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ABSTRACT Cross-organizational process mining aims to discover an entire process model across multiple
organizations where their identifier (ID) systems are not managed uniformly, and each organization has
an independent ID system. Cross-organizational process mining has been gaining popularity as information
systems increase in complexity. However, previous methods have limitations in that they do not work well for
event logs that contain only common items, or cyclic orchestrations, which indicates that the model contains
loops. In this paper, we propose an accurate cross-organizational process mining technique based on a step-
by-step case ID identification mechanism that uses only common items in event logs and can handle cyclic
orchestrations. Step-by-step case ID identification repeats the following steps: 1) identification of case IDs
based on activity connection of adjacent event pairs, and 2) extraction of additional activity connections by
leveraging the newly identified case IDs. We alternately identify the most probable case ID pairs and remove
events belonging to these identified case IDs from the event log, which contributes to extracting additional
activity connections and narrowing down the candidates of case ID pairs. Evaluation using real-world event
logs showed that the proposed method generates the process model with more than 98.4% precision and
more than 94.2% recall for two datasets, outperforming previous methods.

INDEX TERMS Process mining, cross-organizational process mining, integrating event logs, identifying
case IDs.

I. INTRODUCTION
Process mining is a technology that visualizes a business
process from an event log generated by information systems
like e-commerce systems. It is essential in information sys-
tem digital transformation (DX). The insights provided by
process mining make the operation process more transpar-
ent and efficient, and help in the governance within ESG.
Process mining outperforms manual process visualization
in terms of cost, speed, comprehensiveness, and objectivity
[1]. Recently, process mining has been used not only for
improving operations by understanding a process model [2],
[3] but also for the development of new information systems
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and business process outsourcing [4]. It has steadily been
used in practical applications [5], [6], [7].

Cross-organizational process mining, a technology for
discovering process models that span multiple systems,
is becoming increasingly appealing as information systems
evolve. In cross-organizational process mining, case identi-
fiers (IDs) assigned to events in the same trace vary from
organization to organization, that is, each organization has its
own ID system, making inappropriate to use general process
mining techniques as is. It is recognized as a pressing issue
and is even positioned as an ‘‘important challenge that needs
to be addressed’’ in the Process Mining Manifesto [3].

Much of the previous research on cross-organization pro-
cess mining [2], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19] uses items that are not necessarily recorded in
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the common event log, even though the only items that are
always included in the event log are the timestamp, case ID,
and activity name [20], [21], [22]. Bayomie et al. proposed
event-case correlation methods that use activity names and
timestamps in addition to an underlying process model as
an input [23]. The methods following the above method
also require an underlying process model as an input [24],
[25]. Pourmirza et al. proposed more general methods [20],
[21] based only on timestamps and activity names. However,
these two methods have some limitations. First, they do not
work well for a cyclic orchestration, which means that the
model contains loops. Second, threshold values must be set
by human operators. Further, there is room for performance
improvement.

To address these issues, we propose step-by-step case ID
identification based on activity connection, which is 1) highly
accurate, 2) based on only three common items, that is,
timestamps, case IDs, and activity names in an event log, and
3) applicable to cyclic orchestrations. Instead of proposing
a new type of process model or process mining technique,
we converted a cross-organizational process mining prob-
lem into a single-organization process mining problem by
identifying case IDs and integrating event logs. This study
assumes event logs are complete and error-free. However,
even in cases where this assumption does not hold, event
logs generated by our proposed method can be applied to
process mining techniques [26], [27] for a single organization
to generate a sound process model.

In order to achieve cross-organizational process mining
from common items, the following steps are repeated step-by-
step: 1) identification of case IDs based on the activity con-
nection of adjacent event pairs, and 2) extraction of additional
activity connections by leveraging the newly identified case
IDs. In other words, we alternately identify the most probable
case ID pairs and remove events belonging to these identified
case IDs from the event log. Thismakes the additional activity
connections extracted and the candidates of case ID pairs
narrowed down. In addition, by further extracting new activ-
ity connections and time differences based on identified case
IDs, we can identify case IDs under more reliable conditions.

Our study primarily focuses on horizontal cross-
organizational process mining and assumes that event logs
have no missing or incorrect data. Our method is built on the
assumption that the activities sharing the same case ID tend
to have a smaller time difference than those with different
case IDs. The proposed method can be applied to processes
where this assumption holds. Additionally, our method uses
only three common attributes to determine the presence or
absence of a connection between activities: case ID, activity
name, and timestamp. Hence, our approach is applicable to
heterogeneous event logs, provided the attributes correspond-
ing to the case ID, activity name, and timestamp are known
for each log.

We evaluated our proposal on the dataset used in the Busi-
ness Process Intelligence Challenge (BPIC) 2012 [28] and
2017 [29], which are the event logs of loan applications of

Dutch financial institutions. Correct process models are not
provided in these datasets, but unified case IDs are. In this
study, we generate a process model based on the unified case
IDs by using Disco [30], which is a software for general pro-
cess mining provided by Fluxicon. Additionally, we regard
the generated models as a baseline for evaluation, which is
the same as previous research [21]. The evaluation results
show that our method outperforms previous research by gen-
erating the process model with more than 98.4% precision
and more than 94.2% recall for both datasets. Our code is
publicly available at https://github.com/maharu-39/step-by-
step_case_id_identifier.

