decision made by the robot, and the
communication channel metrics.

The payload is processed by the central node (Raspberry
Pi), which also runs the GUI to show the farmer relevant
information about the crops’ environmental conditions, the
battery, and the transmission status. The data is shown in bar
graphs. Once the robot reaches the final mark and the last
payload is sent to the central node, the GUI will show the
greenhouse sections where the environmental conditions are
optimal, standard, or deficient. The information will store
on the device for further data analysis. Lastly, the farmer can
set the gap between marks for the following data collection
round. The GUI is shown in Fig. 7.

D. PROPOSED SMART-FARMING ROBOT FOR THE
HARVESTING DECISION SUPPORT
One switch turns on the robot that is directly connected to
the battery and the voltage regulator. The WSN and robot
controllers communicate via a serial protocol, where the robot
sends a message to the WSN node saying that it has found a
data collection point. Next, upon receiving the message, the
WSN node activates the sensors and collects data showing
measurements of environmental variables in the greenhouse.
After doing this, the electronic system makes a decision
and sends it together with the obtained data to the central
node to be displayed in the GUI. Finally, the WSN node
responds to the robot with a message telling it to continue
to the next mark. In this way, the electronic system has real-
trial measurement results on the environmental condition of
the greenhouse. Then, we tested the battery consumption to
check how long the robot could work without recharging its
battery. It took the robot 2 hours to go down all the green-
house crop paths (2500 square meters), following previously-
planned routes, and it was found that the robot could do the
above four times (8 hours) on a single charge.

Finally, when the robot sends a low-battery alert signal, the
farmer takes the robot to his office to charge its battery by
using a battery charger. In addition, he does not need to take
the battery out of the robot to charge it, because the battery has
two terminals that connect to the charger. In short, it has two
banana plugs (colored red and black) to connect the charger to
the battery. Figure 8 shows the proposed robot while working
in a greenhouse.

VII. DISCUSSION
The main concern about the autonomous robot is controlling
its navigation around the greenhouse without losing its posi-
tion to reach the next mark. Even when the lightweight PID
control correctly works in controlled environments, it might
fail in unbalanced paths or when cultivation beds are not
appropriately aligned between them in trial-real scenarios.
Therefore, HC-SR04 ultrasonic sensors play a relevant role
in checking the distance between the crop and the robot,
especially when the robot needs to make turns. One sen-
sor is placed on the left top of the robot at 45 inclination

degrees, and the other is placed on the right top at 90 degrees.
The ultrasonic sensor’s data sheet specifies 15 error degrees.
Therefore, Fig 9 shows how the sensor can determine the
expected distance (Z2) and its possible errors (Z1 and Z3).
Those distances create rectangle triangles with the crops and
robot (XYZ1, XYZ2, and XYZ3). Following the same scenario,
the next ultrasonic sensor makes the isosceles triangle with
the greenhouse’s border, and the robot (C1C2A), segment
AB is the expected distance. The robot is configured to
work 40 cm from the crops (segment XY ); therefore, using
(10)-(15) to get Ẑ , X̂Y and ÂB by taking three samples consec-
utively from each sensor, representing the average distance
obtained by considering the sensor’s degrees of error.

Using (12)-(15) and the following values: β = 45◦, α =

7.5◦, XY = 40 cm and AB = 100 cm, Z1, Z2, and Z3 were
obtained to get Ẑ , which is 59.91 cm. Compared with the opti-
mal value Z2 = 63.63 cm, the average error is around 4 cm.
Then with the Ẑ value, the robot can get the distance to crops,
which has an error of ± 2.36 cm of the initial settings (XY =

40 cm). The limited value is AB to detect the greenhouse’s
border, which the sensor needs to recognize. However, with
the sensor’s error readings, it can detect the ÂB, which is
99.4 cm instead of 100 cm. This data is compared with the
turns’ marks to update the robot’s location and check its
error. Besides, the sensor on the robot’s top left could help
recognize the crops’ end and update its actual location with
the next turn’s mark. In real-trial experiments, the robot could
keep the 40 cm distance by sending commands to the PID
control to update the motor velocity and return to the planned
route. Furthermore, by updating the robot’s location with
ultrasonic sensors, the average error was 10 cm to the mark’s
turns, which is acceptable in the working conditions that the
robot is facing. Lastly, the farmer must place the robot at a
specific starting reference point within the greenhouse before
beginning to collect data. From there, the robot knows on
which mark it is located and the path it has to travel. The
robot then follows the established path and the GUI helps the
farmer to make decisions about the harvest process.

