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ABSTRACT In the deep learning community, increasingly large models are being developed, leading to
rapidly growing computational costs and energy costs. Recently, a new trend has been arising, advocating
that researchers should also report the energy efficiency besides their model’s performance in their papers.
Previous research has shown that reduced precision can be helpful to improve energy efficiency. Based
on this finding, we propose a simple practice to effectively improve the energy efficiency of training and
inference, i.e., training the model with mixed precision and deploying it on Edge TPUs. We evaluated its
effectiveness by comparing the speed-up of a state-of-the-art semantic segmentation architecture with respect
to different typical usage scenarios, including using different devices, deep learning frameworks, model sizes,
and batch sizes. Our results show that enabled mixed precision can gain up to a 1.9× speedup compared
to the most common and default float32 data type on GPUs. Deploying the models on Edge TPU further
boosted the inference by a factor of 6. Our approach allows researchers to accelerate their training and
inference procedures without jeopardizing the model’s accuracy, meanwhile reducing energy consumption
and electricity cost easily without changing their model architecture or retraining. Furthermore, our approach
is helpful in reducing the carbon footprint used to train and deploy the neural network and thus has a positive
effect on environmental resources.

INDEX TERMS Deep learning, green AI, energy efficiency, mixed precision training, quantization, edge
TPU.

I. INTRODUCTION
In AI research, there is a trend that significant computational
resources are required to achieve the next state-of-the-art
performance. As a result, a large amount of energy is
consumed, which has two major effects: (i) economically
- high energy costs for researchers and institutions and (ii)
ecologically - resulting in a large carbon footprint.

Recently, the Green AI movement has arisen, trying to
arouse the attention of the AI community to the energy
efficiency of deep neural networks [1]. Different works
have proposed suggestions from different perspectives on
improving the energy efficiency of deep neural networks.
Patterson et al. suggested reducing energy consumption
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by carefully choosing the hardware and data center [2].
Georgiou et al. investigated the difference between using
two of the most popular DL frameworks, PyTorch and
Tensorflow, regarding the energy efficiency during training
and inference of different models [3]. Xu et al. focused
on the model architecture’s impact on energy consumption
during training [4]. One of the perspectives advocates using
data types of lower precision during the model inference
phase, i.e., quantization, to reduce energy consumption
while maintaining the model accuracy because, firstly, all
operations of a quantized model are carried out in a lower
precision, which can reduce computation energy and data
access energy during inference [5], [6], [7], [8]. Secondly,
quantized models usually run on edge-class devices like Edge
TPU, which naturally consume much less energy than high-
performance devices. We adopt the advocation of running
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quantized models on edge-class devices and also recommend
using lower precision during the training phase to save more
energy.

So far, we can conclude a simple and straightforward
approach to improve the energy efficiency of model devel-
opment, i.e., introducing lower precision into training and
inference and deploying models on edge-class devices.
However, despite the fact that the concept is simple, the
execution is not. First, introducing lower precision into
training is usually complex and requires many modifications
to the current training code. For researchers with available
training codes, it hinders them from using lower yet sufficient
precision. This increases the cost of switching to Green AI to
some degree. Fortunately, regarding the idea of introducing
lower precision into training, several mixed precision training
approaches have been proposed [9], [10]. These approaches
were well implemented and documented for the popular
deep learning frameworks PyTorch and TensorFlow, and
the currently popular devices (e.g., NVIDIA RTX 3090
GPU) also support them. Mixed precision training [9]
recommended using lower precision (for example, IEEE
16 bits float point number) for the computation while
using single precision (IEEE 32 bits float point number)
for weights-updating. Mixed precision training can gain
speed up and reduce energy consumption while maintaining
a reasonable accuracy level. However, we notice that the
energy efficiency of mixed precision training has rarely
been analyzed with respect to different usage scenarios.
Second, as one of the famous edge-class devices, Edge TPU
was proven to have a satisfactory inference speed while
maintaining reasonable accuracy [11], [12], [13], yet to
our best knowledge, the comparison of the inference speed
between Edge TPU and HPC GPUs has not been extensively
investigated.