The rest of this paper is structured as follows: In Section II,
we summarize previous research. In Section III, we explain
the basic concepts of process mining. In Section IV, we pro-
pose a new case ID identification mechanism to achieve
cross-organizational process mining. In Section V, we apply
our approach to real-world event logs and evaluate their per-
formance. We also compare the obtained results with those of
previous research [20], [21] and discuss the effectiveness of
ourmethod. In SectionVI, we conclude this study and present
a roadmap for future work.

II. RELATED WORKS
A. CROSS-ORGANIZATIONAL PROCESS MINING WITH
ADDITIONAL ITEMS
Q. Zeng et al. proposed a method based on the data structure
called RM_WF_Net, which uses resource information and
message information [8]. This method has been extended to
consider privacy [9] and heterogeneous relationships between
organizations [10]. Recently, methods for jointing process
models for an entire process model using information about
the messages exchanged via communication activities are
proposed [2], [11]. However, thesemethods can only be effec-
tive in information systems that specifically record resource
and message information in the event log. In addition, some
proposedmethods apply artificial immune systems [12], [13],
genetic algorithms [14], rule-based algorithms [15], [16],
linguistic processing of event log entries [17], [18], and the
similarity function between events [19]. However, the above
methods are restricted in that they cannot function well when
the event logs lack additional items. The event-case corre-
lation method is proposed by Bayomie et al [23]. However,
it requires an underlying process model as an input, and the
following methods [24], [25] have the same drawback.

B. CROSS-ORGANIZATIONAL PROCESS MINING WITH
ONLY COMMON ITEMS
S. Pourmirza et al. proposed correlation mining [20] which
aims to visualize process models across organizations based
on only timestamp and activity names. Several types of con-
sistent process models are first generated, with the condition
that the number of cases that flow into and out of an activity
be equal to the number of events that occur for that activity,
except for the process model’s starting and ending points.
Next, the most appropriate process model is selected using
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two indices called the P/S matrix and Duration matrix. These
matrices are square matrices of order n, where n represents
the number of the kind of activities. P/Suv denotes the ratio
of the cases where events from Activity u occur before events
fromActivity v. The larger P/Suv is, the more likely it is that u
and v are connected, that is, in the same trace. Duv represents
the average time difference between u and v. If Duv is small,
u and v are likely to be connected.

Moreover, S. Pourmirza et al. extended correlation mining
by proposing a correlation miner [21], which not only visu-
alizes the process model but also identifies case IDs, that is,
match a certain case ID in one organization to a certain case
ID in another.

However, these two methods have some limitations. First,
indicators do not work well for cyclic orchestrations, because
P/Suv focus on the overall relationship of u and v and don’t
function well. Furthermore, threshold values must be set
by human operators. Further, there is room for improving
performance.

III. PRELIMINARIES
A. EVENT LOGS
Data about the execution of a process is recorded as an event
log L [31], and an event ei is a record in an event log, where
i represents an index. In this paper, i and j are used as indices
in the event log. Each sequence of activities is referred to as a
trace, and a unique ID is assigned as a case ID to identify
the trace. It is assumed that ei is described by at least the
following three elements [20], [21], [22].

• Activity name: Name of the operation.
• Case ID: ID to identify the trace.
• Timestamp: Time when the activity was completed.
An example of an event log is shown in Table 1. Thus,

an event ei is expressed as follows:

ei ∈ A× C × T , (1)

where A is the set of activities, C is the set of case IDs, and
T is the set of timestamps.

The activity, case ID, and timestamp of an event ei are
represented as eAi , e

C
i , and eTi , respectively. On the other

hand, a certain activity like ‘‘send an e-mail’’ is repre-
sented as Ap, where p is an activity name. In this paper,
p, q, and r are used as activity names. Similarly, a certain
case ID like ‘‘40’’ is represented as Cx , where x is a case
ID number. In this paper, x and y are used as case IDs.
As can be seen, the activity name contains the contents of the
operation, such as ‘‘send an e-mail’’. Table 1 contains two
traces, named C40 and C50. Here, C40 refers to the flow of
⟨Task1, Task2, Task4, Task5, Task3⟩, and C50 refers to the
flow of ⟨Task1, Task2, Task3⟩.

In cross-organizational process mining, case IDs are
assigned to events by each organization independently.
In other words, it differs from general process mining in
that case IDs are not unique. To distinguish such case IDs
from common case IDs, we call case ID ‘‘local case ID’’

TABLE 1. An example event log.

FIGURE 1. Process model generated from Table 1.

TABLE 2. An event log of organization α.

in Table 2 and Table 3. In Table 2 and Table 3, organi-
zation α and β work together. Though the procedure is
⟨Task1, Task2, Task4, Task5, Task3⟩, case ID is not
unique across organizations. Note that case IDs are not com-
pletely removed. Therefore, it is beyond the scope of our
proposal that no case IDs are allocated, such as when they
are extracted from non-process-aware information systems,
or when case IDs are recorded in the log erroneously.
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TABLE 3. An event log of organization β.

FIGURE 2. Process model generated from Table 2 and Table 3.

In this study, we show the log integrated by our proposal
as follows:

α + β, (2)

(α + β) + γ, (3)

where α, β, γ are organization names. (2) means the log of α

is integrated into the log of β. (3) means the log of α is first
integrated into the log of β, and then the integrated logs of α

and β are integrated into the log of γ .

