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ABSTRACT To solve the problem that weak signals are difficult to detect accurately in low signal-to-noise
ratios, this paper presents a method to achieve effective detection of weak signals, applying the method of
stochastic resonance to bistable systems. The principle of the method is that by transferring part of the noise
energy to the signal energy, enabling the detection of weak signals at low signal-to-noise ratios. It makes
it easier to extract the signal at the receiving end. This model designs a parametrized conditioning system
based on the factors influencing the output power spectrum and output SNR of a stochastic resonant system.
Based on the experimental results, the influence of parameters a and b on the model can be analysed, and the
optimal noise intensity range of the system can be found. At the receiving end of the system, the constellation
diagram and BER are used as a measure of system performance. Simulation experiments show that stochastic
resonance can effectively enhance the energy of weak signals under low signal-to-noise conditions, and the
demodulation performance of the system is significantly better than that of the system without the use of
stochastic resonance.

INDEX TERMS Stochastic resonance in trap, weak OFDM signal, signal enhancement, output SNR,
parameter adjustment.

I. INTRODUCTION
With the rapid increase in the number of wireless communica-
tion devices and the growing number of various types of elec-
tromagnetic signals, the background noise interference in the
communication system is significantly enhanced. As a result,
the signal is often characterized by a low SNRwhen it reaches
the receiver in the presence of interference. Conventional
signal detection methods mostly suppress or filter the noise to
facilitate detection of weak signals, but they are suitable for
systems with high output SNR. When the background noise
is too strong, weak signals cannot be effectively detected.
In this regard, the stochastic resonance method that enhances
the SNR by utilizing noise is widely valued.

The stochastic resonance method allows the presence of
noise, and through the resonant effect of noise and signal,
i.e., stochastic resonance, part of the noise energy will be
superimposed on the signal to be detected, thus making
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the signal amplified and enhanced for easy extraction at
the receiving end, and the output SNR is improved to
achieve accurate detection of the expected signal. Stochas-
tic resonance as a new method to enhance weak signals,
how noise affects the system has attracted the attention of
researchers in various subject areas. Goswami et al. [1] stud-
ied the relaxation problem under nonequilibrium constraints,
Hohenegger et al. [2] discovered the average first-pass time
as a function of particle radius. In communication signal
processing, Peng Hao et al. [3] proposed a fractional-order
coupled system under three-state excitation for depicting the
motion of coupled particles with mass rise and fall in an elas-
tic medium and gave a response explanation for the system
amplitude gain. Hasegawa [4] analyzed the effect of memory
effect on the system in different situations by studying the
system power spectrum amplification factor. Lifang et al. [5]
proposed a segmented nonlinear systemmodel that can effec-
tively extract the characteristic frequency with good ampli-
fication capability and applied it to bearing fault detection.
Jianjun [6] proposed a traveling wave noise reduction method
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to solve the problem that traveling wave signals are not easily
and effectively extracted, which can effectively and accu-
rately extract traveling wave signals. Jiang et al. [7] studied
multiplicative square wave signals and multiplicative double-
valued noise, regarding their performance in stochastic res-
onant systems, and did a related study. Gang [8] studied the
effect of coupling coefficients and asymmetric coefficients on
the power spectrum gain factor based on a two-dimensional
four-stable potential system and proved that its detection
performance is better than that of a one-dimensional three-
dimensional potential system. In a study of a second-order
underdamped periodic system, Saikia [9] found the stochastic
resonance phenomenon that appeared in the high-frequency
part of the excitation signal, and the damping parameters and
signal amplitude of the system limit the stochastic resonance
phenomena.

On the other hand, the multi-stable periodic potential
model has been widely used in biological and engineering
fields as well [10], [11], and the study of noise-induced
dynamics in the periodic potential model has been equally
fruitful. In asymmetric tristable systems, coherent reso-
nances are suppressed by memory time and stochastic res-
onances are enhanced instead [12]. Reenbohn [13] found that
underdamped particles can exhibit stochastic resonance and
ratcheting effect at low temperature, while Yanfei et al. [14]
studied the stochastic multiple resonance phenomenon by
analyzing the differential equations of multiplicative dichoto-
mous noise and additive white noise.

