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ABSTRACT Micro-Grid (MG), a paradigm shift in conventional distribution power systems, facilitates the
integration of many Renewable Energy Resources (RERs), storage units, and loads. The key catalyst behind
this emerging paradigm is the increased attention to environment-energy sustainability nexus. This novel
concept exhibits various attractive features such as sustainability, reliability, resilience, improved power
quality, energy security, and liberalization of electric service industries. However, the integration of RER
units and load participation into the MG brings various challenges to the stability and operation of the
system. These challenges arise as a consequence of the intermittent nature of RERs due to their stochastic
behavior and increased level of non-linearity associated with smart load participation. Furthermore, in recent
years, the development and deployment of RER in MG networks have demonstrated exponential growth.
Therefore, in order to achieve a holistic analysis, a comprehensive review study about various aspects of MG
should be investigated. In this regard, this rigorous survey paper presents the meticulous study of various
aspects, historical evolution, and key enabling yet transdisciplinary technologies of MG, such as various
components, generation resources, load classification, communication infrastructure, energy management,
control and optimization, operational modes, and various frameworks, configurations, architectures, and
topologies-including the emerging concept of Networked MG with flexible boundaries. This study also
reviewed various storage and protection systems in MG, considering the attention to their contributions to
the stability of the system. This review also underscores many key issues, challenges, and factors related to
the sustainable development of the MG system. Lastly, an all-inclusive cross-sectoral analysis that includes
cyber-physical systems, power quality, information and data management, conversion systems, synthetic
inertia, and some governance issues has been provided, along with the future directions, progression, and
latest development in the field of MG. This survey, therefore, greatly assists and enables researchers to study
and analyze the development and prospect of MG technology conveniently.

INDEX TERMS Micro-grid architectures, communications technology, load classification, power genera-
tion resources, storage technology.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and The most novel aspect of modern power networks is the
approving it for publication was Alexander Micallef . deployment of Renewable Energy Resources (RERs) in
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parallel with conventional electricity generation and local
load in small interconnected systems, i.e., Micro-Grid (MG).
The advantages of this transformation at a small scale
include expandability, efficiency, reliability, and economic
benefits [1]. In addition to the abovementioned advantages
an attractive feature of this localized system is its ability
to operate both in autonomous and grid-connected modes.
These benefits, in turn, bring three Ds concepts in the
world’s electricity systems, i.e., Decentralization, Democra-
tization, and Decarbonization of energy, mainly following
the bottom-up integration approach for Distributed Energy
Resources (DERs). In the United States, the key driver for
MG deployment was to enhance the resiliency and reli-
ability of the grid, while in Europe, climate change and
large-scale integration are two significant factors of MG
development [2]. In order to reduce the anthropogenic car-
bon emissions released by burning fossil fuels for electric-
ity generation, climate scientists have concluded that the
current level of around 60-70% fossil fuels dependence
must be reduced to under 20% to keep the rising tem-
perature below 2 degrees Celsius [5]. Various DERs and
RERs to counterbalance the energy supply and demand are
non-dispatchable, distributed, decentralized, and intermittent.
Thus, the key driving factor behind this paradigm shift is
energy- environment- security nexus, and figure 1 illustrates
these factors in detail [2].

Moreover, the integration of DERs in the conventional
electrical grid to fulfill the environment-energy nexus
requirements is complex to manage and control. However,
the deployment and inclusion of the aforementioned energy
resources locally with smart/flexible load and storage sys-
tems in the form of MG is the most appropriate and viable
solution. This MG appears to the power utility at the dis-
tribution level as a collective entity of small-scale sources
and consumers, hence, can operate in ways to modify the
net load profiles easily in comparison to tracking and coor-
dinating every DERs incorporated [6]. Furthermore, the cost
parity of RERs (such as solar photovoltaics and batter-
ies) with the conventional generation accelerates the con-
cept of peer-to-peer energy trading i.e., prosumers. Thus,
with the utilization of MG architecture in addition to smart
DERs integration, the smooth acceleration of “Energy Pro-

Sumption” — energy import and export at the user end
while balancing the supply-demand mismatch locally is
possible.

The range of benefits associated with DERs, such as
ancillary services, reduced system losses, improved power
quality, reactive power and voltage support, deferral of capac-
ity investment, ecofriendly nature, combined heat, and power,
and stand-by generation are some of the critical driving fac-
tors in this transition to decentralization of power system.
However, the inclusion of various DERs results in critical
management and control issues within the MG paradigm
because of their stochastic behavior. Therefore, one of the
important requirements for MG’s proper operation is relia-
bility and stability.
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The MG is not a new concept; it has a long history starting
with Thomas Edison’s first decentralized Direct Current MG
in Manhattan in 1882, which was overshadowed by a cen-
tralized power network (the 1920s-1970s) due to its ability to
draw a huge amount of power from distant energy resources
(hydropower) and to connect multi-generation units to feed
diverse load. In the 1990s, DERs benefits and carbon poli-
cies and their associated incentives brought this decentral-
ized paradigm again into the limelight, and to date, research
is active on all topics incorporated in the MG paradigm.
Figure 2 demonstrates the brief history and evolution of
MG [2], [4].

MGs are usually comprised of various types of RERs and
DERs such as Solar Photovoltaics (PVs), windmills, hydro-
power plants, Diesel generation, and Energy Storage Systems
(EES), and the advancement in power electronics resulted
in the inclusion of a large number of these resources with
MG or main electric grid. Similarly, a few MG functional
classifications, topologies, and definitions are usually found
in the literature [7], [8], [9], [10].

Based on the recent literature survey, substantial research
conducted in MG addressing the main characteristics has
been published, and selected research articles will be dis-
cussed in subsections in this paper. Additionally, many state-
of-the-art surveys and reviews on MG features exist within
the literature. Selected review articles are summarized in
Table 1. In Table 1, “,/” justify the presence of features,
while “X” represents that the feature is absent in the referred
study.

In light of the above-stated issues, the main contributions
of this survey paper are:

Objective 1: Currently, MG is the most appropriate solu-
tion for replacing the conventional electric grid due to its
reliability, efficiency, and resiliency. In order to explore the
concept of advancement in MG, this survey paper thoroughly
investigates the architectural model of MGs, i.e., AC MG,
DC MG, hybrid MG, and networked MG (with the intro-
duction of the new concept of dynamic electric boundaries).

Objective 2: This paper presents the communication tech-
nologies, such as wired and wireless in MG and qualitatively
analyzes these in detail. Furthermore, a generalized overview
of the protection mechanisms is illustrated in this paper.

Objective 3: This paper elaborates and illustrates in detail
the utilization of RER-based DG, smart load, and storage
techniques along with their benefits within MG. This paper
also studies in detail the load classification incorporating
fixed/flexible controllable load concepts and the recent trends
in research in the aforementioned MG domains.

Objective 4: The overview and inclination of the recent
research literature, issues, and challenges in resources, stor-
age, and load technologies in MG are comprehensively pre-
sented in tabular form.

Objective 5: This paper surveys advanced optimization,
energy management, and control methodologies deployed in
MG and their interplay within MG stability and reliability
scenarios.
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FIGURE 2. Micro-Grid (MG) evolution and history [2], [4].

Objective 6: This survey provides the qualitative analysis
of some transdisciplinary technologies such as RER-based
generation units, controllable loads, communication, etc. for
MG.

Objective 7: Cross-sectoral impacts and challenges for
MG are also elaborated on in detail. Such as impact on the
economy, environment, power quality, and some associated
governance issues.

Objective 8: Moreover, this study also incorporates future
key development areas that include, communication, cyber
security, networked MG architecture incorporating dynamic
electric boundaries, advanced multi-objective and distributed
optimization and control techniques, smart load participa-
tion, mobile RER-based DG units, and improved lithium-ion
battery-based storage systems.

The rest of the paper is structured as section II presents the
generalized overview of MG and key enabling technologies.
MG architecture and various frameworks are illustrated in
section III. Section IV demonstrates control and energy
management in MG. In section V cross-sectoral analysis and
some future research, directions are investigated. Section VI
illustrates the future research direction and section VII con-
cludes the paper with a summary.

VOLUME 11, 2023

Il. GENERALIZED OVERVIEW OF MICRO-GRID AND KEY
ENABLING TECHNOLOGIES

MG technology is one of the most viable and promising
technologies to solve global environmental and economic
problems while meeting energy demands. Consequently, a lot
of the research and development in the design, energy man-
agement, operation, protection, and control of MG is dedi-
cated in recent years to providing reliable, green, sustainable,
and quality power to consumers. However, because of their
stochastic nature, RERs’ energy generation (intermittency)
is difficult to forecast. Therefore, frequency and voltage
stability, optimal power sharing and exchange between the
host grid and MG, operational control, transition between
grid-connected and Islanding modes, and the integration of
DERs and smart load/storage system remain challenging
issues.

The future of the main power grid is expected to incorpo-
rate both AC and DC technologies. Over a century, AC has
remained the dominant technology; however, the rise and
increasing use of renewable energy has led to the increasing
use of DC devices and thus resulted in DC MG infrastructure.
Renewable energy generation resources are well suited for
integration with DC grid structure, and AC technology is
more efficient for transmitting over long distances. Thus, the
power grid will likely use this technology. Therefore, AC-DC
hybrid grid infrastructure may be used to bridge the gap
between AC and DC systems. The aforementioned hybrid
structure can convert AC power to DC and DC power to
AC. Thus, the future electric grid will likely combine hybrid
AC-DC, AC, and DC structures, depending on the needs of
various regions and applications.

A. KEY COMPONENTS OF MICRO-GRID

The key MG components include Energy Generation
Resources (such as DERs), Loads, Communication Infras-
tructure, Automation and Control, Energy Storage Systems
(ESS), and Protection Devices (Smart Switches) [46]. Utiliza-
tion of various types of generation resources, energy storage
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FIGURE 3. Micro-grid benefits [2].

mechanisms, load systems, and network topologies, in turn,
defined different MG structures. Moreover, the MG can also
be categorized based on two modes of operations, which
include islanded and grid-connected [1]. DERs inside MG
can be categorized as dispatchable and non-dispatchable and
comprised of Distributed Generation units (DGs) and ESS.