B. PROCESS MODEL
A process model is the flow of all system operations obtained
through process mining. It specifies which activities have
a valid execution order [32]. There are three typical repre-
sentations of process models: directly-follows graph [33],
petri nets [34], and BPMN [35]. A directly-follows graph is

the simplest representation of process models. In a directly-
follows graph, each node represents an activity and each edge
represents the flow. Petri net and BPMN are higher-level rep-
resentations for the effective expression of process models.
In Section V, we create a directly-follows graph from an
integrated event log by Disco [30] to evaluate the effective-
ness of our method compared with that of previously reported
methods.

The example of a directly-follows graph created from the
event logs in Table 1 is shown in Fig. 1An appropriate process
model should represent both traces. For example, in Fig. 1, the
model represents both traces which are assignedC40 andC50.
Fig. 2 is a process model created from Table 2 and Table 3,
which shows an entire process across organizations.

IV. APPROACH
This method aims to identify case IDs for logs recorded in
different organizations. Process mining algorithms designed
for a single organization can be applied to the integrated log
created by case ID identification to visualize a process.

Our proposal focuses on two organizations at first. Then,
to visualize a process that spans more than two organizations,
an overall process model can be generated by repeating this
method. The final model reflects processes that span all the
organizations.

Fig. 3 shows an overview of the main case ID identification
mechanism. Here, two organizations, named orgA and orgO,
are used as examples. First, in the left section, two activities
from different organizations that occur consecutively and
within a short period are determined to be connected, that
is, occurring within the same trace (Section IV-A). Next,
in the middle, when activities that are considered to be con-
nected occur consecutively, the case ID in one organization
is matched to the case ID in another, that is, case IDs are
identified (Section IV-B). Finally, by inspecting the process
of the identified case IDs, the connection between the activi-
ties whose time difference is short is extracted (Section IV-C).
The information obtained is displayed in the upper right
corner. This information also helps identify the case IDs in
the bottom right corner (Section IV-D). The case IDs are
gradually identified by repeating the above steps for the
unidentified event logs. The process is terminated when there
are no more identifiable case IDs, that is, when all case IDs
have been identified, or when the remaining case IDs cannot
be identified with high reliability (Section IV-E). Further-
more, the above steps are performedwithmultiple thresholds;
therefore, the appropriate thresholds are automatically set.
Then, edges regarded as noise are removed (Section IV-F).
When applied to more than two organizations, the bias of the
integrated order is removed (Section IV-G).

A. IDENTIFICATION OF THE CONNECTION OF ACTIVITIES
In the first step, two activities from different organizations
that occur consecutively and with a short time difference
threshold named th1 are determined to be connected, that is,
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FIGURE 3. Overview of the main case ID identification mechanism (Section IV-A∼IV-E).

belonging to the same trace, to provide a highly reliable clue
for case ID identification.

In detail, the first step is to combine the event logs of both
organizations and sort them in time order. Next, if a pair of
activities of adjacent events occur within th1 of each other,
the number of occurrences is counted. The count of activity
pairs under the above conditions is as follows:

N1(ApAq) =

L−1∑
i=1

f1(i;Ap,Aq), (4)

f1(i;Ap,Aq) =

 1 if


eTi+1 − eTi ≤ th1
eAi = Ap
eAi+1 = Aq

0 if otherwise

, (5)

where N1(Ap,Aq) represents the count of ⟨Ap,Aq⟩, and L
represents the number of events in a log. Pairs of activi-
ties counted that exceed a certain threshold named th2 are
determined to be connected. This procedure corresponds to
the leftmost part of Fig. 3, and two traces are displayed
with a time axis. An orange square denotes organization
A’s activity and a light blue square denotes organiza-
tion O’s. Activities surrounded by lines of the same color
belong to the same trace. Fig. 3 shows the connection,
⟨Task2_orgA, Task3_orgO⟩, ⟨Task3_orgO, Task4_orgA⟩ in
the two traces.

When compared to previous methods [20], [21], this
approach has the advantage of being applicable to cyclic
orchestrations.

B. IDENTIFICATION OF CASE IDs
In the second step, if a pair of activities that are thought
to be connected occur, the case IDs which are assigned to
these activities’ events are identified. If there is a connection
between two activities, it means that the two events are in the
same trace, so it is highly likely that the case IDs of the two
events are the same.

As a specific procedure, in the sorted event logs created by
integrating two event logs, if a pair of activities of adjacent
events are connected, the number of pair of case IDs that
are assigned to events of these activities is counted. The
following formula expresses the number of case ID pairs
under the aforementioned conditions:

N2(CxCy) =

L−1∑
i=1

f2(i;Cx ,Cy), (6)

f2(i;Cx ,Cy) =

 1 if


(eAi , eAi+1) ∈ CN
eCi = Cx
eCi+1 = Cy

0 if otherwise

, (7)

where N2(Cx ,Cy) represents the count of ⟨Cx ,Cy⟩, and CN
represents the set of activity pairs that are considered con-
nected. Only the pairs of case IDs with a count greater than
a certain threshold th3 are extracted as pairs to be identified.
In the middle part of Fig. 3, the event log shows how ‘‘C30,
C58’’ and ‘‘C22, C77 ’’ are identified to each other using
the activity connections ⟨Task2_orgA, Task3_orgO⟩ and
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⟨Task3_orgO, Task4_orgA⟩ obtained in the leftmost part.
In other words, N2(C30,C58) = 2 and N2(C22,C77 ) = 2.

In the proposed methodology, case IDs are identified by
statistically analyzing the difference in timestamps between
two activities. Hence, only the statistical trend in time dif-
ferences impacts the identification of case IDs. This implies
that a small number of errors in the order of event logs are
insignificant in our methodology, making the order of event
logs less crucial when integrating multiple logs into a single
log.