In this paper, by creating a stochastic resonance sys-
tem model under low SNR conditions, we first analyze
the stochastic resonance phenomenon, and then design a
parameter adjustment model for the influence factors affect-
ing the system output and the variation of the system out-
put SNR. And using the weak OFDM (Orthogonal Fre-
quency Division Multiplexing) signal as the input signal,
combined with the theory of stochastic resonance, the effect
of stochastic resonance on the anti-noise performance of
the system is studied. By adjusting each influence factor,
the output BER of the system is reduced. The experimen-
tal results show that the stochastic resonance can effec-
tively improve the anti-noise performance of OFDM system
and reduce the demodulation BER under the low SNR
condition.

II. BISTABLE STOCHASTIC RESONANCE SYSTEM
A. SYSTEM EQUATIONS
The stochastic resonance system is shown in Figure 1, and
its components include three: the input signal, noise, and
nonlinear bistable system. Through the joint action of these
three components, some noise energy is superimposed on the
signal energy, which increases the energy of the signal to be
detected. The useful signal is generally a weak signal denoted
by s(t), the background noise is selected as Gaussian noise
denoted by n(t), and the nonlinear system is selected as a
typical bistable system.

FIGURE 1. SR Model of Bistable System.

The bistable system is a typical nonlinear system. The
nonlinear Langevin equation of the system under the joint
action of the input useful signal s(t) and the Gaussian white
noise n(t) is as follows:

x ′(t) = −U ′(x) + s(t) + n(t) (1)

U (x) is the system potential function, and a and b are
the system parameters. Then the standard expression for the
quadratic potential function is as follows:

U (x) = −
1
2
ax2 +

1
4
bx4 (2)

The intensity of Gaussian white noise is D. The
steady-state point of the bistable system is x± = ±

√
a/b, and

the height of the potential barrier is 1U = a2/4b. Taking the
system parameters as a = b = 1 when there is no input signal
and noise, the potential function curve is shown in Figure 2.

FIGURE 2. Bistable system potential function curve.

When s(t) is a periodic sinusoidal signal A cos (2π f0t), the
system equation is as follows:

x ′(t) = ax − bx3 + A cos (2π fst) + n(t) (3)

The commonly used algorithm for solving the differential
equation is the Runge-Kutta algorithm, and the fourth-order
Runge-Kutta algorithm with good accuracy is used here for
solving Eq. (3). Let the sampling frequency be f , then the
time step is h = 1/f . The right-hand part of Eq. (3) is denoted
by f (t, x), where x and t are the output signal values of the
stochastic resonant system at the n-th and (n+1)-th moments,
and k1, k2, k3 and k4 are the iteration parameters.

xn+1 = xn +
h
6

(k1 + 2k2 + 2k3 + k4)

k1 = f (tn, xn)

k2 = f
(
tn +

h
2
, xn +

h
2
k1

)
k3 = f

(
tn +

h
2
, xn +

h
2
k2

)
k4 = f (tn + h, xn + hk3)

(4)
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While the system has no input signal excitation and only
noise is present,the particles will move repeatedly within the
left and right potential wells of the system and the average
crossing rate (Kramers rate) of the system is expressed as:

rK =
a

√
2π

exp
(

−
1U
D

)
(5)

The response of a bistable system is divided into the following
three cases:

a)With the input signal A = 0 and noise n(t) = 0, x(t) will
fall into a certain potential well as t → ∞. The system output
is x(t) = 0 with the initial value of x0 = 0.
b)While the input signal A = 0 and the noise n(t) ̸= 0,

the system undergoes a leap transformation between the two
potential wells, with the leap rate determined by γK . The rate
depends on both the distribution and intensity of the noise.

c)When the input signal A ̸= 0 and the noise n(t) ̸= 0,
if the input signal amplitude is A < Amax (the critical value
of the system output: Amax =

√
4a3/27b), the input signal

energy is too small and cannot provide enough energy for
the particle to support the leap. As a result, the particle can
only land in one of the potential wells. On the other hand,
when the input signal amplitude is A > Amax, the energy of
the particle is sufficient to support it in crossing the potential
barrier, thereby completing the periodic transition between
the left and right potential wells.