RER based DERs fall under the category of non-
dispatchable DGs and cannot be controlled by the main con-
troller of MG. The uncontrolled input source mechanism of
RER based DGs, in turn, leads to volatility and intermit-
tency in output power-generation uncertainty and various
time scale fluctuations. The aforementioned characteristics
of RER based DG units consequently lead to forecast error;
therefore, in order to guarantee adequate MG generation,
these DG units are reinforced with ESS. In addition to their
main application, i.e., coordination with DG units, ESS also
provides ancillary services, including energy arbitrage, trad-
ing, and prosumer empowerment. The most critical role ESS
plays during the islanding mode. On the other hand, dispatch-
able DG units are controllable, subject to various technical
constraints such as unit type, capacity, ramp limits, On/Off
time, emission, and fuel limits [46]. Significant advantages
offered by MG include reliability, self-healing, improved
power quality, reduced carbon footprints, cost-effectiveness,
and increased energy efficiency. Figure 3 demonstrates in
detail the significant benefits offered by MG architecture for
the customer and utility grid.

Similarly, MG loads are generally sub-categorized into
two main types, i.e., Controllable (flexible, responsive)
and uncontrollable (Fixed, non-responsive). Non-responsive/
fixed loads cannot be curtailed, and under normal operat-
ing conditions, their requirements must be fulfilled. Flexible
loads are, however, shiftable/deferable loads owing to their
responsive nature to control signals such as demand response
or economic incentives or islanding operation, etc. [1], [46].
The proper and smooth functioning of MG demands smart
protective devices and smart switches for reasons such as con-
necting and disconnecting the line flows between DERs and
loads, fault propagation prevention by disconnecting or local-
izing the fault segments, and performing islanding at the point
of common coupling (PCC). The main MG controller per-
forms the scheduling based on security and economic consid-
eration. Moreover, this controller also determines interaction
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and optimal allocation of local and distributed resources.
Additionally, this controller is also responsible to decide the
connection and disconnection of MG with the main utility
grid. However, to ensure the effective and reliable interaction
among all components of MG, communication and automa-
tion infrastructures are foremost to implement [46].

Therefore, this part of the documented study presented
the five main sub-sections in order to comprehensively ana-
lyze the key enabling and transdisciplinary technologies for
MG proper operation. Figure 4 illustrates the generalized
overview of MG components. The most salient and novel
feature of MG is its islanding ability, especially during utility
grid disturbance intervals, such as during voltage fluctua-
tions, enabled by the utilization of switches at PCC. The
aforementioned ability results in an uninterrupted and reliable
supply to load, which is fulfilled by locally managed DERs.
After the fault clearance, the resynchronization of the MG can
be performed at PCC [47].

B. ENERGY RESOURCES IN MICRO-GRID

The most significant part of electrical networks is generation
units (generators) or energy resources. As a consequence of
the great impacts associated with these resources on MG,
such as emission ratio, operational and fuel cost, power out-
put, and structure, their investigation is the foremost require-
ment for MG management. Various generation resources can
be used in MG, however, owing to the diverse nature of
generators and energy resources, these sources can be used in
different combinations in order to balance the supply-demand
mismatch. The small to medium-scale DERs in MG could
be placed near customers or at utility premises to provide
energy support locally. Furthermore, this DER technology
could potentially provide power to rural and remote areas
where Transmission and Distribution (T&D) infrastructure is
costly to build. Additionally, less deployment time and low
construction cost compared to large conventional generation
and T&D units are some of the most attractive features of this
DERs technology deployment. A comprehensive and detailed
overview of DERs integration and current practices in MG,
along with issues related to integration, can be found in [48],
[49], [50], [51], and [52].

A wide variety of technology falls under the DER category,
however, most referred DERs in MG found in the literature
are subcategorized as RER based DG units and ESS [50].
Clean and sustainable nature, green governance approach,
and the enforcement of environmental agendas are the main
drivers behind the increasing emphasis on the utilization of
RER based DG units in comparison to conventional fossil
fuel-based DERs. However, RER based DERs introduced
vast volatilities and variability in power generation due to
their dependence on meteorological factors, which is the
most challenging part associated with these resources to over-
come for their increased integration and incorporation [51].
Figure 5 illustrates the comprehensive overview of DG units.

The most frequently studied topic of DERs in MG is
RER based DG units. An MG utilizing the RER based DG
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TABLE 1. Summary of the state-of-the-art surveys.

Ref MG1 MG2 MG3 MG4 LM GM M or CEM CA PM
[11] v X X X X X X X v X X
[12] v X X X X X X v X X
[13] v X X X X X X X v X X
[14] v X X X X X X X v X X
[15] v X X X X X X X v X X
[16] v X X X X X X X v X X
[17] v X X X X X X X v X X
[18] v X X X X X X X v X X
[19] v X X X X X X X v X X
[20] X X v X X X X X v X X
[21] X X v X X X X X v X X
[22] v X X X X X X X X X X
[23] v X X X X X X X v X X
[24] X Vv X X X X X X X X X
[25] X v X X X X X X v X X
[26] X Vv X X X X X X v X X
[27] X v X X X X X X v X X
[28] X v X X X X X X X X X
[29] X X v X X X X X X X X
[30] v v v X X X X X v X X
[31] Vv X X X X X X X X X X
[32] v X X X X X X X X X X
[33] v v X X X X X X X X
[34] v X X X X X X X v X X
[35] X v X X X X v v X X
[36] X X X X X X X v X X X
[37] X X X X X X X v v X X
[38] X X X X X X X X X X X
[39] X X X X X X X X v X X
[40] X X X X X X X X X X X
[41] X X X X X X X X X X X
[42] X X X X X X X X v X X
[43] Vv X X X X X X X X X
[44] v v v X X X X X v X X
[45] X X X X X X X X X X
os v v v v v

\Abbreviations used in Table I:

MGI1= AC MG, MG2= DC MG, MG3= Hybrid MG, MG4= Networked MG, LM= Load Classification in MG, GM= Generation in MG, CM=

Communication Techniques in MG, OT= Optimization Techniques in MG, CEM= Control and Energy Management in MG, CA= Cross-Sectoral

Unalysis of MG, PM= Protection Techniques in MG, OS= Our Survey Paper
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FIGURE 4. Generalized overview of micro grid structure.

units in combination with a conventional controllable gas
engine for compensating the fluctuations in supply-demand
is presented in [53]. The authors in [54] proposed a novel
concept of urban areas where the building integrated Solar
Photovoltaics (PVs) are used with the ability to run in iso-
lation even during the grid-connected mode of operation of
MG. Monte Carlo simulation framework for investigating the
sensitivity of autonomous MG assembly to large integration
of wind generation units is done in [55]. The authors in [55]
concluded that large storage units and aggregated wind gener-
ation are needed due to variability in output power generated
in such MG architectures. In [56], a rotor speed controller for
the wind farm by adjusting the active power for frequency
regulation in a capacity limited MG is introduced along
with the incorporation of a Static Synchronous Compensator
(STATCOM) for stabilization purposes during short circuit
intervals.

The combined utilization of micro-hydro and microturbine
is discussed in [57] for relatively weak natural energy regions.
This paper concludes that MG architecture can be deployed to
such regions while following some compensation mechanism
between the deployed micro sources. The feasibility study
related to micro-hydro plants is examined in [58], concluding
that MG powered by such resources can potentially serve as
a building block for system expansion and provide power to
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rural communities. Most of the studies found in the litera-
ture related to solar power-based DERs revolve around the
Maximum Power Point Tracking (MPPT) theme, which is
a unique point on the characteristic Voltage- Current curve
of solar cells for maximum power generation. In [59], fuzzy
logic based on the hill-climbing fuzzifying method of MPPT
is proposed for solar DERs. Authors in [60] proposed a modi-
fied perturb and observation technique for solar MPPT, which
demonstrates the efficient steady-state performance after pre-
senting the review and associated drawbacks of previously
published studies. An intelligent neural network-based esti-
mation technique for optimal tilt angle with an accuracy of
300 for tracking PV is investigated in [61].
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In [62] investigation of the diverse mix of RER based
DG units and their optimal allocation is conducted for coun-
terbalancing the supply-demand mismatch in small MG.
However, the uncertainty and highly volatile nature of RER
based DGs make the islanding mode of operation an imprac-
tical approach. Therefore, to tackle this issue, a study in
[63] proposed the concept of “Provisional MG™ without the
islanding ability to facilitate the expansion and integration of
non-dispatchable DG units within the existing utility grid.
Recently, the literature showed that conventional genera-
tion units-based DG, such as Diesel Generators (DIGs) and
Micro Turbines (MTs), play a critical role in modern elec-
trical networks due to drawbacks associated with RER based
DGs. Alternatively, the low cost/investment requirements and
advanced development of solar PVs and wind technology
make them the most extensive studies topic in the literature.

Consequently, limited studies revolving around other types
of DG units such as thermal power concentrated solar power,
roof-mounted solar PVs, desalination plants in combination
with Internal Combustion Engine (ICE), Tri-hybridization
of Heat, Power, and Cool (TCHP), Unified Power Quality
Conditioner (UPQC), solid waste, geothermal, fuel cells,
microturbines, etc. are found in comparison to purely RER
based DG units in MG context. Table 2 presents the energy
resources deployed in the MG context found in the literature.
The tabular comparison clearly illustrated that RER based
DG units are the most popular for MG architectures, and
their tendency has increased significantly during the past two
decades. In Table 2, “Y” justifies the presence of features,
while “N” represents that the feature is absent in the referred
study.