If more than one case in an organization is identified to
a certain case in the other organization, the pair with the
greater number of occurrences is identified. For example,
if N2(Cp,Cq) = 10, N2(Cp,Cr ) = 6, then Cp and Cq are
identified. Cr is not identified to anything. Events that are
not identified remain in the event log.

C. EXTRACTION OF ACTIVITY CONNECTIONS AND TIME
DIFFERENCES BASED ON IDENTIFIED CASE IDs
In the third step, we further extract information on activity
connections by inspecting the process from the identified
case IDs, assuming that the case IDs have been correctly
identified.

The concrete procedure is to extract the event logs
assigned to a set of identified case IDs and sort them in
time order. For example, in the middle part of Fig. 3,
C30 and C58 are identified. Therefore, they are consid-
ered the same ID and we can see the existence of a
certain process ⟨Task1_orgA, Task2_orgA, Task3_orgO,

Task4_orgA, Task5_orgO⟩. Next, we refer to the con-
secutive activities in the inspected process, for example,
⟨Task4_orgA, Task5_orgO⟩ in Fig. 3. If they are not yet
considered connected, the number of occurrences of a pair of
activities is counted, and the time difference is also recorded
as follows:

N3(Ap,Aq) =

∑
CI

∑
AS

f3(i, j;Ap,Aq), (8)

f3(i, j;Ap,Aq) =


1 if


(eCi , eCj ) ∈ CI
⟨eAi , eAj ⟩ ∈ AS
eAi = Ap
eAj = Aq

0 if otherwise

, (9)

D(Ap,Aq) ={eTj − eTi | f3(i, j;Ap,Aq) = 1}, (10)

where N3(Ap,Aq) represents the count of ⟨Ap,Aq⟩, D(Ap,Aq)
represents the set of the time difference of ⟨Ap,Aq⟩, CI
represents the set of the identified case IDs, AS repre-
sents the set of a pair of continuous activities in a cer-
tain trace. In Fig. 3, the connections between the activities
⟨Task2_orgA, Task3_orgO⟩ and ⟨Task3_orgO, Task4_orgA⟩

have already been found by the method described in Sec-
tion IV-A (the leftmost of Fig. 3). However, this method
discovers a connection ⟨Task4_orgA, Task5_orgO⟩ that has
not yet been discovered (the upper right of Fig. 3).

After extracting information from all identified case IDs,
activity pairs with a count greater than a certain threshold
th4 are considered to be connected activities. The exception
occurs when the time difference of more than 5% of newly
found activity pairs is more than th1.

D. ASSISTANCE FOR IDENTIFICATION OF CASE IDs
In the fourth step, we use the connected activity pairs and their
time difference obtained in IV-C to aid case ID identification
in non-contiguous portions of the event log, as the method
introduced in IV-B only identifies case IDs of adjacent events.

We examine the remaining event log in time order, begin-
ning at the top. If the activity in the event log is the first
activity of a pair of connected activities obtained in IV-C, the
second activity is sought where the second activity probably
occurred according to the common time difference between
the first activity and the second activity. The number of
occurrences of the case IDs in the first and second activities
is counted as follows:

N4(Cx ,Cy) =

L−1∑
i=1

L∑
j=i+1

f4(i, j;Cx ,Cy), (11)

f4(i, j;Cx ,Cy) =


1 if


eTj − eTi < upperij
eTj − eTi > lowerij
eCi = Cx
eCj = Cy

0 if otherwise

, (12)

where N4(Cx ,Cy) represents the count of ⟨Cx ,Cy⟩, upperij
represents the upper bounds of the 95% confidence interval
of the time difference of connected activities, and lowerij
represents the lower bounds. In Fig. 3, if Task4_org1 and
Task5_orgO exist in the remaining event log with a time
difference within the 95% confidence interval, C19 and C4
are identified. In other words, N4(C19,C4) = 1. When iden-
tifying the case ID again, these counts are taken into account.

E. REPEATING OF THE PROCEDURES
The case IDs are gradually identified by repeating
steps IV-A to IV-D for the remaining event logs that have not
been identified.When there are nomore identifiable case IDs,
the process is terminated, implying that all case IDs have been
identified or that the remaining case IDs cannot be identified
with high reliability.

F. AUTOMATIC THRESHOLD SETTING AND NOISE
REMOVAL
The issue with using thresholds is that the optimal threshold
at which the method works well depends on the dataset used.
Therefore, the threshold is determined by the experimenter’s
heuristic, which necessitates an experienced experimenter.

In this study, the threshold is set automatically based on the
number of noise edges. First, several candidate thresholds are
prepared. For each set of thresholds, case IDs are identified
as described in IV-A∼IV-E. The process model is generated
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based on the identified case IDs, and the edges between two
activities are calculated. The edge between activities that
occurs less than 1% of the number of the total case IDs
is considered noise. The number of such edges (noise) is
counted. The threshold set with the fewest number of such
edges is adopted. This is based on the assumption that the
more infrequent edges, the less likely is the accuracy of the
process model.

The process model finally generated also removes edges
that could be considered noise, and only the essential
processes are extracted. Correct edges that occur infre-
quently may be removed as well. However, the pur-
pose of process mining is to find mainstream flows, so
removing infrequent processes as noise is considered quite
natural.