Based on these knowledge gaps, we devoted ourselves
to verifying the effectiveness of mixed precision training
API with respect to different usage scenarios (including
tensor processing hardware, deep learning frameworks,
batch size, and model size) and comparing the speed-
up effect of Edge TPU with high-performance computing
devices when the model size is varying. We calculated
the quotient of the single-sample-processing time of mixed
precision training and float32 training, i.e., speed-up,
to refer to the effectiveness of mixed precision training.
We notice that sophisticated methods exist to estimate
energy consumption during model development in previ-
ous works [2], [4], [5], [6], [14], [15]. For examples,
Panda et al. [5] designed a 2-D systolic array accelerator to
calculate the energy efficiency. Vasquez et al. [6] designed a
precision-scalable process in-memory hardware platform to
calculate the energy consumption and efficiency improve-
ment. However, for simplicity, we used speed-up to represent
the acceleration effect and energy efficiency of mixed
precision training because it is of more concern to the
researchers that mainly focus on neural network development
while lack experience in hardware engineering. Similarly,

to benefit as many deep learning researchers as possible,
we used a model based on U-Net [16]. Because it is widely
used for image segmentation tasks in the Deep Learning
realm. Specifically, our work has the following contributions:

• We verified that mixed precision training has a speed-up
effect in almost all the usage scenarios we investigated.
Using TensorFlow on Nvidia RTX 3090 GPU gained the
largest speed-up (1.9×).

• We verified that mixed precision training does not
impactmodel accuracy, despite the devices, frameworks,
model size, and batch size.

• We found that a larger model gains a larger speed-up
effect.

• We verified that Edge TPU merely slightly impacts
model accuracy (except for exceptionally large models).

• We found that comparedwithHPCGPUs, Edge TPUhas
a comparable or better acceleration for smaller models.

In summary, our work helps researchers who consider
switching to Green AI to take the first yet effective step.
Besides, our work is also helpful for AI developers who seek
faster and more cost-effective training and inference.

II. METHODS
A. DATASET
We used the publicly available biomedical dataset BAGLS
(Benchmark for Automatic Glottis Segmentation) [17] as a
generic, binary, and medical-oriented semantic segmentation
task. The BAGLS dataset contains images acquired from
laryngeal high-speed videoendoscopy [18]. For each image,
a segmentation mask of the glottis serves as the ground truth
for semantic segmentation. We randomly took 4096 sam-
ples of this dataset and cropped them to a resolution of
224 × 224 pixels. The images were converted to grayscale,
and the pixel values were normalized to a range between −1
and 1. In experiments on the Edge TPU, the pixel values were
normalized to a range between 0 and 1.

B. NETWORK ARCHITECTURE AND HYPER-PARAMETERS
We trained encoder-decoder deep neural networks for seman-
tic segmentation of the glottal area, as shown in Figure 1.
In our case, we relied on a modified U-Net architecture
[16], a fully convolutional neural network consisting of an
encoder for feature extraction and a decoder for localization.
Its hallmark is the existence of skip connections between the
encoder and decoder to enhance the segmentation quality.

The initial number of filters f in Figure 1 was varied to
account for different model sizes and capacities. As shown in
Figure 1a, the number of filters increases in each step of the
encoder and decreases in the decoder correspondingly. Each
model was trained using Dice loss [19] and Adam optimizer
[20] with a learning rate of 0.0005. Among all model hyper-
parameters, we were especially interested in the model size
(Model size refers to the initial number of filters of the U-
Net.) and the batch size, and thus we adjusted them in our
experiments to test if they have influence on the effectiveness
of the mixed precision training API. We set the batch size
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FIGURE 1. Segmentation network and investigated devices. (a) U-Net
architecture with four encoding and four decoding blocks. Each box
corresponds to a convolutional layer. The number of layers was fixed but
the number of initial filters f was varied. The Intersection over Union
(IoU) was computed between prediction and ground truth to assess the
segmentation quality. (b) Infrastructure overview containing different
Deep Learning hardware accelerators.

to 128, which is the maximum possible batch size in most
settings. However, on RTX3090, we had to lower the batch
size to 64 for the model with 32 initial filters and lower the
batch size to 32 for the model with 64 filters due to the limited
CUDA memory. On Cloud TPU, we set the global batch size
to 128, which means that the local batch size per TPU core
was 16.