C. ENERGY STORAGE SYSTEM (ESS) IN MICRO-GRID

The undeniable aspect of MG is the utilization of ESS due
to DERs inclusions, their associated negative impacts, and
increased load demand and growth. Thus, the islanding events
and variability in output power generated by RER based DG
units necessities the presence of ESS units to counterbal-
ance the MG fluctuations. The benefits and cross-sectoral
impacts of ESS within the MG context are described in
figure 6. A real-time management algorithm for ESS was
proposed in [106] to mitigate the effects of pulsed loads
in MG. In [107], authors explain that only inverter-based
MG requires ESS due to their slow responsive nature dur-
ing critical management scenarios. The empirical study of
vanadium redox batteries ESS based on load and weather
operating requirements is done in [108]. In [109] control
strategy is proposed for ESS to perform load leveling and
voltage regulation, and power balancing at the same time.
The ESS management comprised of high-density battery and
ultra-capacitor is proposed in [110]. However, based on a
recent literature survey conducted for this documented study,
most of the ESS now revolves around lead-acid and lithium-
ion batteries and Electrical Vehicles (EV)/Hybrid Vehicles
(HV). Battery technology of EVs/HVs is used for managing
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FIGURE 6. Advantages of ESS for micro-grid.

the RER based DGs [92], [94], [100], [103], [111], [112],
optimal parking lot [94], [113], demand response, and smart
load management [71], [100], [103], [112], [113], [114],
[115], vehicle to home [116], as a frequency and harmonic
compensator [78], [79], [117], [118]. Other ancillary goals
achieved by ESS can be found in [98], [119], and [120].

However, zinc-based and lithium-iron phosphate batteries
may offer several advantages over lithium-ion batteries in the
context of MG. Zinc batteries provide higher energy density,
a lower cost, and enhanced safety than lithium-ion batteries
due to the absence of flammable electrolytes in these batter-
ies. Furthermore, zinc batteries provide efficient and reliable
energy storage due to high round-trip efficiency. Lithium
iron phosphate batteries also offer various advantages over
traditional lithium-ion batteries, such as enhanced stability
under high temperatures, improved safety, and longer cycle
life. Additionally, these batteries have a lower risk of thermal
runaway, thus making them a safer alternative for energy
storage.

Lithium-ion batteries are widely adopted as a consequence
of their long cycle life and high energy density. However,
zinc and lithium iron phosphate batteries may be attractive
alternatives to counter the drawbacks associated with lithium-
ion batteries, which include limited safety, flammable elec-
trolytes, and high cost [252], [253], [254].

Supercapacitors are also increasingly deployed and greatly
assist in studying the negative impacts of batteries, their opti-
mal location, sizing, and charging/discharging cycles [82],
[102], [121], [122], [123], [124], [125], [126]. Owing to the
huge penetration of different forms of load in MG, various
types of generators and storage systems are required accord-
ingly, such as thermal and electrical or their combination.
MG management strategies utilizing the heat and cool stor-
age system are presented in [87], [88], [127], [128], [129],
[130], [131], and [132]; in all these references, surplus ther-
mal power produced by CHP and Boilers is stored for later
use. In [103] and [122], hybrid ESS consisting of Lithium-
Ion, Pumped Hydro Storage (PHs), and Super Conducting
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TABLE 2. Summary of energy resources in micro-grid.

REF PV wr DIG FU CcP IE CHP TCH UPQC G CHS MTS STH HPS EH
[64] Y Y Y Y N N N N N N N N N N N
[65] Y Y Y N N N N N N N N N N N N
[66] Y Y Y N N N N N N N N N N N N
[67] Y Y Y N N N N N N N N N N N N
[68] Y Y Y N N N N N N N N N N N N
[69] Y Y Y N N N N N N N N N N N N
[70] Y Y Y N N N N N N N N N N N N
[71] Y Y Y N N N N N N N N N N N N
[72] Y Y Y N N N N N N N N N N N N
[73] Y Y Y N N N N N N N N N N N N
[74] Y Y Y N N N N N N N N N N N N
[75] Y Y Y N N N N N N N N N N N N
[76] Y Y Y N N N N N N N N N N N N
[77] Y Y Y N N N N N N N N N N N N
[78] Y Y Y N N N N N N N N N N N N
[79] Y Y Y N N N N N N N N N N N N
[80] Y Y Y N N N N N N N N N N N N
[81] Y Y Y N N N N N N N N N N N N
[82] Y Y Y N N N N N N N N N N N N
[83] Y Y Y N N N N N N N N Y N N N
[84] Y Y Y N N N N N N N N Y N N N
[85] Y Y N N N N N N N N N Y N N N
/86] Y Y N N N N N N N N N Y N N N
[87] Y Y N N N N N N N N Y N N N N
[88] Y Y Y Y N N Y N N N Y N Y N N
[89] Y Y N Y N N N N N N N N N N N
[90] Y Y N Y N N N N N N N N N N N
[91] Y Y N Y N N N N N N N N N N N
[92] Y Y N Y N N N N N N N N N N N
193] Y Y Y N N N N N N N N Y N N N
[94] Y Y N N N N N N N N N N N N N
[95] Y Y N N N N N N N N N N N N N
[96] Y Y N N N N N N N N N N N N N
[197] Y Y N N N N N N N N N N N N N
[98] Y Y N N N N N N N N N N N N N
[99] Y Y N N N N N N N N N N N N N
[100] Y Y N N Y N Y N N N N N N N N
[101] Y Y N N N Y N Y N N N N Y N N
[102] Y Y Y N N N N N Y N N N N N N
[103] Y Y N N N N N N N Y N N N N N
[104] Y Y N N N N N N N N N N N N Y
[105] Y Y N N N N N N N N N Y N Y N
Abbreviations used in Table II:
PV= Photovoltaic, WT'= Wind Turbine, Fu= Fuel Cell, DIG= Diesel Generators, CP= Concentrated Solar Power, I[E= Internal Combustion Engine, CHP=
Combined Heat and Power, TCH= Tri Hybridized Heat, Cool and Power, G= Geothermal, MTS= Micro Turbine, UPQC= Unified Power Conditioner, EH=
Electric Water Heater, STH= Solar Thermal, HPS= Heat Pumps.
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TABLE 3. Summary of the recently published articles of ESS installed in
MG.

REF EVS | LI LA PHS | SME | SUC | FW | HS HHC
[64] Y N | N N N N N N N
[65] Y N N N N N N N N
[67] Y N N N N N N N N
[69] Y N | N N N N N N N
[70] Y N | N N N N N N N
[130] | N Y Y Y N N N N Y
1299 | N | Y | Y | N N N | N | N Y
[87] N Y Y Y N N N N Y
[131] | N Y Y Y N N N N Y
[132] | N Y Y N N N N N N
[90] N Y Y N N N N Y N
[91] N Y Y N N N N Y N
[119] N Y Y N N N Y N N
[122] Y Y Y N Y Y N N N
[103] Y Y Y Y N N N N N
Abbreviations used in Table III:
EVs= Electrical Vehicles, LI= Lithium-Ion Battery, LA= Lead-Acid
Battery, PHS= Pumped Hydro Storage, SME= Super Conducting
Magnetic Storage, SUC= Super Capacitor, FW= Fly Wheel, HS=
Hydrogen Storage, HHC= Hybrid Heat and Cool Based Storage

Magnetic Storage (SME) is proposed as a consequence of
their increased storage capability, voltage regulation, and less
time delay. To store the surplus electrical energy, hydrogen
storage is used [68], [89], [90], [91], [92]. These Studies
illustrated that the low cost and variability of lithium-ion
and lead acid batteries are the main reasons behind their
increased deployment in MG’s ESS management. However,
the technologies based on SMEs and PHs are rarely reviewed
in the literature. Table 3 presents the installed ESS in MG
during recent years’ studies.

D. LOAD CLASSIFICATION IN MICRO-GRID

In modern power networks maintaining the balance between
system demand and scheduled generation is one of the most
critical functional requirements for the reliable operation of
these networks. With the advent of advanced metering infras-
tructure and the implementation of demand side management
programs, now the load in the MG setting can also participate
in energy management. This new concept is also referred to
as load response or demand response. The techno-economic
benefits of the aforementioned concept include reserves for
long-term generation planning, enhanced T&D investment,
and improved operational efficiency [133].

Therefore, the consumer’s load has transformed into con-
trollable and smart resources or sinks as required while par-
ticipating in demand response management programs. Other
ancillary services provided by this concept include grid bal-
ancing either by shifting the loads in real-time (during peak
power generation time) or by shifting them to off-peak time
(load shaving mechanism) [ 134]. Furthermore, this load man-
agement approach greatly assists in achieving multiple other
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goals, such as optimal load distribution, reduced cost and
pollution emission, and improved reliability. The loads in
MG can be categorized into four main types: (i) importance,
(ii) consumption, (iii) responsive, and (iv) nonresponsive
nature. Critical (hospital and military etc.) and non-critical
(household etc.) fall under the first category of MG load
classification [64], [70], [71], [73], [76], [88], [92], [102],
[104], [116], [118], [121], [125], [131]. In the consump-
tion category, residential, commercial, and industrial subcat-
egories are defined based on the amount and dimension of
load demands [66], [70], [71], [75], [77], [83], [98], [101],
[102], [113], [115], [122], [125], [128]. The load catego-
rization based on the responsive nature includes flexible
and curtailable loads, which include ventilation systems and
electric vehicles etc. [66], [83]. The fourth category of load
classification is uncontrollable fixed loads, i.e., without any
communication channel between consumers and utility [64],
[73], [76], [92], [99], [104], [116], [118]. Table 4 summarizes
the recent studies found in the literature for the load catego-
rization of MG.

E. ISLANDING DETECTION TECHNIQUES

Islanding phenomena occur during power outages when the
main grid is disconnected, and the MG continues to supply the
power to local loads. However, it may result in unexpected
voltage and frequency fluctuations and can be dangerous
for workers restoring the power connection. Consequently,
it is essential to quickly detect islanding and disconnect the
MG from the main power grid in order to avoid safety haz-
ards. Some commonly used islanding detection techniques
include [228], [229]:

« Passive Techniques: The passive techniques rely on
the changes in frequency and voltage of MG during
the islanding mode, such as the Rate of Change of
Frequency technique measures the frequency deviation
of MG from the main power grid (nominal) frequency,
which is also referred to as frequency shift technique.
Similarly, the vector shift technique is used to measure
the phase deviation of voltages between MG and the
main grid, and if this difference exceeds a certain thresh-
old, then it indicates the disconnection of the main power
grid.

« Impedance-Based Techniques: The impedance based
techniques measure the impedance of the MG and com-
pare it with a predefined value. If the impedance exceeds
the aforementioned value, it indicates the islanding of
MG.