G. ELIMINATION OF BIAS DUE TO INTEGRATION ORDER
When three or more organizations are targeted, the order of
integration produces different results. The reason is that if
less connected organizations are integrated first, only a small
number of case IDs are identified and the many remaining
logs are discarded. For example, in the condition that there
are three organizations α, β, γ , and α has few connections to
β, if we integrate α and β first, a large amount of case IDs
will not be identified and discarded.

We eliminate the bias by integrating the multiple results.
After identifying case IDs and setting appropriate thresholds,
the number of edges obtained in each integration order is
summed without removing noise. Then, after summing up,
edges that are less than ‘‘1% of the total number of case
IDs × the number of integration patterns’’, are considered
noise and removed. This improves the robustness of the
method.

V. EVALUATION
To verify the effectiveness of the proposed method, we eval-
uate this approach using real-world event logs.

A. EVENT LOGS
The BPIC 2012 and 2017 datasets, which are both obtained
from Dutch financial institutions, are used. BPIC 2012 is
the event log for personal loans or overdraft application
processes with 13087 case IDs and 262200 events from
October 1, 2011, to March 14, 2012. With 31509 case
IDs and 1202267 events, the BPIC 2017 dataset is the
event log for loan applications from January 1, 2016,
to February 2, 2017. These event logs consist of three
sub-processes, organizations are named A, O, and W, and
each activity name has an ID at the beginning to indicate
the sub-process in which it was recorded. For example,
an activity name of the work performed in sub-process A
is ‘‘A_Create application’’. The case IDs identified for the
whole organization are given as the correct answer. These
case IDs are not used in our proposed process mining
procedure.

FIGURE 4. BPIC 2012 dataset process model.

B. EXPERIMENTAL SETUP
First, the event logs are divided into three sections so that each
organization can be considered mutually independent. The
proposed method then integrates them and compares them to
the correct answers. The performance of the proposedmethod
on the BPIC 2012 dataset was compared with that of previ-
ously reported methods [20], [21]. In addition, we evaluated
our method on the BPIC 2017 dataset as well. We used the
set of candidate threshold values as follows:

th1 ∈ {1s, 10s, 100s, 1000s, 10000s}, (13)

th2 ∈ {1, 4, 16, 64, 256, 1000, 4000, 16000}, (14)

th3 ∈ {0, 1, 2, 3, 4, 6, 8}, (15)

th4 ∈ {1, 4, 16, 64, 256, 1000, 4000, 16000}. (16)
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FIGURE 5. BPIC 2017 dataset process model.

In this experiment, precision and recall were calculated
for the two aspects of how accurately the case IDs were
identified and how accurately the process models were gen-
erated. In order to evaluate how accurately the process
model was generated, we generated the process models in a
directly-follows graph from integrated event logs by Disco,
similar to previous research [20], [21].

The definitions of precision and recall are as follows:

Precision =
TP

(TP+ FP)
, (17)

Recall =
TP

(TP+ FN )
, (18)

where TP means True Positives, FP means False Positives,
and FN means False Negatives. For the evaluation of the case
ID identification, TP is the number of correctly identified
case IDs, FP is the number of incorrectly identified case IDs,
and FN is the number of not identified case IDs. For the
evaluation of the generated process model, TP is the number
of correct edges generated by the proposed method, FP is the
number of incorrect edges generated by the proposedmethod,
and FN is the number of correct edges not generated by the
proposed method. F1 is an index that summarizes the two

indices of precision and recall as follows:

F1 =
2 × Precision× Recall
Precision+ Recall

. (19)

When comparing process models, the edges of a correct
process model that occur for less than 1% of the total num-
ber of case IDs are removed as noise. For the BPIC 2012
dataset, the number of case IDs which span all organizations
in A+W+O is 5015. Therefore, the reference value for noise
removal of our proposal (50.15) is almost the same as that of
previous methods (50) [20], [21].

The organizations listed in the leftmost column of the
table indicate integrated organizations. The (A+O+W)sum
row displays the results of removing bias due to integration
order. Three significant digits are assumed.

Finally, we compare the process models produced by the
proposed approach to the correct process models visualized
by Disco. We remove whole traces that contain edges con-
sidered as noise to load the event log to Disco and Disco’s
setting is 100% for Activity and 0% for Path. This setting
displays all activities, but flows with a small number of
appearances are automatically removed as noise. The process
models visualizing the respective data are shown in Fig. 4 and
Fig. 5.
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TABLE 4. Results of identifying case IDs using the BPIC 2012 dataset.

TABLE 5. Results of generated process models using the BPIC 2012
dataset.

C. EVALUATION USING THE BPIC 2012 DATASET
Table 4 shows the results of the case ID identification and
Table 5 shows the results of the process model when the
experiment was conducted on the BPIC 2012 dataset.

In Table 4, in all cases, the precision is almost 1.00, which
indicates that ourmethod outperforms the previously reported
method [21]. For the combinations (A+O)+W and (A+W)+O,
the recalls are over 0.9, which also implies that our method
outperforms the previously reported method [21]. In the case
of O+W or (O+W)+A, the recalls of the case ID identification
are low. This is because the number of identified case IDs
is small, and a large number of edges that occur only a
few times in the integrated event logs O+W and A+W are
considered as noise. However, the goal of process mining
is to obtain the main process, so edges that appear only a
few times should be avoided. Further, this does not impair
the performance of generating the process model this time.
Note that in correlation miner, the evaluation results of case
ID identification are obtained by randomly selecting 90 case
IDs, running them four times, and taking the average, due to
their performance limitation [21].