C. DEVICES AND FRAMEWORKS
The same U-Net architecture was implemented using the
frameworks PyTorch (version 1.12.1) and TensorFlow (ver-
sion 2.9.2) [21] with Keras API. We trained all models on
several graphics processing units (GPUs): Nvidia RTX3090,
A100, and A40, all with Tensor Cores supporting mixed
precision training (float16 and float32). The GPUs A100
and A40 were accessed via a High-Performance Computing
(HPC) cluster of the Erlangen National High-Performance
Computing Center (NHR). We used different versions
of CUDA to ensure compatibility with each GPU and
framework. We used CUDA 11.2 for TensorFlow, but CUDA
11.6 (on HPC) and CUDA 11.3 (on RTX3090) for PyTorch.

Tensor processing units (TPUs) are application-specific
integrated circuits (ASICs) that Google designed to accelerate
Deep Learning tasks [22]. We used a Cloud TPU v2
with 8 Cores, which was accessed through Google Cloud
Platform.We selected the TPU software versions ‘‘tpu-vm-tf-
2.10.0’’ and ‘‘tpu-vm-pt-1.10’’. On the TPU, we additionally
installed the framework PyTorch Lightning (version 1.5.10),
a similar yet high-level API compared to PyTorch.

The Edge TPU is an edge device built by Coral, designed
for accelerating IoT-based solutions. In contrast to GPUs
and TPUs, the Edge TPU can only be used for inference,
and it only accepts batch size of 1 during inference. For
our experiments, we used the Coral USB accelerator and

the PyCoral API. Since it is an integer-only device, it only
supports 8-bit quantized and compiled models in TFlite
format.

D. MIXED PRECISION TRAINING API
Both TensorFlow and PyTorch use single precision, i.e.,
float32, by default and support automatic mixed precision,
i.e., a mix of float32 and float16, for training and inference.
The implementation of both frameworks are based on
the key ideas of mixed-precision training proposed by
Micikevicius et al. [9], i.e., carrying out computation in
float16, updating weights in float32 and applying loss scaling
to prevent gradient underflow.

Using Keras, automatic mixed precision can be activated
by setting the global policy to ‘‘mixed_float16’’ for all layers.
This data type policy enables each layer to use float32 for
creating and storing theweights and float16 for computations.
Note that not all computations are carried out in float16;
for example, weights updating is carried out in float32 to
ensure that the model’s quality is not affected. Dynamic
loss scaling is automatically performed to avoid the gradient
of activations underflow to zero. As recommended by the
TensorFlow mixed-precision API documentation, we set the
network’s final activation data type to float32 to prevent
numeric issues.

Using PyTorch, automatic mixed precision can be utilized
by installing the Automatic Mixed Precision (AMP) API of
Nvidia Apex. It provides users with different implementa-
tions of mixed precision training. We chose the‘‘O1’’ level
because it is similar to the implementation in Keras and
also recommended by Nvidia for better numeric stability.
In the ‘‘O1’’ level, ‘‘apex.amp’’ patches PyTorch functions
that each PyTorch module calls internally according to a
white/blacklist, such that these functions inputs (including
activations and weights) are cast inside, then these functions
perform the computation and generate output with the desired
data types. About the white/blacklist of PyTorch functions,
for example, if an operation does not require much precision
and can acquire significant speedup when performed in lower
precision, such as matrix multiplications, then it will be
carried out in float16. Furthermore, dynamic loss scaling is
automatically applied to avoid gradient underflow.

Google’s Cloud TPUs use the compiler Accelerated Linear
Algebra (XLA). This compiler automatically uses bfloat16
for some operations under the hood. The bfloat16 format
requires only half of the memory space but preserves the
same dynamic range as the float32 format. Moreover, it was
shown that bfloat16 training of neural networks can achieve
the same state-of-the-art results as the standard 32-bit format
[10]. Using TensorFlow, a mix of float32 and bfloat16 can
be used but is not likely to lead to much higher performance.
PyTorch Lightning also supports this mixed precision policy.