« Active Techniques: Active techniques involve the injec-
tion of small signals into MG to detect the islanding,
for instance, in the case of the active frequency shift
technique, a small frequency deviation is injected into
MG and monitors whether the main power grid responds
to it or not.

o Hybrid Techniques: These techniques combine both
passive and active techniques to improve islanding
detection accuracy.
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F. MG PLANNING TECHNIQUES

MG planning involves designing and optimizing the
operation, configuration, and size of components within
MG ensuring to meet the energy demands of local loads.
There are several MG planning techniques, and Table 5 also
demonstrates some of the optimization techniques used in the
MG context. However, some commonly used MG planning
techniques are [230]:

Mixed-Integer Linear Programming: This technique is the
extension of linear programming and incorporates the binary
and integer decision variables.

Nonlinear Programming: This technique involves the opti-
mization of nonlinear objective functions subject to nonlinear
constraints and is used for nonlinear characteristics of the
system components [231].

Rule-Based Approaches: These approaches utilize a set of
rules to determine the size of MG components, such as the
size of the storage system may be determined by the expected
duration of power outages, etc. Some examples of rule-based
approaches used for MG planning include Rule-Based
Heuristics and rule-Based Expert Systems etc. [232].

Simulation-Based Approaches: These approaches use sim-
ulation tools to model the behavior of the MG compo-
nents and evaluate different design and operation scenarios
[230], [231].

G. COMMUNICATION TECHNOLOGIES IN MICRO-GRID
Based on the recent literature survey, automation and smart-
ness of MG are achieved because of the deployed commu-
nication structures and are one of the key factors behind
intelligent and optimal management, control, and protection
of MG [135], [136], [137]. Therefore, depending on scenar-
ios such as geographical location, protection, management,
number of DERS, load importance, and control mechanisms,
several communication protocols and configurations have
been applied in MG. Moreover, the communication tech-
nology deployed in MG is categorized into two sub-groups:
wired and wireless. The most prominent international stan-
dards include the International Electro-Technical Commis-
sion (IEC) and the Institute of Electrical and Electronics
Engineering (IEEE) [138], [139], [140], [141]. These stan-
dards and types of communication technology used in MG
are comprehensively illustrated in figure 7.

Furthermore, the research trend in MG is usually
dichotomized into electrical and communication because the
performance of the first is highly dependent on the second.
Thus, several research studies have attempted to define the
architecture, technologies, and requirements of communica-
tion infrastructure in MG. Authors in [148] classify commu-
nication into three levels that include Home Area Network
(HAN), Field Area Network (FAN), and WAN, and further
define appropriate technologies for each level. They con-
cluded that wireless technology could be a more efficient
solution for use in MG in comparison to wired one as a
consequence of physical constraints associated with wired
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TABLE 4. Summarized version of recent literature for load categorization
in MG.

REF
[64]
[121]
73]
199/
[76]
92/
[104]
[118]
[66]
[115]
183]
187]
198/
[75]
[131]
188/
5]
[130]
[132]
[100]
[103]
[127]
169/
7]
93/
[114]
[128]
[101]
[70]
185]
[113]
[71]
[125]
[122]
[102] Y Y

Abbreviations used in Table IV:

ResL = Residential Load, CL = Commercial Load, InL = Industrial Load,
CrL = Critical Load, NonCrL = Non Critical Load, RL= Responsive Load,
NonRL = Nonresponsive Load
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technology. Security, reliability, complexity, and Quality of
Service (QoS) are some challenges mentioned in this study.
A comprehensive survey on MG communication technolo-
gies and testbed can be found in [149], in which authors
reviewed the implemented communication infrastructure in
MG, however, future trends and directions are missing in
this article. The study in [150] presented the challenges asso-
ciated with the deployment of wireless technology in MG.
Feasible network topology for MG is demonstrated in [147]
and presents the challenges related to the smartness of MG,
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Wired ireless
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Standard (RS)-232
Recommended — Bluetooth

Standard (RS)-485

Power Line f—— Wi-Fi

= Interconnection Standard for DERs

= Interconnection between DERs and Utility

= Alternate configuration for MG
Management

= Explicitly deals with DERs:

Power Generation Plants
» Uniform Model of Data Exchange

+ Standard to Control and Monitor Wind

Communication(PLC)

—— WiMAX
|+ Optical Fiber .

—— Global System for Maobile
(GSM)

Ethernet

= Protection

e Safety

= Power Quality

= Information/Data Exchange

— LoRa

Satellite C
— 5G/4G/3G/HSPA

International Electro technical

Institute of Electrical and
Electronics Engineering
(IEEE)- 2030 series

[Commission (IEC)- 61850

l

First Version

|Automation Protocol in Power Industry,
Local Area Network (LAN)

Use Open System Interaction (OSl) Model

New Information Exchange Model for DERs

e Series 2030.1, 2030.2, 2030.3
Interconnection of DERs

= Series 2030.4
Control and Optimization of DERs

e Series 2030.5

|

Updated Version

Exchange of data and control signals using
web services

Wide Area Network (WAN) by incorporating

IEC 61850-7-420 [Basic Communication for DERs]

IEC 61850-80-7 [Object models for power converters
in distributed energy resources (DER) systems]

IEC 61850-8-2

[Specific Communication Service

Mapping (SCSM}—Mapping to eXtensible Messaging

Presence Protocol (XMPP)]

IEC 61850-90-12 [Wide-area network engineering

guidelines]

FIGURE 7. Communication types and standards deployed in MG [45].

such as bandwidth, cybersecurity, reliability, and latency. The
clarified study about data flow and communication protocols
for MG — Internet Protocol Suites, Modbus, DNP3, and IEC
standards can be found in [151].

The efficient and appropriate communication technol-
ogy in MG depends on different hierarchical levels in MG
and their associated specifications and constraints (involved
in information exchange). Different control levels in MG,
such as Advanced Metering Infrastructure (AMI), Demand
Side Management (DSM), and Energy Management System
(EMS), require highly secure and reliable communication
infrastructure, however, their delay and data rate character-
istics vary according to their coverage characteristics. More-
over, the most important requirement for communication
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structure in MG is backup power. These backup power phe-
nomena are critical during an outage interval. Furthermore,
this requirement is also proportional to various levels of
control in MG, such as 72 hours for DSM to one hour for
EMS. In parallel to hierarchical control levels in MG, com-
munication infrastructure can also be divided into a hierarchy
(like Smart Grid) that includes three different levels: Home
Area Network (HAN), Field Area Network (FAN), and Wide
Area Network (WAN). Starting with HANS, the home energy
management system via controlling smart loads that include
Electric Vehicles and certain appliances greatly assisted in
utility-based demand response programs (such as Real-time
pricing and direct load control, etc.). Similarly, FAN assisted
in coordination among various RER DGs, operators, and ESS
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Bandwidth
HEMs ~(9.6-56 Kbps)
IV2G/VC +(9.6-56Kbps)

Latency
HEMSs -(200msec-2sec)
V2G/VC -(2sec-5min)

MG Communication
Specification

" wan |

Bandwidth
DR-(14-100Kbps)
DMS -(9.6-100Kbps)

Latency
DR -(500msec-minutes)
DMS -(100msec-2sec)

Bandwidth
AMI -(500Kbps)
DERS/ESS +(9.6-56Kbps)

Latency
JAMI -(2sec-15sec)
DERS/ESS -(20msec- 15sec)

FIGURE 8. Communication specification of MG [152].

and thus required much higher bandwidth as compared to
HANSs. At the highest level of this communication hierar-
chy, WANs embrace the exchange of information during the
grid-connected mode, which means the coordination between
EMS and DSM. Figure 8 demonstrates the communication
specification of MG [152].

1) WIRED COMMUNICATION TECHNOLOGY IN MICRO-GRID
At the HAN level, the wired technology used in MG usually
consists of Power line communication (PLC) and ethernet,
while at the FAN level, coaxial cable and Digital Subscriber
Line (DSL) are used in addition to PLC and ethernet. Finally,
at WAN, fiber optics are used. The proliferation and interac-
tion of various sensors, actuators, controllers, and AMI made
communication structure an inevitable part of MG. In the case
of MG, especially when it is located in rural/remote areas,
the implementation of wired communication technologies
costs more in comparison to wireless. However, the asso-
ciated advantages of this technology are fewer interference
issues and non-dependence on battery power as compared to
wireless technology. The PLC, a widely and extensively used
communication technology in power systems due to lower
implementation costs, is broadly categorized into three types
for MG applications. These three types include Broadband
PLC, narrowband PLC, and ultra-narrow band PLC. Applica-
tions and characteristics of wired technologies are presented
in figure 9 [153], [154].

Some advantages and disadvantages of wired technologies
are (i) coaxial cable; advantages are easy installations and
lower cost, but lower bandwidth with high susceptibility to
noise are disadvantages, (ii) ethernet; merits include high reli-
ability, security, and capacity while demerits are complexity
and less ideal performance in real-time (iii) DSL; econom-
ical solution but poor data quality is the main drawback,
(iv) fiber optics; benefits are on-interference of noise (elec-
tromagnetism), high security, and good latency, however, low
scalability and expensive nature are biggest demerits of this
technology, (v) PLC; already existed infrastructure utiliza-
tion make this technology a cost-effective one but sensitivity
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to weather and power grid noises are downsides of this
technology.

2) WIRELESS COMMUNICATION TECHNOLOGY IN
MICRO-GRID

Wireless technologies, including cellular networks, satellite
systems, wireless LAN, Personal Areas Networks (PAN),
and lower power personal WAN, are attractive candidates
for deployment in MG due to their cost-effective nature and
reduced complexity. The prominent and widely used technol-
ogy in HAN and AMI is Zigbee, which can provide three
different topologies: star, tree, and mesh. Reduced energy
consumption, lower cost, and the utilization of an unlicensed
2.4GHz band are some key factors behind the wide adapt-
ability of Zigbee. However, the biggest demerit is the huge
risk of interference with this technology. Another appropriate
communication technology for HAN and FAN is Wireless
Fidelity (Wi-Fi) because of its increased penetration into
internet infrastructure. For WAN, it is implemented under
IEEE 802.11. To facilitate the peak shifting mechanism,
especially in the HAN scenario (AMI), Worldwide Interoper-
ability for Microwave Access (Wi-MAX) is reported among
the most appropriate technologies, operating in the licensed
2.5 or 3.5 GHz spectrum, but they are expensive for deploy-
ment in MG and operate under IEEE standard 802.16.