As shown in Table 5, the proposed method displays high
precision and recall that surpass those of the previously
reported method [20] regardless of the order in which the
organizations are combined. The approach to eliminate the
bias in the order of integration, that is, (A+O+W)sum, also
shows higher precision and recall.

Disco visualizes the process model for the BPIC 2012
dataset. Fig. 4 shows the process model from the original cor-
rect data, and Fig. 6 shows the data integrated by the proposed
approach. Edges are summed up when bias is eliminated,
so their value is greater than the correct data. Comparison of

FIGURE 6. BPIC 2012 dataset process model generated by proposed
approach.

Fig. 4 with Fig. 6 shows that the proposed method accurately
generates the correct process.

D. EVALUATION USING BPIC 2017 DATASET
Table 6 shows the results of the case ID identification and
Table 7 shows the results of the process model when the
experiment was conducted on the BPIC 2017 dataset.

High precision and recall were obtained almost regard-
less of the order in which the organizations were com-
bined. Although in the case of (A+W)+O, (O+W)+A, the
recall of the case ID identification is relatively low, similar
to V-C, this does not impair the performance of generating a
process model. The method showed high precision and recall
regardless of the order of integration, and further performance
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FIGURE 7. BPIC 2017 dataset process model generated by proposed approach.

TABLE 6. Results of identifying case IDs using the BPIC 2017 dataset.

improvement was observed when the bias in the order of
integration was eliminated.

Similar to the BPIC 2012 dataset, the process model
for the BPIC 2017 dataset is visualized by Disco. Fig. 5
shows the process model from the original correct data, and
Fig. 7 shows the data integrated by the proposed approach.
Edges are summed up when bias is removed, so the value
of the edges is greater than the value of the correct data.
Comparison of Fig. 5 with Fig. 7 shows that the proposed
method accurately generates the correct process though there
is a slight difference in the frequency of occurrences of
activities, as observed in the evaluation of the BPIC 2012
dataset.

TABLE 7. Results of generated process models using the BPIC 2017
dataset.

VI. CONCLUSION
In this paper, we propose an accurate cross-organizational
process mining technique based on a step-by-step case ID
identification mechanism that uses only common items in
event logs and can deal with cyclic orchestrations. To the best
of our knowledge, this method is the first to systematically
identify pairs of reliable case IDs and extract new activity
connections based on them. Our proposed method outper-
forms the existing techniques on the real-world event log,
the BPIC2012 dataset, which has been used as a benchmark
in related work. Furthermore, the proposed method also per-
forms efficiently on the more data-rich real-world event log,
the BPIC2017 dataset.
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In the future, to further verify the effectiveness of our
proposed method, it is necessary to combine it with other
major process mining algorithms designed for single orga-
nizations. Evaluation of other process model representations
is needed because of the limitations of the directly-follows
graph. In addition, we will further explore the relationship
between the recall of case ID identification and the perfor-
mance of process mining, because the recall of the case ID
identification is not necessarily high every time.

REFERENCES
[1] A. Rozinat, R. S. Mans, M. Song, andW.M. P. van der Aalst, ‘‘Discovering

simulation models,’’ Inf. Syst., vol. 34, no. 3, pp. 305–327, May 2009.
[2] J. D. Hernandez-Resendiz, E. Tello-Leal, H. M. Marin-Castro,

U. M. Ramirez-Alcocer, and J. A. Mata-Torres, ‘‘Merging event
logs for inter-organizational process mining,’’ in New Perspectives on
Enterprise Decision-Making Applying Artificial Intelligence Techniques,
J. A. Zapata-Cortes, G. Alor-Hernández, C. Sánchez-Ramírez, and
J. L. García-Alcaraz, Eds. Cham, Switzerland: Springer, 2021, pp. 3–26.

[3] W. Van Der Aalst, A. Adriansyah, A. K. A. De Medeiros, F. Arcieri,
T. Baier, T. Blickle, J. C. Bose, P. Van Den Brand, R. Brandtjen, and
J. Buijs, ‘‘Process mining manifesto,’’ in Proc. Bus. Process Manage.
Workshops, Clermont-Ferrand, France, 2011, pp. 169–194.

[4] S. Saito, ‘‘Understanding key business processes for business process
outsourcing transition,’’ in Proc. ACM/IEEE 14th Int. Conf. Global Softw.
Eng. (ICGSE), Montreal, QC, Canada, May 2019, pp. 35–39.

[5] W. Van der Aalst, ‘‘Loosely coupled interorganizational workflows: Mod-
eling and analyzing workflows crossing organizational boundaries,’’ Inf.
Manage., vol. 37, no. 1, pp. 67–75, 2000.

[6] H. R’Bigui and C. Cho, ‘‘The state-of-the-art of business process min-
ing challenges,’’ Int. J. Bus. Process Integr. Manage., vol. 8, no. 4,
pp. 285–303, 2017.

[7] C. Liu, H. Li, S. Zhang, L. Cheng, and Q. Zeng, ‘‘Cross-department
collaborative healthcare process model discovery from event logs,’’
IEEE Trans. Autom. Sci. Eng., early access, Aug. 3, 2022, doi:
10.1109/TASE.2022.3194312.

[8] Q. Zeng, S. X. Sun, H. Duan, C. Liu, and H. Wang, ‘‘Cross-organizational
collaborative workflow mining from a multi-source log,’’ Decis. Support
Syst., vol. 54, no. 3, pp. 1280–1301, Feb. 2013.