In a stochastic resonance system, the assistance of noise
energy enables the particle to gain energy from the noise, even
when A < Amax, thus enabling it to cross the potential barrier.
This is the principle behind the phenomenon of stochastic
resonance for the detection of weak signals.

B. PROPERTIES OF STOCHASTIC RESONANCE
In order to analyze the characteristics of stochastic resonance,
particularly the frequency characteristics, the phenomenon
can be described using the power spectral density function.
When the system is not excited by an external signal, the
jump rate between the two steady states is constant. When
the system is excited by an external periodic signal, the leap
rate between the two potential wells is also periodic because
of the periodic nature of the signal. The probability, denoted
by p±(t), is the probability that the system is located at
the left and right steady-state points at moment t , which
is represented by x±(t), that is, p±(t) = P(x(t) = x±).
In the adiabatic approximation, the equilibrium time within a
potential well is almost instantaneous, and the time consumed
is much less than the equilibrium time between potential
wells. Therefore, the local equilibrium time is considered to
be instantaneous, and the time consumed is negligible, and
only the time consumed by the leap between the left and right
potential wells is considered.

At this point, we can write the equation for the system
under the excitation of a periodic external signal as follows:

p′
+(t) = −p′

−(t) = −r+(t)p+(t) + r−(t)p−(t) (6)

Of these p+(t) + p−(t) = 1.

Solving the differential equation yields:

p+(t) = h−1(t)
[
p+ (t0) h (t0) +

∫ t

t0
r−(s)h(s)ds

]
(7)

Of these h(t) = exp
{∫ t

t0
[r+(s) + r−(s)] ds

}
,p±(t0) denotes

the initial probability at moment t0. Let r±(t) =

g [α + βs cos (fst)] , β = βs cos (fst).
By performing a Taylor expansion of r(t), we obtain:

r±(t) =
1
2

[
K0 ∓ K1βs cos (fst) + K2β

2
s cos

2 (fst) ∓ . . .
]
(8)

Of these K0 = 2g(α), Kn = 2 (−1)ndng(α)
n!dβn

By substituting equation (8) into equation (7), we obtain
the probability solution of the output signal at the steady state
point:

p+ (t | x0, t0) =
1
2

{
exp[−k0(t−t0)]

[
δxoc

−1 −
k1βs cos (fst0 − ϕ)√

k20 + f 2s


+1 +

k1βs cos (fst − ϕ)√
k20 + f 2s

 (9)

Of these ϕ = tan−1 (fs/k0), p+(t | x0, t0) represents the
probability that a particle located at x0 at moment t0 will move
to the right steady state x+ at moment t. δx0c is the Kronecker
function:

δx0c =

{
0 Particle falls into the left steady state point
1 Particle falls into the right steady state point

The autocorrelation function of the system output is
obtained according to Equation (9):

⟨x(t)x(t + τ ) | x0, t0⟩

=
a
b

{[2p+ (t + τ | x+, t) − 1

+2p+ (t + τ | x−, t) − 1] p+

× (t | x0, t0) − [2p+ (t + τ | x−, t) − 1]} (10)

When t0 tends to infinity, the limit is taken for the autocor-
relation function:

⟨x(t)x(t + τ )⟩

= lim
t0→−∞

⟨x(t)x(t + τ ) | x0, t0⟩

=
a
b
exp [−k0|τ |]

[
1 −

k21β
2
s cos

2 (fs − ϕ)

k20 + f 2s

]