The better data rate and bandwidth of cellular technologies
such as Global System for Mobiles (GSM), General Packet
Radio Service (GPRS), 3G, 4G/5G, etc., are the important
catalysts behind the usage of this technology in the WAN
scenario for exchanging information among various meters,
control, and supervisory level in MG. However, the cost
associated with the licensed spectrum and severe sensitivity
to weather conditions is critical drawbacks. Long Term Eval-
uation Advanced (LTE-A), known as 4G, is the developed
version of conventional analog signal communication tech-
niques and is also advanced in terms of data ranges compared
to its predecessor, 3G. Further noticeable advancement is
introduced by 5G to incorporate Internet of Things (IoT)
applications in MG. Moreover, 5G technology with three
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FIGURE 9. Wired technology in micro-grid [153], [154].

characteristics, such as Multi-In-Multi-Out, Millimeter-wave
(mm-wave), and ultra-dense network, introduced extra bene-
fits of higher bandwidth, incorporation of larger nodes, higher
security, and lower latency rate. The services offered by the
5G, as determined by the International Telecommunication
Union, include ultra-reliable and low-latency communica-
tion, enhanced mobile broadband, and massive machine-type
communication. The massive machine-type communication
can support up to 1 million per Kilometer square connected
devices, thus facilitating the implementation of IoTs in MG
(smart home) [155]. The data rate and energy consumption
equilibrium in WAN settings is achieved by introducing the
long-range (LoRA) and SIGFOX in cellular networks. The
usage of star topology resulted in simplicity and reduced
power consumption [156].

The communication requirement of remote area MG can be
fulfilled by satellite technology. Additionally, this technology
may be used for creating backup by providing redundant
channels. Satellite technology is subcategorized into low
and medium earth orbits and geostationary orbits. The main
demerits of this technology are the high latency rate and
cost [157]. Figure 10 demonstrates the wireless technologies
in MG [45].

H. PROTECTION MECHANISM IN MICRO-GRID

The direct coupling and interconnection of various DGs in
MG are infeasible thus, power converter-based interfacing is
required for the proper synchronization of these units [158].
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However, this interfacing scheme based on power electronic
converts introduced certain protection challenges, especially
in the case of inverter-dominated MG. Furthermore, the cur-
tailment of output currents in converters may undermine
the accuracy of conventional protection techniques for fault
currents [159]. Therefore, in the literature, some authors pro-
posed the idea to accommodate dynamic behaviors of fault
currents by using directional and adaptive features [160],
[161], [162]. In the study [15], online and offline monitoring
of the state for accomplishing the automatic relay settings
to respond to a fault condition is demonstrated. Intelligent
optimization techniques to optimally place DG units to assist
in protection coordination are presented in [163] and [164].
The authors in [165] and [166] illustrated the wide-area pro-
tection and monitoring scheme for smart MG using Phasor
Measurement Units (PMUs) and showed that the global syn-
chronization mechanism of PMUs greatly contributed to the
smart management of MG.

Primarily, one of the key factors behind the inconsistent
current magnitude in MG is the stochasticity and intermit-
tency of RER based DGS. Moreover, the nature of the fault
current is dependent on the type of DG as well as in the
case of Micro-Hydro DG Units, the transients (high initial
fault currents) are very high before reaching the steady state
because of the involvement of synchronous machines in these
DG Units (energized field windings) [167]. However, in the
case of induction machine-based DGs, the fault currents
are initially high but decay very fast and reach steady-state

60969



lEEEACCGSS N. Shaukat et al.: Decentralized, Democratized, and Decarbonized Future Electric Power Distribution Grids

1 Wired Communication in MG
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FIGURE 10. The wireless technologies in MG [45].

promptly. While in inverter-dominated MG, due to lack of
inertia, the fault current is restricted to twice the rating of
the converter, and the transient in this case, usually decays
down within 0.5 cycles and is dependent on the time con-
stant of the system as well. Similarly, converter voltage and
control strategies greatly influenced the behavior of fault
currents in MG, such as in voltage control techniques, the
link-capacitor tries to maintain the constant voltage dur-
ing fault interval but introduces high inrush currents [168],
while in current control case, gradual rise and decay of fault
currents are observed [167], [168]. Moreover, inverter fault
currents are also highly influenced by the switching fre-
quency [168]. In the case of wind power generation, various
fault ride-through capabilities and grid code conformity can
be found in [169], [170], and [171].

Finally, the grounding mechanism of MG directly impacts
fault and protection. TN (Earthing Letter Code) ground-
ing strategy is preferred for low voltage MG, in both grid-
connected and islanding modes of operation, because of its
highly responsive nature to activate the protection system in
MG [172]. Similarly, transformer interfacing configurations
suchas A/A,Y /A, and A /Y, are highly preferred because of
their ability to inhibit the ground and zero sequences resulting

60970

Data Rate: 1Gbps
(Coverage: 50km

Data Rate: >1Gbps
ICoverage: 50km

Distance Based Voltage Based
Protection [178] Protection [177]

Traveling Wave
Based Protection
[179]

Differential current
Protection [176]

Over current
Protection [176]

Harmonic
Estimation Based
Protection [180]

MG Protection
Classification

Adoptive Centralized

% R
Protection [181] Wide Area

Monitoring
Adoptive Decentralized Protection [166]
Protection [182]
Multi agent
Protection [183]

FIGURE 11. General classification of MG protection schemes.

in blockage of fault current flow to the grid side [173],
[174]. Figure 11 illustrates the general classification of MG
protection schemes.

The modernization of the power system started with the
inclusion of SCADA but resulted in information lag due
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to their slow and unsynchronized measurement architec-
ture, unable to support the vast data exchange of modern
MG. However, incorporating PMUs facilitates real-time data
exchange due to their low latency and time-synchronized
mode of operation, hence contributing toward the smart MG
paradigm.

The future protection scenario of MG is moving towards
distributed and decentralized, i.e., closed-loop protection,
in order to localize the fault area within MG timely. This idea,
usually referred to as self-healing, necessitates the modern
communication infrastructure, sensors, actuators, and intel-
ligent control strategies as well. Also, data parallelism is an
emerging concept for energy management and the protection
of MG [43].

Ill. MICRO-GRID ARCHITECTURE AND VARIOUS
FRAMEWORKS

MG, by regulating and distributing the flow of electricity,
can be considered as a modern and smaller version of a
conventional centralized power system. However, unlike the
centralized electricity system, it is done locally. Moreover,
MG is also considered in a single controlled and aggregated
load unit in the modern power system [183]. Furthermore,
MG usually has two paramount features, namely plug-and-
play and peer-to-peer energy systems. In a plug-and-play
scenario, RER and conventional DG units can be flexibly
positioned at any location without the requirement to recon-
struct the protection schemes. While in peer-to-peer cases,
the absence or inclusion of a master controller or centralized
storage system will have no impact on the operation of MG.
These two features not only facilitate the inclusion of smaller
and RER-based DG units but also greatly assist in reducing
the possibility of engineering errors within MG.

A. OPERATIONAL MODES OF MICRO-GRID

MG may operate in two modes, such as Isolated and grid-
connected modes, and the associated operational require-
ments of these modes greatly differ.

1) ISOLATED MODE

MG can detach and function autonomously in this mode of
operation, especially during grid disturbance intervals (fault
on the main grid) or when perturbance in power quality
occurs. MG maintains high power quality and a reliable/
continuous power supply to consumers without interruptions
by operating in this mode of operation. Disturbance events
such as frequency drops and voltage sags may occur on
the main electricity grid. Therefore, this unique feature of
MG to detach from the power grid is famously known as
Islanding [184], [185], [186].

2) GRID-CONNECTED MODE

This mode is the normal operating mode of MG, in which,
depending on the accumulative power demand and supply,
MG can export or import power to the main electricity grid.
During this mode of operation, the bi-directional flow of
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power (import/export) is also maintained by MG, and MG
continues operation in this mode until power perturbance or
fault occurrence. Furthermore, in this mode, MG can also
feed its entire load. Figure 12 demonstrates the two opera-
tional modes of MG.

B. MICRO-GRID CONFIGURATION

1) AC MICRO-GRID

In this configuration, all loads and generation resources are
connected to a main and common AC bus. This configu-
ration is further sub-categorized into three types based on
distribution system structure that includes single-phase,
three-phase without neutral, and three-phase with neutral
line. The main components in this configuration that required
synchronization are unbalanced, harmonics, and active and
reactive power. Therefore, the control and management of
AC MG are complex in comparison to DC MG. In DC
MG, control is less complex because the main component to
control is DC power [187].

AC loads can be directly fed from the main bus without any
power conversion mechanism. However, the DC power gen-
eration of PV requires DC-AC inverters, and to feed the DC
loads, rectifiers are used to convert AC to DC power. To han-
dle the active and reactive power of wind generation units,
a combination of converters is used in this configuration.
Interfacing AC MG with the main electricity grid is simpler as
a consequence of only the phase-matching requirement [188].
Merits of AC MG include the utilization of high-efficiency
transformers, easy extinguishing mechanisms of fault arc cur-
rent at zero crossing (reliable circuit breaker performance),
independent control of reactive power, and voltage stability.
Some demerits associated with this configuration are the
conversion of AC power for DC loads (modern electronic
devices etc.) greatly impact the efficiency of the system, the
introduction of harmonics, and the inclusion of inverters for
interfacing DC RER based DG units [188]. A generalized
overview of the AC MG structure is presented in figure 13.

2) DC MICRO-GRID

In this architecture, the main bus is DC, hence DC loads
can be integrated directly without any power conversion,
thus having high efficiency and reduced cost. However, for
AC loads, inverters are required for interconnection with the
main DC bus. The increased deployment and development
of RER based DG units (DC in nature) have accelerated the
research in recent years in this area of MG architecture. In the
case of wind generation, the output power generated by wind
turbines is AC in nature, therefore, this power is integrated
into DC MG by using AC-DC converters. While in the PV
case, DC-DC boost converters are used with the basic goal of
maximum power point tracking mechanism.