Table 1 summarizes the investigated combinations of
devices, data types, and frameworks. In addition to single and
mixed precision training, we also explored using pure half-
precision on GPUs to see if we can gain more speedup.
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TABLE 1. Overview of investigated devices, data types, and frameworks.

E. MEASURING PERFORMANCE
The segmentation quality was assessed by computing the
Intersection over Union (IoU) score using k-fold cross-
validation where k = 4. The reason we used k-fold cross-
validation is to validate the effect of each experimental setting
in a more statistically reliable way. For each experimental
setting, We ran it on 4 folds, recorded the results of 4 folds,
calculated the mean of them, and then adopted the mean as
the final result. Since models with few filters usually need
more training epochs, we used the early stopping technique to
ensure that everymodel converged similarly. Specifically, this
criterion suggests stopping the training when the validation
IoU score is no longer increasing for ten epochs.

To determine the training speed, we first measured the
mean epoch duration, which was also averaged over the
folds. (However, we omitted the first training epoch because
it was usually much slower than the following epochs
due to program initialization.) We calculated the single-
sample processing time from the average epoch duration.
To determine the inference speed, we used the same metric,
i.e., single-sample processing time. The measuring procedure
was similar. We first fed batches of images to each trained
model repeatedly and measured the mean duration of
processing one batch. Then we calculated the single-sample
processing time by dividing the mean duration of one batch
by the batch size. We also calculated the speedup gained
from mixed precision compared to the baseline, i.e., using
single precision, with respect to each usage scenario (A usage
scenario is characterized by a combination of choices of
device, framework, model size and batch size). The speedup
was defined as the ratio between the throughputs, i.e., the
number of samples processed per second.

All samples were preloaded in RAM before training.
Additionally, with the help of the TensorBoard profiler,
we ensured that our input pipeline was not a performance
bottleneck.

F. QUANTIZATION AND DEPLOYMENT TO EDGE TPU
1) DEPLOYING MODELS ON EDGE TPU
To deploy our models on Edge TPU, the trained TensorFlow
models were quantized and converted to the TensorFlow Lite
format. Next, the models were compiled and all operations
were mapped to Edge TPU.

The PyTorch models need to be converted to Tensor-
Flow models before quantization and conversion. Thus,
we restricted ourselves to TensorFlow models only.

We successfully converted and compiled float32 models
with 8, 16, and 32 initial filters. For models trained with the

‘‘mixed_float16’’ precision policy, we first converted them to
float32 models by replacing the precision policy of each layer
with ‘‘float32’’ because the Tensorflow Lite converter does
not support quantizing and converting the models trained
with ‘‘mixed_float16’’ precision policy. During compilation,
some ‘‘Upsample2D’’ operations of themodels with 32 initial
filters were not be mapped to Edge TPU successfuly and
thus remained on CPU due to the Edge TPU memory
constraint. To avoid the inference latency caused by this,
we replaced part of the ‘‘Upsample2D’’ operations with a
custom upsampling operation, proposed by Kist et al. [13],
to ensure all operations can be mapped to Edge TPU. The
entire model with 64 initial filters was mapped to Edge TPU
successfully, but its predictions were compromised. Further
studies about the reason of this problem are needed.

2) PRINCIPLES OF QUANTIZATION
In the context of Edge TPU, quantization follows the ‘‘Post-
training integer quantization’’ scheme provided by Tensor-
Flow Lite to represent the model’s weights, activations, input,
and output using 8-bit fixed point numbers. This quantization
scheme is essentially an affine mapping, following the
equation 1 [23]:

q = round(f /s) + z, (1)

where q represents the parameters in float32 precision. s is
a scaling factor in float32 precision, it maps the real values
in the range [a, b] to an integer in the range of [−128, 127]
thus it is determined by s = (b − a)/(28 − 1). And z is the
integer representation of the floating-point zero [24]. Note
that quantization is not rounding a floating point number to
the nearest integer. For example, for floating point numbers of
the range [0.0, 1.0], the floating point zero should be mapped
to the integer -128 instead of the integer 0.