[9] C. Liu, H. Duan, Q. Zeng, M. Zhou, F. Lu, and J. Cheng, ‘‘Towards
comprehensive support for privacy preservation cross-organization busi-
ness process mining,’’ IEEE Trans. Services Comput., vol. 12, no. 4,
pp. 639–653, Jul. 2019.

[10] Q. Zeng, H. Duan, and C. Liu, ‘‘Top-down process mining from multi-
source running logs based on refinement of Petri nets,’’ IEEE Access,
vol. 8, pp. 61355–61369, 2020.

[11] F. Corradini, B. Re, L. Rossi, and F. Tiezzi, ‘‘A technique for collaboration
discovery,’’ in Proc. Int. Conf. Bus. Process Model., Develop. Support,
Leuven, Belgium, 2022, pp. 63–78.

[12] J. Claes and G. Poels, ‘‘Merging computer log files for process mining:
An artificial immune system technique,’’ in Proc. Int. Conf. Bus. Process
Manage., Clermont-Ferrand, France, 2011, pp. 99–110.

[13] Y. Xu, Q. Lin, and M. Q. Zhao, ‘‘Merging event logs for process mining
with hybrid artificial immune algorithm,’’ in Proc. Int. Conf. Data Sci.,
Montreal, QC, Canada, 2016, p. 10.

[14] J. Claes and G. Poels, ‘‘Integrating computer log files for process mining:
A genetic algorithm inspired technique,’’ in Proc. Int. Conf. Adv. Inf. Syst.
Eng., London, U.K., 2011, pp. 282–293.

[15] J. Claes and G. Poels, ‘‘Merging event logs for process mining: A rule
based merging method and rule suggestion algorithm,’’ Exp. Syst. Appl.,
vol. 41, no. 16, pp. 7291–7306, Nov. 2014.

[16] A. Djedović, A. Karabegović, E. Žunić, and D. Alić, ‘‘A rule based events
correlation algorithm for process mining,’’ in Proc. Int. Symp. Innov.
Interdiscipl. Appl. Adv. Technol., Sarajevo, Bosnia, Herzegovina, 2020,
pp. 587–605.

[17] L. Raichelson and P. Soffer, ‘‘Merging event logs with many to many
relationships,’’ in Proc. Int. Conf. Bus. Process Manage., Haifa, Israel,
2014, pp. 330–341.

[18] L. Raichelson, P. Soffer, and E. Verbeek, ‘‘Merging event logs: Com-
bining granularity levels for process flow analysis,’’ Inf. Syst., vol. 71,
pp. 211–227, Nov. 2017.

[19] L. Cheng, B. F. Van Dongen, and W. M. P. Van Der Aalst, ‘‘Efficient event
correlation over distributed systems,’’ in Proc. 17th IEEE/ACM Int. Symp.
Cluster, Cloud Grid Comput. (CCGRID), May 2017, pp. 1–10.

[20] S. Pourmirza, R. Dijkman, and P. Grefen, ‘‘Correlation mining: mining
process orchestrationswithout case identifiers,’’ inProc. Int. Conf. Service-
Oriented Comput., Rome, Italy, 2015, pp. 237–252.

[21] S. Pourmirza, R. Dijkman, and P. Grefen, ‘‘Correlation miner: Mining
business process models and event correlations without case identifiers,’’
Int. J. Cooperat. Inf. Syst., vol. 26, no. 2, pp. 1–32, May 2017.

[22] G. Park and M. Song, ‘‘Prediction-based resource allocation using LSTM
and minimum cost and maximum flow algorithm,’’ in Proc. Int. Conf.
Process Mining (ICPM), Jun. 2019, pp. 121–128.

[23] D. Bayomie, C. D. Ciccio, M. La Rosa, and J. Mendling, ‘‘A probabilistic
approach to event-case correlation for process mining,’’ in Proc. Int. Conf.
Conceptual Model., Salvador, Bahia, Brazil, 2019, pp. 136–152.

[24] D. Bayomie, C. Di Ciccio, and J. Mendling, ‘‘Event-case correlation
for process mining using probabilistic optimization,’’ Inf. Syst., vol. 114,
Mar. 2023, Art. no. 102167.

[25] D. Bayomie, K. Revoredo, C. Di Ciccio, and J. Mendling, ‘‘Improving
accuracy and explainability in event-case correlation via rule mining,’’ in
Proc. 4th Int. Conf. Process Mining, Bolzano, Italy, 2022, pp. 24–31.

[26] C. Liu, L. Cheng, Q. Zeng, and L.Wen, ‘‘Formalmodeling and discovery of
hierarchical business processes: A Petri net-based approach,’’ IEEE Trans.
Syst., Man, Cybern., Syst., vol. 53, no. 2, pp. 1003–1014, Feb. 2023.

[27] C. Liu, ‘‘Formal modeling and discovery of multi-instance business pro-
cesses: A cloud resource management case study,’’ IEEE/CAA J. Autom.
Sinica, vol. 9, no. 12, pp. 2151–2160, Dec. 2022.

[28] B. van Dongen. 4TU.Researchdata BPI Challenge 2012. Accessed:
Jun. 1, 2023. [Online]. Available: https://data.4tu.nl/articles/dataset/
BPI_Challenge_2012/12689204

[29] B. van Dongen. 4TU.Researchdata BPI Challenge 2017. Accessed:
Jun. 1, 2023. [Online]. Available: https://data.4tu.nl/articles/
BPI_Challenge_2017/12696884

[30] C. W. Günther and A. Rozinat, ‘‘Disco: Discover your processes,’’ in
Proc. Demonstration Track 10th Int. Conf. Bus. Process Manage., vol. 940,
Sep. 2012, pp. 40–44.