Advantages of DC MG include direct interconnection of
the battery storage system (backup power), ease in the inte-
gration of RER-based DC DG units, the inclusion of sim-
ple inverter units for the grid-connected mode of operation,
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reduced cost, and high efficiency (less power conversion
requirement). The main drawback of this structure is that
most of the load units need AC power. Other drawbacks are
less systematized voltage transformation and the inclusion of

a rectifier for AC generation units. Figure 14 illustrates the
generalized overview of DC MG.
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DC Micro grid Topology

3) HYBRID MICRO-GRID

The hybridization of both DC and AC MG architecture
resulted in the incorporation of the advantages of the afore-
mentioned structures. In this configuration, the flow of power
between networks and the utility grid is controlled by a power
electronic interface and static transfer switches, respectively.
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The balance between supply-demand/load-generation deter-
mines the power direction in this configuration. The key fac-
tors behind this architecture are to improve overall efficiency
by reducing energy costs and conversion stages. Interfacing
AC-DC MG utilizes bi-directional AC-DC converters, and
DC-DC boost converters are used for connecting DC gen-
erator panels to the sub-bus (DC main) in DC MG. While
DC-DC buck converters are required for DC loads (EVs,
etc.), and energy storage technology interconnection needs a
bi-directional DC-DC converter in sub-sectioned DC MG of
hybrid MG configuration. The interlinking converter between
AC and DC sub-sectioned MG functions according to the
overload condition of these sub-sections. During the over-
loaded condition of AC-MG, this converter will act as an
inverter, and the power flow direction is from DC to AC
MG. Similarly, during the overload condition of DC MG, this
converter (interlinking) acts as a rectifier, following the power
flow direction from AC to DC MG.

Therefore, this interlinking converter is referred to as the
main converter in most of the literature studies on MG and
governs the power flow between sub-sectioned MGs inside
the hybrid MG architecture. Furthermore, this main converter
also stabilizes the bus voltage in DC MG [188]. Advantages
of hybrid MG include reduced conversion loss, enhanced
local load support, plug-and-play type management of indi-
vidualized DC-AC MG sub-section, and reliable ancillary
services. The biggest demerit of this configuration is the inter-
relationship of sub-section MG architectures. This makes this
configuration highly complex and introduces numerous oper-
ational issues and greater difficulty in DG units’ assimilation
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with two distinct sub-sectioned MG portions [188]. Figure 15
presents the hybrid MG structure.

4) NETWORKED MICRO-GRID

The clustering of MG that have functional interoperability
and physical interconnection is referred to as networked MG.
In this configuration, various MG units are integrated into
distribution feeders incorporating fixed or dynamic electric
boundaries via centralized or distributed control and intelli-
gence. The utility companies adopting this configuration are
Commonwealth Edison (ComEd), Illinois Institute of Infor-
mation Technology Chicago, ConEd, and Chattanooga Elec-
tric Power Board [189]. Another novel concept, “‘nested”
MG, within this configuration is invested by the New Paltz
MG project [190] to divide the MG into ‘“‘nodes: that are
responsible within their respective geographic footprints. The
formation and operation of this configuration can occur in
various manners depending on technical and operational
objectives. The two general classifications of this networked
architecture include fixed and dynamic electric boundaries.
In a fixed electric boundary, the overall electric boundary is
defined after the merging of fixed boundaries of intercon-
nected MGs (clustering of MGs). This overall boundary is
naturally defined by switches and PCCs. Multiple MGs are
interconnected within fixed boundaries in order to balance
the load demand. While with the help of frequency and volt-
age regulation mechanisms, dynamic adjustment of electric
boundaries of nested MS is also possible. These boundaries
are flexible and operated by the utilization of switch gears,
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which may act as temporary PCCs for new boundaries. This
flexible approach also leads to the concept of ““Virtual” MG.
In literature, this dynamic boundary concept is also
referred to as grid sectionalization and greatly assisted in
the self-organizing and inclusion of RER-based DG units.
The virtual MG concept is similar to the Virtual Power Plant
MG concept but with the additional grid-forming ability and
the incorporation of heterogeneous generation, storage, and
load components. Similarly, the nested MG concept is very
close to the concept of multi MG, in which several MG
are interconnected through electric links in order to improve
efficiency and facilitate power exchange. All these novel con-
cepts expand and enhance the operational flexibility of grid
structure by incorporating efficiently all grid assets [189].

IV. CONTROL AND ENERGY MANAGEMENT IN
MICRO-GRID

MG requires proper control strategies for establishing a
stable system by coordinating various micropower types.
The control objectives revolve around active and reactive
power, correction of imbalance (voltage/system), and load
dynamic requirements. The control within MG is broadly
classified into source/load, central, and distributed control.
The functionality of the MG control mechanism is catego-
rized into three subsections such as interfacing upstream (net-
worked/multilevel), overall MG control, and local protection.

A hierarchical/multilevel control scheme is applied in MG
because all time scales of the power system are of concern for
stable operation. This hierarchy in MG is further divided into
primary, secondary, and tertiary levels. The tertiary level, the
highest in the hierarchy, is used to coordinate between MG
and the host power network, while the remaining two levels
are associated with the management and control of MG to
maintain its power balance.

The basic control architecture followed by MG are the
approaches based on centralized, decentralized, distributed/
multi-agent, and the position of the central controller deter-
mines the centralized or decentralized control structure
within MG. In centralized control methodology in MG,
the main/central controller communicates and processes the
information transmitted from every subsystem (DERs/Load)
incorporated in the system, but this control approach is not
considered a robust scheme for implementation, as demon-
strated in figure 16.

While in distributed approach, control efforts are dis-
tributed among cooperative autonomous agents for achieving
global objectives, thus resulting in a highly scalable and
robust system. The distributed control in MG is illustrated in
figure 17.

The decentralized control architecture is implemented in
a non-cooperative way by using the local measurements of
distributed autonomous agents only and is generally based
on voltage-frequency droops. However, the decentralized
approach is challenging to implement at the secondary and
tertiary levels due to a lack of communication/cooperation
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among distributed agents [224], and figure 18 presents the
decentralized control in MG.

Thus, distributed intelligence-based system (multiple inter-
acting agents), control scheme, known as a multi-agent sys-
tem or distributed control, is one of the most prominent and
viable solutions for advancing MG control. This also served
as the key catalyst behind the huge inclination of recent
research literature toward this control strategy. Figure 19
illustrates the time scale and complexity related to three levels
of MG control [191].

The energy management system in MG involves con-
trol software and is achieved by considering the vari-
ability of DERs, operational modes of MG, and minimal
required cost [192], [193]. Therefore, MG energy manage-
ment revolves around the comprehensive automated sys-
tem, which is aimed at optimal scheduling of resources
(energy generation and storage) and is based on informa-
tion technology and control optimization techniques [194].
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Figure 20 presents some classical methods for energy man-
agement and some objective functions defined for power
systems [37], [195].

Authors in [196] illustrate a method based on linear pro-
gramming to solve the cost function related to the technical
and economical operation of DERs and peak loads. They used
HOMER software to perform simulations based on a general
algebraic modeling system (mixed-integer linear program-
ming). They demonstrated the advantage of this programming
approach for managing the volatility and intermittency in
MG. A genetic algorithm-based control strategy for optimally
managing the hybrid MG (which includes heterogeneous
resources such as RER-based DG units, AC generators, and
fuel cells) is proposed in [197]. The objective function of
this research study is to minimize the cost of operation by
storing the excess generated energy in batteries or hydro-
gen form. Energy management based on a hybrid approach
of dynamic and mixed-integer non-linear programming for
grid-connected MG is presented in [198]. The constraints
involved in this study include battery storage and power flow,
and the authors used the offline mechanism for historical data.
The paper concluded that this approach may be feasible for
multi-MG scenarios simultaneously.

Another interesting study based on a multi-agent system
developed in the Java platform during host grid outage con-
ditions is presented in [199]. The objective function is to min-
imize the operating cost while considering the randomness of
critical loads, price variation of the host grid, and the intermit-
tency of DERs. They used a differential evolution algorithm.
A multi-objective stochastic scheme for hybrid MG with
the objective of minimizing the system losses and operating
cost using weighting sum (integer linear programming) is
demonstrated in [200]. The authors solved the scheme and
tested it on the IEEE 37-node system.

A two-layer Model Predictive Control (MPC) based energy
management strategy for MG by incorporating the degra-
dation costs of batteries and supercapacitors for accurate
assessment of operating cost is investigated in [201]. This
proposed scheme used a two-layered MPC approach for
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hybrid MG. The novelty of this research work is the inclusion
of the degradation costs of the storage system. An Artificial
Intelligent based technique using CPLEX algorithms (by
IBM) for hourly economic dispatch during grid-connected
mode is presented in [202]. Similarly, authors in [203] used
fuzzy logic intending to minimize the deviation in grid power
while maintaining the state of charge of the battery storage
system.

Authors in [204] proposed the most optimal and
economical configuration for islanded MG incorporating a
lithium-Ion battery storage system, using various combina-
tions of control schemes. To evaluate the performance and
longevity of the batteries, advanced models based on electro-
chemistry are used in this study. Furthermore, optimization
techniques used in MG can be mono or multi-objectives
depending on the optimization problem, such as minimization
of cost-fuel, maintenance, operation, storage- and minimiza-
tion of emissions or unmet loads. In literature, most authors
used game theory-based schemes for solving conflicting
objectives, stochastic programming for multidimensional
objectives, and metaheuristic techniques for multi-objectives,
constrained, and nonlinear problems. Table 5 illustrates some
of the optimization methods used in MG with their objectives
and constraints.