+
αk21β

2
s {cos (fsτ) + cos [fs(2t + τ ) + 2ϕ]}

2b
(
k20 + f 2s

) (11)

In practical measurements, the correlation function is
based on statistical significance and is averaged over the
correlation function obtained at different moments:

⟨x(t)x(t + τ )⟩ =
a
b
exp [−k0|τ |] [1
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−
k21β

2
s cos

2 (fs − ϕ)

k20 + f 2s

]
+

αk21β
2
s cos (fsτ)

2b
(
k20 + f 2s

)
(12)

By the Wiener-Khinchin theorem, the Fourier transform
of equation (12) is the average power spectral density of the
system, which is

S(ω) =

∫
+∞

−∞

⟨x(t)x(t + τ )⟩ exp(−jωτ )dt

= Ss(ω) + Sn(ω) (13)

where: Ss(ω) is the signal power spectrum and Sn(ω) is the
noise power spectrum.

Ss(ω) =

[
1 −

a3A2γ

bD2
(
2a2γ + π2f 2s

)]  4
√
2a2A2γ

πb
(
2a2γ
π2 + ω2

)

(14)

Sn(ω) =

 2a4A2γ

πb2D2
(
2a2γ
π2 + f 2s

)
 δ (ω − fs) (15)

where:γ = exp(−2δ/D), So the output signal to noise ratio
of the system is:

SNR =

√
2a2A2 exp

(
−

1U
D

)
4bD2

[
1 −

2a2γ+π2f 2S
π2

] (16)

When A is much less than 1, the output SNR satisfying the
adiabatic approximation condition can be expressed as:

SNR ≈

√
2a2A2 exp

(
−

1U
D

)
4bD2 (17)

Some conclusions can be drawn from the output SNR.
(a) When the noise intensity D tends to 0, the denominator

tends to 0 slower than the numerator tends to 0 and the SNR
tends to 0.

(b)As the noise intensity D tends to infinity, the numerator
tends to be constant, while the denominator tends to infinity
and the SNR tends to 0.

Therefore, as the noise intensity gradually increases, the
output SNR will exhibit a trend of first rising and then
falling, as shown by the graph, which has an extreme value.
This indicates that there exists an optimal noise intensity for
the system to achieve the conditions for the occurrence of
stochastic resonance.

III. DETECTION OF WEAK OFDM SIGNALS BASED ON
STOCHASTIC RESONANCE
A. OFDM
The OFDM signal is a multi-carrier signal and the received
OFDM signal can be expressed as:

sin (t) = Re

[
N−1∑
k=0

dk rect
(
t −

Ts
2

)
exp (j2π fk t)

]

=

N−1∑
k=0

[αk cos (2π fk t) − βk sin (2π fk t)] (18)

where N denotes the number of OFDM signal subcarriers,
dk = αk + jβk denotes the number of symbol mapping
complexes on the subcarriers, rect() is a rectangular function,
Ts is a symbol period, and fk denotes the frequency of the k-th
subcarrier.

In today’s communication systems, OFDM signals are
widely used due to their excellent performance, and some of
OFDM’s characteristics are advantageous for the occurrence
of stochastic resonance phenomenon.

(a)High frequency utilization: OFDM divides the spectrum
and data on each subcarrier can be transmitted at differ-
ent time intervals. This spectrum division technique helps
to enhance stochastic resonance phenomenon, as multiple
frequency components may exist in the random excitation
signal.

(b)Strong controllability: OFDM technology can adjust the
bandwidth and center frequency of the signal by adjusting
the number and spacing of subcarriers, thereby achieving
control over the signal. This controllability helps to study
the resonance frequency and resonance width of stochastic
resonance phenomenon.

(c)Strong anti-interference ability: OFDM technology uses
frequency division multiplexing to divide the signal into
multiple subcarriers, which can improve the system’s anti-
interference ability and reduce the impact of external inter-
ference on stochastic resonance experiments.