[31] H. Tong,Non-Linear Time Series: A Dynamical System Approach. Oxford,
U.K.: Oxford Univ. Press, 1990.

[32] A. Awad, K. Raun, and M. Weidlich, ‘‘Efficient approximate conformance
checking using trie data structures,’’ in Proc. 3rd Int. Conf. Process Mining
(ICPM), Eindhoven, The Netherlands, Oct. 2021, pp. 1–8.

[33] W. M. P. van der Aalst, ‘‘A practitioner’s guide to process mining: Lim-
itations of the directly-follows graph,’’ Proc. Comput. Sci., vol. 164,
pp. 321–328, Jan. 2019.

[34] W. Reisig and G. Rozenberg, Lectures on Petri Nets I: Basic Models:
Advances in Petri Nets. Berlin, Germany: Springer, 1998.

[35] Introduction to BPMN, IBM Cooperation, S. A. White, Marietta, GA,
USA, 2004.

KAZUKI TAJIMA received the B.E. degree in
electrical and electronic engineering from the
Graduate School of Engineering, The University
of Tokyo, Tokyo, Japan, in 2022, where he is cur-
rently pursuing the master’s degree in electronic
information engineering with the Graduate School
of Information Science and Technology.

60588 VOLUME 11, 2023

http://dx.doi.org/10.1109/TASE.2022.3194312


K. Tajima et al.: Step-by-Step Case ID Identification Based on Activity Connection

BOJIAN DU received the B.E. degree in electronic
information engineering from the Beijing Univer-
sity of Technology, Beijing, China, in 2017, and
the M.S. and Ph.D. degrees in electrical engineer-
ing fromTheUniversity of Tokyo, Tokyo, Japan, in
2020 and 2023, respectively. His research interest
includes time-series data analysis.

YOSHIAKI NARUSUE (Member, IEEE) received
the B.E., M.E., and Ph.D. degrees from the Grad-
uate School of Information Science and Tech-
nology, The University of Tokyo, Tokyo, Japan,
in 2012, 2014, and 2017, respectively.

Currently, he is an Associate Professor with the
Department of Electrical Engineering and Infor-
mation Systems, Graduate School of Engineering,
The University of Tokyo. He is a member of the
IEICE and IPSJ. He received the Second-Best Stu-

dent Paper Award at the IEEE Radio and Wireless Symposium, in 2013,
the Hiroshi Harashima Academic Encouragement Award, in 2013, the Best
Paper Award at the IEEE Consumer Communications and Networking Con-
ference, in 2018, and the ACM IMWUTDistinguished Paper Award, in 2020.
His research interests include wireless power transfer, next-generation wire-
less communication systems, and the Internet of Things.

SHINOBU SAITO received the B.S. and M.S.
degrees in administration engineering and the
Ph.D. degree in systems engineering from Keio
University, in 1999, 2001, and 2007, respectively.

From 2001 to 2015, he was a System
Engineer with NTT Data Corporation, Japan.
From 2015 to 2018, he was a Research Manager
with NTT Corporation, Japan. Since 2018, he has
been a Distinguished Researcher with NTT Com-
puter andData Science Laboratories. Hewas aVis-

iting Researcher with the Institute for Software Research (ISR), University of
California at Irvine, Irvine, from 2016 to 2018. His research interests include
software requirements engineering, design recovery, business modeling, and
business process management.

YUKAKO IIMURA received the bachelor’s degree
in administrative studies from the Prefectural Uni-
versity of Kumamoto, Kumamoto, Japan, in 1998,
and the M.E. degree in mathematical science and
information systems from Kumamoto University,
Kumamoto, in 2001.

Since 2001, she has been with Nippon Tele-
graph and Telephone Corporation, Japan, where
she is currently a Research Engineer with NTT
Computer and Data Science Laboratories. Her

current research interests include requirements engineering and software
engineering.

Ms. Iimura is a member of IPSJ.

HIROYUKI MORIKAWA (Member, IEEE)
received the B.E., M.E., and Dr.Eng. degrees
in electrical engineering from The University of
Tokyo, Tokyo, Japan, in 1987, 1989, and 1992,
respectively.

He is currently a Full Professor with the
School of Engineering, The University of Tokyo.
From 2002 to 2006, he was a Group Leader with
the NICTMobile Networking Group. His research
interests include ubiquitous networks, sensor net-

works, big data/IoT/M2M, wireless communications, and network services.
Prof.Morikawa is a fellow of IEICE.He has receivedmore than 50 awards,

including the IEICE Best Paper Award, in 2002, 2004, and 2010, the IPSJ
Best Paper Award, in 2006, the JSCICR Best Paper Award, in 2015, the
Info-Communications Promotion Month Council President Prize, in 2008,
the NTT DoCoMo Mobile Science Award, in 2009, the Rinzaburo Shida
Award, in 2010, the Radio Day Ministerial Commendation, in 2014, and the
IEEE CCNC Best Paper Award, in 2018. He served as a technical program
committee chair for many IEEE/ACM conferences and workshops, the Vice
President of IEICE, the OECD Committee on Digital Economy Policy Vice
Chair, and the Director of the New Generation M2M Consortium. He serves
on numerous telecommunications advisory committees and frequently serves
as a consultant to governments and companies.

VOLUME 11, 2023 60589