V. CROSS-SECTORAL ANALYSIS

A. CYBER-PHYSICAL MICRO-GRID

The operations of DERs, Storage, and load in smart and
power electronics dominated MG are tightly coupled to
the proper functionality of cyber systems. This dependence
arises because the electrical components of the MG are
interconnected by communication and information technolo-
gies. Therefore, smart MG can be considered a typical
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cyber-physical network dominated by power electronics. This
cyber-physical system of MG is sub-categorized into four
main layers, such as Physical (transformers, loads, genera-
tors, power converters, and circuit breakers), Measurement
(sensors, actuators, measurement devices), Communication
(switches, routers, communication devices), and Manage-
ment (central control and management of MG). Therefore,
smart MG is a complex structure consisting of distributed
controllers, power converters, electrical components, actua-
tors, sensors, and coordination, and interfacing among these
components requires precise and timely communication/data
exchange. Thus, this results in several issues and challenges
that need special attention in research and development. Gen-
erally, the challenges involve communication infrastructure
reliability, mass data/information processing and handling,
data safety, the requirement of distributed computational
technologies, and cyber security.

Precisely, in such types of cyber-physical systems, any
corruption or delay of information may jeopardize the sys-
tem’s stability and safety. The recent proliferation of RER
based DG units, smart storage, and load demands more
coordination and a reliable cyber system. Some examples
of cyber-attacks resulting in massive outages are Italy’s
(2003) blackout affecting around 56 million customers,
Arizona’s (2007), affecting 100,00 consumers, Florida’s out-
age impacting almost 1 million consumers, and Ukraine’s
2016 blackout. In MG, cyber-attacks may have devastating
effects regarding the transient and steady-state stability of the
system, especially in the Islanding case, as a consequence of
low Inertia. Similarly, in the case of hybrid MG architecture,
any cyber attack in any sub-domain (DC or AC sub-sectioned
MG portion) will affect the stability of the other side. For
example, a cyber attack affecting the voltage stability of
DC MG (sub-sectioned) will have a greater impact on the
frequency stability of the AC side of hybrid MG due to an
interlinking power electronic converter. Most of the literature
studies about cyber attacks revolve around the smart grid,
therefore, considering the roadmap of future distributed and
smart power systems, more attention of the research commu-
nity is foremost in the near future toward the MG security
domain. A recent survey on cyber-security within the MG
paradigm can be found in [216]. In this review article, various
construction methods of false data injection, defensive strate-
gies, recent projects, and protocols/standards are discussed
comprehensively.

B. POWER CONVERSION

MG requires proper power conversion to interface with
the electrical system, which is achieved by incorporating
power electronic converters for RER-based DG units and
some high-frequency AC power sources (like microturbines).
The important role played by inverters includes frequency
and voltage stability during the Islanding condition of MG.
Similarly, these inverters greatly facilitate the black start
strategies [217]. Another critical device assisting in the
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synchronization and Islanding of MG is the static switch
(connect/disconnect) which can respond quickly to fault con-
ditions such as under/over frequency, under/overvoltages, and
directional overcurrent. The interfacing between MG and the
host grid can be performed using converters (direct current
coupled) in synchronous or asynchronous AC connecting
mode. Due to the back-and-forth power conversion losses
of up to 15% of power generation, DC-only MG strategies
are also proposed in the literature to avoid the losses of
DC-AC-DC conversions. Additionally, DC MG has substan-
tial abilities of simple plug-and-play, fault localization (via
blocking diodes), and simple control and synchronization
(less harmonic and zero reactive circulating currents) [218].
However, the lack of DC appliances and the requirement for
large AC-DC power converters are some of the challenges to
overcome before implementing all DC MG strategies in their
real sense [2].

C. CONTROL

In order to maximize the economic and environmental bene-
fits while locally balancing the load, MG requires special con-
trol strategies and delivers several functional requirements.
These requirements include presetting MG as a single
self-organizing entity to the utility grid (frequency control
like a synchronous machine), keeping the power flow accord-
ing to line ratings, regulation of frequency and voltage dur-
ing the isolated mode, resynchronization, smooth Islanding,
and maintaining energy balance [219]. MG can be con-
trolled in the hierarchy of three levels like the conventional
grid, comprising primary and secondary control layers (volt-
age/frequency control) either under the command of the main
controller of MG in a centralized manner or in a decentralized
way. The tertiary level is mainly concerned with the economic
dispatch and overall optimization of MG. The recent inclina-
tion of the research in the literature is towards adding intelli-
gence for optimizing MG operations and ensuring enhanced
market participation [2].

D. STORAGE SYSTEM

Most of the generation resources are based on RER in MG
and lack the inertia and the diversity associated with a load
of a larger geographical area, therefore, a buffer in the form
of the storage system is critical for mitigating the imbalances
of power generation and demand. Thus, the development of
storage technologies incorporating electrical, thermal, and
mechanical systems may potentially contribute to the pre-
vention of faults in MG. Additionally, storage technologies
provide many ancillary services as well such as voltage sup-
port, load following, peak shifting, and spinning reserves [2],
[220], [247].

E. GOVERNANCE ISSUES

The absence of a clear legal identity for MG is one of the
biggest challenges in achieving regulatory certainty for mak-
ing MG bankable. This legal issue arises due to uncertainties
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TABLE 5. Various optimization techniques in MG.

Ref Technique Objective function Constraint Comments

Minimization of total = Battery Generation Degradation cost is not included

operating cost (a) Day

[205] MILP ahead (b) Annual cost
including a battery
storage system
Minimization of AC/DC/Converter’s power The emission cost associated with biomass-based
operational costs for | Generation Units Power DERs is not considered. Similarly, no storage
[206] MINLP . . .. s
various Distributed system is included in this study
Generation Units
Minimization of total | Generation Units Power The emission cost associated with generation units
cost and carbon Power exchange with the host grid is not included
207] PSO footprinfs ie. Storage units charging/discharging
economic vs. Balance of supply and demand
environmental
analysis
Minimization of total | DERs (dispatchable/non-dispatchable) Mathematical ~ formulation complexity —and
[208] ABC operating cost of Storage system emission cost associated with microturbines are not
Islanded MG Power balance included.
Minimization of Load (Battery) Battery degradation cost is not included
operating cost, Power balance
Maximization of Generation Units power
[209] Fuzzy renewable energy
resources, maintain
voltage and frequency
within MG
Minimization of total = Host Grid power exchange Degradation cost is not included
operational cost, Power balance
[210] AFSO while meeting the Storage system
demand and storage Generation Power
constraints
Minimization of total = Storage Units Fast convergence but without considering the
[211] BFA operational cost of the | Generation Units cost DERs, power loss of the system
MG Power balance
Minimization of Battery storage Battery system cost and degradation rate are not
[212] DYRU . .
operating cost Power balance included.
Improving the Battery system charging/discharging Several layers of coordinated control, thus a highly
[213] MAS efficiency and complex approach.
reliability of MG
DG Units Minimize fuel cost but emission cost is not
Minimization of Power Balance considered
[214] GT . Conventional Generation Units power
operating cost
The power exchange between MG and the
host grid
Minimization of Gas Turbine Emission and capacity Linear model but with a limited number of
[215] MDP operating cost over a combinations.

specified time horizon

Abbreviations used in Table V:

MILP= Mixed Integer Linear Programming, MINLP= Mixed Integer Nonlinear Programming, PSO= Particle Swarm Algorithm, ABC= Artificial Bee
Colony, AFSO= Artificial Fish Swarm Optimization, BFA= Bacterial Foraging Algorithm, DYRU= Dynamic Rule, MAS= Multi-Agent System, GT=

Game Theory, MD= Markov Decision Process
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regarding whether the MG is an oversight subject for the state
regulatory agency or considered as an electrical distribution
utility and does the existing legal framework is sufficient
to govern the generation, distribution, sale, and purchase
of MG electricity. The reports about MG in the context of
the existing legal framework can be found in [47], [221],
and [222]. Furthermore, this legal issue stemmed due to the
lack of standardization for connecting DERs with the grid,
and the connection requirements vary from utility to utility
greatly. However, the IEEE approved standard 1547.4 in the
year 2011, which covers protection, communication, power
quality, control, and functionality of MG (Islanding, Tran-
sition, Re-synchronization), phase angle, voltage, frequency
specifications, and safety considerations [2].

F. PROTECTION

Protection devices designed for conventional passive power
systems demonstrated slow/inactive responses to faults for
active networks like MG. Also, due to overcurrent varia-
tion associated directly with two modes of MG operation
(Island/Grid-Connected), the single-setting relay protection
approach fails to protect against faults. Furthermore, the
inclusion of DERs perpetually changes the fault current and
direction in MG. The application of wide-area monitoring
and protection system in MG demands a very high speed of
information processing for which fiber optics and WiMAX
technology are deployed to enhance the protection of MG.
Moreover, protection devices like solid-state transformers
also significantly impacted the efficiency of the protec-
tion system within MG. Thus, the implementation of cost-
effective, reliable, and secure communication is foremost
for the protection of modern power systems [188], [241],
[242], [243].

G. POWER QUALITY

MG active/reactive (PQ) power quality is strictly and greatly
affected due to the presence of DG units, non-linear loads,
switching devices, and sensitive power conversion equip-
ment. Advanced control strategies are a highly desirable and
most important aspect of MG in enhancing the PQ of MG
and the reliability of the system. During the Islanding mode
of operation, MG must be able to perform under non-linear
load degradation and unbalanced components because of
the lack of voltage and frequency support of the host grid.
Therefore, during the isolated operational mode, each DG
unit within MG needs to supply a certain amount according
to the total power-sharing mechanism. Issues arising during
power-sharing include dependency on the line characteristics
(impedance), voltage deviations, harmonic distortions, cur-
rent sharing, and accuracy [3].

The emerging concept of Peer to Peer (P2P), energy i.e.,
energy trading/sharing, can assist in decentralizing the elec-
tricity market. The underlying concept in P2P is that in the
absence of any centralized utility, consumers (among con-
sumers) can sell or buy excess power generated via renewable
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energy resources or any other generation sources. This may
result in the efficient use of renewable energy, ultimately
reducing carbon footprints and overall energy costs. In order
to ensure secure and reliable transactions among consumers
in the P2P concept, Block Chain platforms can be used. This
technology ensures fairness and prevents fraud by allowing
decentralized and temper-proof transaction records. Further-
more, this technology also enables self-executing smart con-
tract concepts in which the agreement (on terms) between
various parties may be enforced automatically. Consequently,
this may eliminate the need for intermediaries by smartly
simplifying the energy trading process.