(d)Easy to process and analyze experimental results:
OFDM signals have periodicity and orthogonality, so the
signal can be transformed from time domain to frequency
domain using FFT, which is convenient for processing and
analyzing experimental results.

(e)Strong scalability: OFDM technology can be easily
combined with other technologies, such as MIMO, CDMA,
etc., to achieve deeper research on stochastic resonance phe-
nomenon.

Due to these characteristics, OFDM signals are used as the
input signal in this paper to study the restorative effect of
stochastic resonance on weak signals.

B. BUILDING DETECTION MODELS
The OFDM signal stochastic resonance model is established
using 16QAM modulation. At the transmitter, data is sub-
jected to serial and parallel transformation, followed by IFFT
and parallel-serial transformation, and the addition of cyclic
prefixes. The resulting signal is transmitted through a Gaus-
sian white noise channel and received at the receiver end,
where stochastic resonance occurs. This results in the signal
oscillating within the potential well, completing the transfer
of noise energy to signal energy. At the receiver end, the sys-
tem performs the inverse operations of those at the transmit-
ter, i.e. de-cyclic prefix, FFT, and parallel-serial conversion,
to demodulate theweakOFDMsignal. The noise immunity of
the system is measured by comparing the signal constellation
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diagrams before and after processing, and calculating the
BER.

The specific steps are as follows:
Transmitter:
(a) Generation of a stochastic binary bit stream, 16QAM

constellation mapping.
(b) Performing parallel-serial transformation, IFFT, and

parallel-serial transformation again on the mapped data to
obtain a modulated OFDM signal.

(b) Adding a cyclic prefix to the OFDM signal.
The system channel is a Gaussian white noise channel.
Receiver side:
(a) Obtain the mixed input signal s(t)+ n(t), s(t) the weak

OFDM signal to be detected and n(t) the background noise.
(b) Performing stochastic resonance on the mixed input

signal to solve the OFDM signal.
(c) removing the cyclic prefix and performing an FFT on

the receiver signal.
(d) inverse mapping of the constellation diagram on the

receive signal and series-parallel transformation to obtain the
demodulated binary bit stream.

(e) The BER is used as a measure to quantify the detection
performance of the system.

C. EFFECT OF SYSTEM PARAMETERS AND NOISE
INTENSITY ON STOCHASTIC RESONANCE
This paper investigates the effect of different system structure
parameters and noise intensity on the demodulation perfor-
mance of bistatic stochastic resonant systems. To isolate the
impact of individual variables, only one parameter is varied
in each experiment, including the system potential function
parameters a and b, the input signal amplitude A, and the
noise intensity D, while keeping all other factors constant.

The Fokker-Planck equation for x is obtained from the
probability density distribution function ρ(x, t).

∂ρ(x, t)
∂

= −U ′′(x)
∂

∂x
[(x − xs) ρ(x, t)] + D

∂2

∂2
ρ(x, t)

(19)

The minimum non-zero eigenvalue of equation (19) is
λm = U ′′(x), and λm = λm(bD, s(t)/

√
D). As can be seen

from equation (19), the stochastic resonance phenomenon is
influenced by two factors: the system parameter b and the
noise intensityD. Increasing both the system parameter b and
the noise intensity D to a certain level can affect the system
output, causing the system to exhibit stochastic resonance
within the trap, and thus enhance the signal energy.

The effect of signal amplitude on stochastic resonance: the
higher the amplitude of the input signal, the higher the energy
of the signal itself, the easier it is to make a jump between
potential wells, and the more the jump period converges to
that of the input signal, the closer the output signal waveform
is to the input signal waveform.