Z1,3 = XY/cos(β ± α) (10)

Z2 = YX/cos(β) (11)

Ẑ = (Z1 + Z2 + Z3)/3 (12)

X̂Y = Ẑ · cos(β) (13)

C1,2 = AB · sin(α) (14)

ÂB = (AB+ C1,2)/3 (15)

To better understand the functionalities of the proposed
robot and the novelty of this work, we will now compare our
device with others that are also intended to provide industrial
solutions. In short, smart-farming robots such as Carbon
Robotics and Tortuga Agtech provide different AI solutions
to help the farmer monitor both crops and the harvesting
process. From our point of view, these robots have very good
characteristics. However, we think that to use them in the
specific application to which we have given a solution in

57850 VOLUME 11, 2023

https://carbonrobotics.com/
https://carbonrobotics.com/
https://www.tortugaagtech.com/


P. D. Rosero-Montalvo et al.: Smart Farming Robot for Detecting Environmental Conditions in a Greenhouse

FIGURE 7. GUI to monitor crop conditions in greenhouses by the autonomous robot.

FIGURE 8. Prototype of the proposed-smart-farming robot while
collecting data in a greenhouse.

FIGURE 9. Ultrasonic sensors functionality explanation.

our research, the farmer would have to make changes to
be able to adapt to the characteristics of the robots. These
changes would be due to the size of these robots and their
functionalities. This could be expensive and might reduce the

profit of the farmer. In addition, the above-mentioned robots
need more maintenance from experts, which also increases
the production cost.

In [7], the prototype of a mobile robot to collect data
in agricultural fields was shown, and the motivation of
that research was to combine precision agriculture, IoT and
robotics. However, according to the authors of [7], the work
presented in that paper needs to be further developed in dif-
ferent areas. For example, its design should be improved as an
autonomous system that canmaneuver in the fields. Addition-
ally, to that system must be added capabilities for precision
agriculture and mapping of agricultural fields, using sensors
that, according to the authors of [7], could be expensive and
fragile, such as a spectrometer. Furthermore, as future work,
the authors of [7] will intend to make their design robust
and reliable using software engineering.Moreover, to provide
the needed information properly and visualize the data, the
design proposed in [7] requires a good website. Finally, in [7]
good internet connection is needed to share data to the cloud,
which is not an easy requirement to fulfill in greenhouses.

On the other hand, the smart-farming robot presented in our
research does not have most of the aforementioned problems.
In addition, it is able to plan routes without interfering with
normal greenhouse cultivation activities and can help farmers
who do not have previous crop data to improve the harvest
process. Furthermore, the proposed system has a GUI that
helps farmers to improve decision-making in the harvest
process and that does not need to exchange information with
the cloud or big servers.

Other works aimed at detecting the growth of agricultural
products, their location, and the perception of the environ-
ment are [31], [32]. On the one hand, these works focus on the
use of artificial intelligence techniques to process images in
agricultural applications. But on the other hand, they neither
take into account the design of the smart-farming robot nor
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the design of the sensor network needed to measure the
climatic variables that, according to FAO, directly influence
the crops inside the greenhouse (see Section III-B). In short,
our novelty also lies in how two cutting-edge technologies can
be combined (i.e., ML models and farming robots) to interact
with the farmer without previous information about the crop
and help him to achieve success over a long time. Moreover,
designing a lightweight PID control to run into small robots
and an ML model with a small memory footprint is a new
challenge that this work fulfills.

Finally, we would not like to end this section without
highlighting that all the papers that have been discussed here
present devices that are very good, which, of course, have
advantages and disadvantages. And that these papers, like
many others, show that worldwide there is a great interest
in improving agricultural production using robotics, smart
sensors, IoT, artificial intelligence, and so on.

VIII. CONCLUSION
The main conclusions of this paper can be summarized as
follows:

• The wireless sensor network reached the objective of
acquiring valuable data from the greenhouse. Indeed,
taking the average of ten samples reduces the chance
of getting extreme observations significantly. Therefore,
the ML model can describe the actual environmental
conditions in the greenhouse.

• The designed PID controller gives the opportunity of
planning straight and curvilinear trajectories that adapt
to the shape of the crop. In addition, having an interface
allows excellent flexibility in using the different prod-
ucts that can be grown in the greenhouse.

• For the specific greenhouse where the smart farming
robot was tested, the proposed data analysis effectively
determined the zones of the greenhouse where the envi-
ronmental conditions affected the crops. Specifically,
the deficient zone was in the location near the door
and water pump. Farmers often do not close the door
correctly, and those parts of the crop are directly exposed
to the sunlight. Moreover, in some cases, it is well-
known that the water pump is faulty, and consequently
it continues supplying water to the crop, even after the
pump key has already been closed.

As future works, we plan to build an autonomous robot
with computer vision to give the farmer more information
about his crops and the possibility of activating water pumps
using smart systems decisions based on efficient data process-
ing techniques.
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