With the quantization scheme above, a 32-bit floating-
point number can be represented by an 8-bit fixed-point
number without much accuracy loss. Furthermore, floating-
point operations like convolution can be carried out in
integer arithmetic, which can save a lot of memory and
computation costs. Quantization may affect the accuracy.
Generally, a small drop in accuracy can be observed, and
in rare cases, models can gain some accuracy after the
quantization.

III. RESULTS
We implemented the same U-Net architecture using PyTorch
and TensorFlow and carried out training and inference on
different devices including Nvidia RTX3090, A100, A40
GPUs and Google Cloud TPUs. On each device, we varied
model size, batch size and precision policy to investigate
the influence that these factors have on the effectiveness of
the mixed precision API. Besides, we quantized the float32
models using ‘‘post-training integer quantization’’ and then
deployed them on Edge TPU. At last, we compared the
inference speed of Edge TPU and HPC GPUs.
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A. MIXED PRECISION TRAINING APIs HAVE BETTER
USABILITY THAN MANUALLY CONFIGURING THE
PRECISION
To demonstrate the usability of the mixed precision APIs
that we investigated from another perspective, we explored
pure half-precision training, which is not recommended by
the API yet of particular interest to many researchers; for
example, in Keras, we manually set each layer’s data type
policy to float16 to make model weights being created,
stored, and updated in float16. We also tried another
approach, i.e., setting the default float type of TensorFlow
as float16 to enforce all computations to be performed in
16-bit. In both cases, dynamic loss scaling must be handled
manually, introducing an additional hyper-parameter to tune.
For PyTorch, we used ‘‘O3’’ level to enable pure float16
training. Under ‘‘O3’’ level, no loss scaling is performed,
model weights are created and stored in float16, and all
computations, including updating the weights, are performed
in float16. However, all these trials resulted in a non-
trivial drop in the IoU score compared to full precision
training. Micikevicius et al. [9], [25] analyzed the reason.
They claimed the reason has three folds. First, during the
weights updating procedure, the magnitude of the updates
is too tiny compared to the weights. With float16 arithmetic
of performing add-operation, this can lead to the updates
underflow to zero, which hinders the network from being
fully updated. Second, before updating, the error tensor
itself can fall out of the representative range of float16 and
thus underflow to zero. Third, during the loss-calculating
procedure, the accumulation operation is performed in
float16, likely leading to loss overflow and thus sabotaging
the whole training. It is worth pointing out that the solutions
to the unstable training problem were implemented into the
mixed precision API.

B. MIXED PRECISION SPEEDS UP TRAINING AND
INFERENCE
We trained the traditional U-Net architecture with 64 initial
filters using single and mixed precision to investigate
potential differences in the performance. Figure 2a shows the
single-sample processing time for the training phase using
float32 on different devices with different deep learning
frameworks. It can be seen as a baseline. It also describes
the computing power of the different devices and the
compatibility between frameworks and devices. As shown
in Figure 2a, we observed in our experiments that the
training on TPU was more than twice as fast as on the
GPU A100 when using TensorFlow, which is within our
expectations because Cloud TPU is more specialized for
tensor processing than GPUs. Figure 2b shows how the
effectiveness of mixed precision API varies on different
devices with different frameworks. We observed that on
all GPUs, the single-sample processing time of PyTorch
was shorter compared to TensorFlow. However, this is not
necessarily implying a superior performance of the mixed

FIGURE 2. Training speed and speedup of U-Net with 64 filters on
different devices. The value of each bar is the mean value of 4 folds.
We also measured the standard deviation of each value over the 4 folds,
and drew it as error bar on top of each bar. (a) Average time per image
during training using float32 precision. (b) Speedup gained from mixed
precision training compared to the baseline, i.e. float32.

precision API of PyTorch than TensorFlow. This could also
be caused by different CUDA versions installed with each
framework. As shown in Figure 2b, we observed in our
experiments that mixed precision drastically reduced the
training time on all investigated GPUs to varying extents.
For example, a 1.9x speedup was reached on RTX3090
using TensorFlow. This is most likely due to the fact that
the three investigated GPUs have Tensor Cores that enable
fast float16 matrix multiplications. As shown in Figure 2b,
we did not observe any significant speed-up effect when
we applied mixed precision training manually on Cloud
TPUs. We infer the reason might be that the XLA compiler
performs many computations using bfloat16 under the
hood.