In the experiments, a large amount of data is generated,
and in order to reduce the interference of error factors, the
data needs to be processed. The data processing algorithm

FIGURE 3. Bistable SR system system differential operation.

used in this paper is the recursive averaging algorithm, which
can effectively reduce the influence of outliers. Specifically,
A(N −1) is the average of the first N −1 data, x(N ) is the N -
th data point, and A(N ) is the updated average after including
the N -th data point. The calculation formula is:

A(N ) =
1
N

N∑
n=1

x(n)

=
N − 1
N

N−1∑
n=1

x(n) +
1
N
x(N )

=
N − 1
N

A(N − 1) +
x(N )
N

(20)

In the recursive averaging algorithm, a correction is added
to the last calculation based on the new data. As more data is
obtained, the number of averages N increases and the value
on the right-hand side of equation (20) becomes smaller and
smaller, indicating that the impact of the new data on the
experimental results is gradually decreasing and the calcu-
lated results will gradually converge.WhenN is large enough,
the amount of correction tends to zero, and the data obtained
thereafter will have no effect on the experimental results, and
the average results will remain unchanged.

IV. SIMULATION ANALYSIS
A. STOCHASTIC RESONANCE SYSTEMS
To verify that the proposed method in this paper can effec-
tively improve the performance of low SNR OFDM systems,
the following computer simulation is used to perform stochas-
tic resonance processing on OFDM signals. The simulation
platform uses Matlab 2016a.

By taking a = 1 and varying the parameter b, we can
observe changes in the potential function, as shown in Fig-
ure 4. As b increases, the potential well gradually rises and
its width becomes smaller. In Figure 5, with a fixed value of
b, the potential depth rapidly increases and the width rapidly
expands as a increases. The effect of signal amplitude on the
generation of stochastic resonance is shown in Figure 6.
Initially, there is no external noise and the particle is

located in the right potential well. When the signal amplitude
cannot raise enough energy to make it go over the potential
barrier, the particle is in the right potential well, and when the
signal amplitude can provide enough energy, the particle will
go over the potential barrier and oscillate back and forth in
the left and right potential wells. The higher the amplitude of
the input signal, the higher the energy of the signal itself, the
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FIGURE 4. The variation of the function when b = 1.

FIGURE 5. The variation of the function when a = 1.

FIGURE 6. Effect of Signal Amplitude on SR.

easier it is to make the leap between the potential wells, and
the more the period of the leap converges to that of the input
signal, the closer the output signal waveform is to the input
signal waveform.

The parameters of the bistable system are set as follows:
a = b = 1; signal amplitude A = 0.25, frequency f0 =

0.01, noise intensityD = 0.787, and sampling frequency fs =

5Hz. Simulation analysis of stochastic resonance is carried
out, and the waveforms of the input and output signals are
shown in Figures 7-8. From Figure 8, it can be seen that the
input signal frequency is 0.01Hz, and the output signal has a
clear peak at 0.01Hz. The spectral peak is much larger than
that of the input signal, indicating that stochastic resonance

FIGURE 7. Input and output signal time domain waveform.

FIGURE 8. Input and output signal frequency characteristics.

has been generated and has a significant enhancement effect
on the signal.

B. STOCHASTIC RESONANCE-BASED OFDM SYSTEMS
This experiment uses OFDM signals, and the simulation
parameters are set as follows: bit rate of 200 kbps, sampling
rate of 20 MHz, 16 bits/symbol, and 16QAM modulation
method. The input and received signal waveforms are shown
in Figure 9, and a comparison of the baseband code elements
and demodulation code elements is shown in Figure 10.
It can be observed that the signal after demodulation by the
stochastic resonance system is similar to the original signal,
and the BER is low.

Output SNR: The output SNR of the system under adia-
batic approximation is related to the system parameter b and
the noise intensity. The variation of the output SNR with the
noise intensity for different b values is shown in Figure 11.
It can be seen that the parameter b affects the system output,
causing the system output to show a trend of rising and then
falling. However, the output SNR will always exhibit a peak,
and this peak range represents the optimal noise intensity
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FIGURE 9. Input signal and receive signal.

FIGURE 10. Baseband signal and demodulated signal.

FIGURE 11. Influence of noise intensity on output SNR when adjusting b.

range. By choosing a reasonable parameter to adjust, the
system performance can be improved.