Advanced energy management systems incorporating
machine learning and artificial intelligence-based algorithms
can manage and monitor the power flow among consumers
to enable real-time emerging trading. These smart algorithms
are used to predict electricity demand and manage the balance
between power supply and demand. Therefore, P2P enables
the real-time trading of electricity compared to the centralized
(traditional) electricity market, which may lead to excess or
shortage during certain demand periods.

Moreover, the P2P energy concept furthers energy security
in MG by increasing its resilience in the event of power out-
ages/disruptions. Additionally, this concept can foster a sense
of democratized MG, i.e., sense of community engagement
and ownership, and enhance the decarbonized grid concept by
imparting a greater sense of adaptation and awareness about
sustainable/green energy practices [248], [249], [250], [251].

H. INFORMATION AND DATA MANAGEMENT
Improper control of MG leads to the instability of the system
due to a lack of proper management of energy and power
balance. Consequently, effective coordination and communi-
cation are required to analyze, stabilize and monitor the MG
at different hierarchical levels. Therefore, communication
technologies deployed in MG must be secure, cost-effective,
reliable, have good transmittable range, have high bandwidth,
and have fewer repetitions. Traditionally wired communica-
tion technologies are deployed due to their advantages, such
as reliability and high security, but the inclusion of DERs
entails a very high cost due to the complexity of the MG
system. Thus, a distinct group of wireless technologies has
been implemented in MG in recent years to provide decen-
tralized and reliable communication. The poor performance
of communication technology in MG may limit the MG
from achieving service quality and energy efficiency and can
potentially damage the whole system [3], [244], [245], [246].
Similarly, certain parameters such as frequency, active/
reactive power, phase angles, voltage magnitude, root mean
square and state of charge of storage systems must be mon-
itored and controlled in MG. Therefore, proper communica-
tion and control are required at the local controller level of
each DER unit for updating the information. Conventional
methods of collecting data via serial ports demonstrated many
shortcomings in order to serve multiple users and may cause
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severe instability issues in MG. Thus, modern communi-
cation infrastructure incorporating wireless technologies is
widely used in MG due to its suitability for remote areas,
low installation cost, and high flexibility in data transfer. So,
the increased penetration of wireless technology will greatly
assist in the improved proliferation of RER based DG units
in MG [3].

I. SYNTHETIC INERTIA

The inclusion of RER based DG units not only resulted in
some degree of uncertainty and intermittency but also intro-
duced the issue of low inertia in MG. This further adds dimen-
sionality to the control and operation of MG. This low inertia,
in turn, may severely compromise the frequency stability of
the system. In conventional power systems. Rotational inertia
is associated with both minimum frequency (nadir) and rate of
change of frequency. Therefore, in MG, frequency deviations
are inevitable. Thus, in order to regulate the frequency, vari-
ous soft solutions/ control algorithms have been proposed and
implemented for power converters in MG. In literature, these
strategies are referred to as synthetic/ virtual that mimics the
conventional synchronous machines to impart the necessary
inertia in the system. The generation units controlled by this
approach are named synchronverter or virtual synchronous
generators. Most of the research studies in the literature
regarding these virtual machines revolve around centralized
control approach compared to distributed control methodolo-
gies. Additionally, for all DC-MG, very few research studies
regarding synthetic inertia are found. The virtual capacitor
concept is analogous to virtual inertia is presented in some
studies in order to avoid the inevitable voltage variations in
DC-MGs [224]. Additionally, inertia estimation is also very
crucial for system reliability. Therefore, the authors in [225]
comprehensively provide an overview of inertia estimation
and its forecasting challenges. Intelligent fuzzy logic based
synthetic inertia control scheme is proposed in [226]. The
proposed control strategy demonstrated 87% improvement
in nadir (low frequency) and rate of change of frequency
responses. Furthermore, the robustness test is validated by
implementing various case studies for the aforementioned
control policy [226]. Researchers in [78] investigated the
interplay of frequency containment and synthetic inertia, and
their results demonstrated the challenging nature of synthetic
inertia control as a consequence of its derivate (dynamic)
nature. An extensive review of the inertia in power sys-
tems, incorporating the proposal of averaged inertia estima-
tion for various regions, is illustrated in [227]. This paper
provides a significant level of information regarding inertia
and frequency control schemes in modern RER based power
systems.

J. ENVIROMENTAL AND ECOMNOMIC IMPACTS

MG can have several environmental and economic cross-
sectoral impacts. Various environmental impacts include
reduction of greenhouse gas emissions, improved air quality,
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reduced reliance on fossil-based fuels and land use impacts
etc. Utilizing renewable energy resources such as solar and
wind can greatly assist in reducing the harmful environmental
impacts of electricity generation. Similarly, renewable energy
resources help to improve air quality because these generation
resources do not emit air pollutants such as particulate matter,
nitrogen and Sulphur oxides. These pollutants are mostly
associated with respiratory diseases and other negative health
impacts. Furthermore, the power generation from renewable
energy sources reduces the negative environmental impacts
associated with the extraction and transportation of fossil
fuels that, include natural gas and coal etc. However, MG can
also negatively impact the environment, as in the case of
power generation from biomass sources may impact land use
negatively. The requirement of large amounts of land utiliza-
tion for feedstock production can, in turn, cause deforesta-
tion and other such negative environmental issues. Therefore,
it is a crucial task to carefully consider the environmental
impacts of MG in order to ensure its positive environmental
impacts [233], [234], [235], [236].

Similarly, MG can have various positive and negative eco-
nomic impacts that include reduced energy costs, enhanced
energy security, improved job market, and upfront and main-
tenance costs. MG can greatly reduce the energy cost by
reducing the need for expensive infrastructure, such as trans-
mission and distribution costs over time, as a consequence
of their independence on fuel costs etc. Alternatively, the
improved energy security provided by MG can further reduce
the negative economic impacts associated with power disrup-
tions and outages. Moreover, the installation and maintenance
cost of MG may create new job markets in the energy sector.
However, the aforementioned cost and higher upfront cost
of MG infrastructure than traditional power grid can make
MG less attractive and feasible for communities with limited
financial resources [237], [238], [239], [240].

VI. FUTURE RESEARCH DIRECTIONS

The deployment of MG in electric power systems results in
different issues. Therefore, further investigation of emerging
electric networks such as MG, considering various aspects,
can greatly enhance the researcher’s accuracy and speed.
Various issues of MG have been investigated by researchers
in recent years, and several are also presented in this survey.
However, some aspects related to MG need to be investigated
more, and therefore, the following are some of the selective
and important suggestions for the further technological devel-
opment of MG.

a) Relevant to networked MG, an improved coordination
framework incorporating effective control, optimiza-
tion, regulatory approaches, revised grid codes, and
tariff schemes required immediate research focus.

b) Control strategies for power converters, especially for
grid-forming inverters during the dynamic mode of
operation of MG, need more in-depth attention from
the research community. Currently, research about
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D
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synthetic inertia in the form of virtual synchronous
machines has been performed, but their capabilities are
not universal.

Advanced ride through coordination strategy is
required for protection systems to accommodate the
topological changes or power flow patterns due to
the huge sensitivity of the inverter controls and their
unwanted tripping.

The novel concept of mobile DER/DG units may add
dimensionality to the MG by supporting the supply and
demand (load restoration) objectives. Thus, research in
this domain is required.

More research and simulation/forecast platforms
(parameters include energy demand, weather
conditions, energy generation, equipment performance,
electricity pricing, load profile and regulatory changes)
are required for long-term planning and network con-
figuration, such as placement of switches etc.

The incorporation of data analytics with control, espe-
cially during emergency/faulty conditions (when sys-
tems observability and state estimation is degraded)
needs special attention.

To enable peer-to-peer energy exchange in MG,
interconnection benchmarks, and agreements must be
established.

To reduce the computational burden of energy manage-
ment in MG, the concept of distrusted energy manage-
ment may be applied to handle large data and reduce
the processing requirements.

Further research concerning the storage system of MG
incorporating the degradation models and real-time
operating conditions is required for accurately achiev-
ing the optimal energy management in MG.

Similarly, more research in lithium-Ion-based batteries
as an alternative to some existing lead acid batteries
may help greatly in managing and enhancing the buffer
(storage system abilities) in MG.

Load participation with the help of distributed control
mechanisms is highly relevant for further research to
focus especially with the inclusion of electric vehi-
cles and other controllable/smart loads. This research
domain can also positively impact the grid by support-
ing the whole system via demand side management
programs.

Overcoming the inherent issues of data and packet loss
and delays in communication will help in the prevention
of cyber-attacks, thus, this research area is also an
important part of future directions.

Most of the literature found about the stability of MG
revolves around the convergence of control systems
deployed in MG. Therefore, this area of MG is still an
open question, thus more research about the stability
of MG incorporating overall stability parameters such
as data loss, error, delays, weak natured inverters, and
exchange of information is required.

VIi. CONCLUSION

This review highlights the different transdisciplinary and key
enabling technologies for MG, its architectures, control, com-
munication and their advantages and disadvantages, genera-
tion and storage systems, load classification, and protection
mechanism to provide a concrete overview of the future
MG system. Moreover, this survey also investigated MG
optimization and energy management to demonstrate their
contribution to the stability of the system by adjusting various
system parameters.

Energy storage and load classification and their character-
istics are discussed in detail with statistical tabular forms to
illustrate their contribution in mitigating the impacts intro-
duced due to the fluctuating (generation) nature of RER based
DG units. Furthermore, tabular representation demonstrated
the current and recent trends in the research community about
the MG. This paper also analyzed the networked MG con-
cept with fixed/changeable electric boundaries that can add
effective resilience and robustness to the MG structure. This
survey also highlights several factors, possible solutions, and
challenges of next-generation MG that may help researchers
and industries in enhancing the existing MG.

Thus, the key contribution of this rigorous review is the
comprehensive analysis of the latest developments, current
status, impacts, and future opportunities, which are aimed
at providing a complete idea of the smart MG network.
Consequently, due to the cross-disciplinary nature of MG,
the discussion section with cross-sectoral analysis has been
reviewed along with its limitations to reinforce the main
content and outcome of this study.
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