C. MIXED PRECISION TRAINING DID NOT REDUCE
SEGMENTATION QUALITY
We studied whether mixed precision training would affect the
quality of predictions by computing the IoU score using k-
fold cross-validation. Despite the varyingmodel size, figure 3
shows that mixed precision did not reduce our models’
segmentation quality. This finding confirms that mixed
precision training does not lead to a loss of model accuracy
[9]. Additionally, given the same early stopping technique
and the same stopping criterion applied, we observed in our
experiments that all models reached approximately the same
IoU score, as shown in Figure 3. We found that, for example,
a model with 8 filters reached about the same IoU score as
larger models. However, a small model usually takes more
epochs to converge.

D. SPEED DEPENDS ON MODEL SIZE AND BATCH SIZE
Despite the frameworks and precision, we found that the
training and inference speed (i.e., single-sample processing
time) decreased when the model became larger, as demon-
strated in Figure 4.
However, larger models gain more speed-up effect from

mixed precision training, despite devices and frameworks,
as Figure 5 shows. In contrast, mixed precision does not
necessarily result in a speedup for very small models,
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FIGURE 3. Distribution of mean validation IoU score from 4-fold
cross-validation, using TensorFlow and PyTorch on different devices. The
IoU score was approximately the same using single and mixed precision
training.

FIGURE 4. Comparison of training and inference time using single and
mixed precision, as well as different frameworks on the GPU A40.
(a) Mean training time over 4 folds with a fixed batch size of 128.
(b) Mean inference time over 4 folds with a fixed batch size of 128.

FIGURE 5. Training speedup (averaged over 4 folds) gained from mixed
precision compared to the baseline, i.e. single precision training. (a) Using
TensorFlow. (b) Using PyTorch.

such as U-Net with 8 initial filters. Note that when we
increased the model size, we did not observe an obvious
trend for the speed-up effect on Cloud TPUs, as demonstrated
in Figure 2.

Furthermore, to investigate the influence that batch size
has on the effectiveness of the mixed precision training API,
we varied the batch size during inference while fixing the
model size to 64. We found that the positive speed-up effect
could be guaranteed only if the batch size exceeds eight,
as Figure 6 demonstrates. As shown in Figure 6, we also
observed in our experiments that the Tensorflow inference
speed is slower than the PyTorch inference speed when the
batch size is small.

E. EDGE TPU INFERENCE TIME AND IoU COMPARISON
To compare the inference speed between Edge TPU and HPC
GPUs, we prepared the models trained in float32 precision
and deployed them on different devices. Due to the limited
memory on Edge TPU, the only acceptable batch size is one.

FIGURE 6. Mean inference time per image on different devices using
single and mixed precision on U-Net of 64 initial filters. For the TPU, the
local batch size per TPU core is displayed. (a) Mean inference time per
image using TensorFlow. (b) Mean inference time per image using
PyTorch.

FIGURE 7. (a) Comparison of the mean inference time per image of
different models that were trained in single precision with different initial
filters and a batch size of one using TensorFlow framework.
(b) Comparison of the mean segmentation IoU between Edge TPU and
GPUs.