The method of stochastic resonance can effectively
suppress in-band noise of OFDM systems under low SNR
conditions. The experimental results were analyzed and sum-
marized by adding stochastic resonance to the signal through
computer simulation. The anti-noise performance of the sys-
tem was observed before and after the addition of stochastic
resonance by analyzing the changes in the constellation dia-
gram of the system and using the BER as a visualization basis.
The input SNR was gradually varied to determine whether
stochastic resonance could improve the demodulation perfor-
mance of the OFDM system, according to the changes in the

FIGURE 12. Input signal-to-noise ratio SNR = −15.

FIGURE 13. Input signal-to-noise ratio SNR = −10.

constellation diagram after the occurrence of the stochastic
resonance phenomenon in the system.

Set the system structure parameters a = b = 1. Adjust the
input SNR gradually to observe the changes in the constella-
tion diagram. In Figures 12-15, when the input SNR is -15dB,
the points in the constellation diagram are scattered and not
concentrated in the ideal position. As the input SNR gradually
increases, the points in the constellation diagram move closer
to the ideal points, and the demodulation BER of the system
decreases. Within a certain noise range, the demodulation
BER of the system is low, indicating that the noise intensity
can be adjusted within a certain range to produce stochas-
tic resonance. The parameter that produces stochastic reso-
nance is not a specific value, but a reference value within a
range.

The effect of stochastic resonance on the system is shown
in Fig. 16. As seen from Fig. 16, when the input SNR of the
system is large, the error of the system is large with or without
stochastic resonance, indicating that the noise has drowned
out the useful signal. As the input SNR increases, the error
gradually decreases, but the reduction rate of the stochastic
resonance system is much faster than that of the conventional
system, indicating that stochastic resonance can effectively
improve the performance of the system and the accuracy of
signal detection.
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FIGURE 14. Input signal-to-noise ratio SNR = −8.

FIGURE 15. Input signal-to-noise ratio SNR = −6.

FIGURE 16. Influence of SR on System Demodulation Bit Error Rate.

V. EXPERIMENTAL CONCLUSION
In this paper, a weak OFDM signal detection model is devel-
oped to apply stochastic resonance to signal detection under
strong background noise. Firstly, the influence of the potential
function on the system is analysed, and the input signal
threshold at which the stochastic resonance phenomenon
occurs is identified. Then, based on the factors affecting the
system output (input signal amplitude and noise strength),
a parameter adjustment system is designed, and the influence

of these factors on the modulation and demodulation of the
system under different conditions is analysed. Through exper-
iments, the following conclusions are drawn.

(a)Potential function parameters affect the generation
of potential wells and stochastic resonance phenomena in
bistable systems.

(b)In the absence of noise, the input signal amplitude needs
to be greater than the system threshold(Amax =

√
4a3/27 b)

in order to generate stochastic resonance phenomena.
(c)Adjusting the noise intensity within a certain range can

improve the demodulation BER of the system and enhance
the quality of communication.

Theoretical analysis and simulation results show that
reasonable adjustment of experimental parameters can
effectively enhance the energy of weak signals and improve
communication quality. The parameter adjustment method
is flexible and convenient, and can effectively adapt to the
detection of weak signals in various environments, making it
highly applicable and promising.

In recent years, with further research on stochas-
tic resonance technology, there have been corresponding
breakthroughs in related theories and applications. Zhang [8]
conducted relevant research on the performance of multi-
plicative square wave signals and multiplicative binary noise
in stochastic resonance systems, revealing the inherent mech-
anisms and laws of stochastic resonance, and further discov-
ering the impact of stochastic resonance system parameters
on signal transmission and noise suppression. Guo [15] found
that within a certain range of noise intensity, the output power
of a semiconductor laser feedback system will be signifi-
cantly enhanced after stochastic resonance induced by noise
occurs.

For the study of stochastic resonance phenomena, it is
possible to consider combining it with different signals and
different filtering methods, and applying it to different sce-
narios to achieve effective detection of weak signals.
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