Thus we applied this batch size to all devices during the
inference. We observed that for a small model, such as U-Net
with 8 initial filters, Edge TPU outperformed all HPC GPUs
regarding the inference speed. However, Edge TPU lost its
advantage when themodel size increased, as Figure 7a shows.
We infer it is due to the limited memory and power design of
Edge TPU. The IoU in Figure 7b was calculated as follows:
for IoU of Edge TPU, it was averaged over 1024 validation
images; for the IoU score of GPUs, it was first averaged over
1024 images, then averaged over different devices, i.e., A40,
A100, RTX3090. Compared with inference on GPUs, only
a slight drop was observed when we ran quantized models
on Edge TPU. The results prove that Edge TPU can boost
models’ inference speed and maintain their performance
simultaneously. The comparison does not involve models
trained with ‘‘mixed_float16’’ precision policy because after
we quantized these models, we did not observe any difference
between these models and the quantized models trained with
float32 regarding inference speed and IoU. We infer the
reason is that the models trained with mixed precision policy
store their weights in float32 and thus have the same ability
(compared to the models trained with float32) to represent
what the networks learn from the data.
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IV. DISCUSSION
A. TAKEAWAYS
1) SPEEDING UP TRAINING ON GPUs
Our experiments show that the mixed precision training
API provided by TensorFlow and Nvidia is a helpful tool
to speed up training procedures on GPUs with little effort
and without jeopardizing model performance. We show that
researchers should expect a variable speed-up effect when
using the mixed precision training API with different devices,
frameworks, model sizes, or batch sizes. Especially we
observed that the difference of the runtime does exist between
using PyTorch and Tensorflow, just as Georgiou et al.
reported in [3]. Additionally, with a larger model and larger
batch size, researchers can expect a more significant speed-up
effect from mixed precision training.

2) USING TPUs FOR COMPLEX NEURAL NETWORKS
Our findings suggest that for training a model with many
parameters on a large dataset, a TPU should be considered
as it is much faster than modern GPUs. A drawback is that
TPUs are not as accessible. Google Colab offers free use of
TPUs. However, their availability is often limited. Another
option is accessing TPUs via the Google Cloud Platform.

3) FAST AND LOW-COST INFERENCE ON EDGE TPU
The inference speed of our smallest encoder-decoder network
is much faster on Edge TPU compared to GPUs, although it
requires much less energy and costs. Therefore, Edge TPUs
should be considered as an alternative to GPUs in terms of
inference. In addition, Edge TPU can be used for efficient AI-
based applications on portable devices. It is possible to deploy
a mixed precision-trained model to Edge TPU by converting
it to a single precision model at first and then quantizing it.
However, limitations of supported operations andmodel sizes
must be considered.

B. LIMITATIONS
We used ‘‘speed-up’’ as an indirect metric to estimate
the energy efficiency of the mixed precision training API.
We notice that in previous works, researchers either proposed
their own method [2], [5], [6] or used widely accepted
methods [14], [15] of estimating energy consumption. This
may limit the contribution of our study, preventing it from
being used to accurately quantify the energy efficiency of
the mixed precision training API. However, we believe our
work is still helpful for researchers seeking a simple but
effective way to make their network development more
energy-efficient and economical.

To align the experimental environment, we installed
the same version of PyTorch for different devices (same
for TensorFlow). However, we did not enforce the same
CUDA version between PyTorch and TensorFlow. This may
affect the validity of the framework comparison and the
effectiveness of the mixed precision training API may be
also affected. Georgiou et al. [3] proposed using a Docker

container to create a consistent environment in which all
dependencies of TensorFlow and PyTorch are the same.
This is especially convenient for testing models on different
devices.

V. CONCLUSION
In our work, we have considered as many factors as possible
in relation to the effectiveness of the mixed precision API
to showcase to researchers the efficient ways of using it.
Besides, we showcase the great advantage of using Edge
TPU for model inference by comparing its inference speed
with HPC GPUs. To our best knowledge, this area has rarely
been investigated. We highlight a simple but helpful practice
of using mixed-precision training API during training and
deploying models on Edge TPU for inference, as this can
bring about up to 1.9× speed-up for training and up to 6.0×
speed-up for inference with little effort. With the ultra-low
power consumption and cost of an Edge TPU (compared
to the HPC GPUs), the out-of-the-box approach can help
researchers who lack experience with sophisticated energy-
efficient methods but want to save energy, reduce research
funding for power costs and equipment costs, or accelerate
their model development to achieve their goals.
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