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ABSTRACT Energy hubs (EHs) have become essential to facilitate the coupling of the various energy carri-
ers in smart microgrids characterized by high penetration levels of various renewable energy sources (RES),
such as photovoltaics and wind power. Optimal operation and coordination of these microgrid resources are
crucial for satisfying electrical and thermal demands with minimal cost and achieving eco-friendly operation.
To this end, this paper proposes a stochastic multi-objective optimization approach for optimal operation and
coordination of RES, EH systems, and plug-in electric vehicles (PEVs). The EH includes compressed air
energy storage, battery energy storage, and thermal energy storage. The objective functions to be minimized
are operating costs and emissions. The proposed approach considers the uncertainties of RES, electrical and
thermal demands, electrical prices during seasonal-based horizons, the stochastic nature of PEV’s owners’
driving habits, and various microgrid operational constraints. Furthermore, a price-based demand response
program is employed considering the end-user’s discomfort. The multi-objective grey wolf optimizer is
employed to solve the proposed optimization problem and obtain the Pareto-optimal solutions. Different case
studies are performed to demonstrate the proposed approach’s effectiveness. The simulation results show that
the proposed approach can reduce the operation cost and emissions by 64.1% and 57.6%, respectively.

INDEX TERMS Multi-carrier systems, energy hubs, compressed air energy storage, plug-in electric vehicle,
renewable energy sources.

NOMENCLATURE
ABBREVIATIONS
BESS Battery energy storage.
CAES Compressed air energy storage.
CHP Combined heat and power.
DSMP Demand side management programs.
EH Energy hub.
EHO Energy hub operator.
MCES Multi-carrier energy system.
MOGWO Multi-objective grey wolf optimizer.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaodong Liang .

PEV Plug-in electric vehicles.
PV Photovoltaics system.
RES Renewable energy sources.
SOC State of charge.
TES Thermal energy storage.
WT Wind turbines.

INDICES AND SETS
j Index of PEV.
n Index of EH.
t Index of time.
s Index of scenario.
NOBJ Total number of objectives.
NPF Total number of Pareto front solutions.
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PARAMETERS
AMRj All-electric range for the j th PEV.
CAIR Specific heat of the air.
Cbatt,j Battery capacity of the j th PEV.
CR Power rate limit of the BESS

in kW.
Distancej traveling distance for the j th PEV.
ETES
min /ETES

max Min/ Max heat energy limits
of the TES.

Econ/mile,j Energy consumption per mileage
of the j th PEV.

EPEV
min /EPEV

max Min/Max energy limit of the
PEV’s battery.

γNG Natural gas price in $/Gj.
γ Ch
BESS/γ

Dis
BESS Charging and discharging

efficiency of the BESS.
γ Ch
PEV/γDis

PEV Charging and discharging
efficiencies of the PEV.

γ
CO2
Net /γ

NOx
Net /γ

SOx
Net Emission factor of the grid

in g/kWh.
γ
CO2
c /γ

NOx
c /γ

SOx
c Emission factors of the CAES in

g/Gj.
γGrid Electricity market price in $/kWh.
σAr/µAr Mean and standard deviation for

the arrival time of the PEV.
ECmin/ECmax Min/Max energy content of the

CAES in kWh.
Er Energy ratio of the CAES in kWh.
Mrele,Down/Mrele,Up Max down/up electric power

ratios transferred.
OMc Variable operation and mainte-

nance cost of the CAES in charg-
ing and simple cycle modes in
$/kWh.

OMexp Variable operation and mainte-
nance cost of the CAES in dis-
charging mode in $/kWh.

PCEXP
max Min/Max and simple cycle power

of the CAES in kW.
PTES,in
max /PTES,DR

max Max heat power injection and
drawing limits of the TES.

π
ele,Down
DRP /π

ele,Up
DRP Ascending and descending costs

of electric DRP
SOCBESS

min /SOCBESS
max Min/Max SOC limits of the BESS.

SOCPEV
min /SOCPEV

max Min/Max SOC limits of the PEV.
TCW Temperature of cold water.
TWS
min /TWS

max Min/Max hot water temperature
limits for customer satisfaction.

T indoor
min /T indoor

max Min/Max indoor air temperature
limits for customer satisfaction.

Vws Volume of hot water storage.
PTES,in
max /PTES,DR

max Max heat power injection and
drawing limits of the TES.

π
ele,Down
DRP /π

ele,Up
DRP Ascending and descending costs

of electric DRP.

R Heat resistance of the walls.
SOCBESS

min /SOCBESS
max Min/Max SOC limits of the BESS.

VARIABLES
Demands,t,n Electrical demand of the nth EH.
EPEV
s,t,j Electrical energy content of the

PEV’s battery in kWh.
ETES
s,t,n Thermal energy content of the

TES in kWh.
ECs,t,n Electrical energy content of the

CAES in kWh.
HWS
s,t,n Thermal energy transferred to the

hot water storage.
HAIR
t,s Thermal energy transferred into

household.
OCCAES

s,t,n Operation cost of the CAES.
PBCh

s,t,n/PB
Dis
s,t,n Charging/discharging power of

the BESS in kW.
PBCh,PEV

s,t,j /PBDis,PEV
s,t,j Charging/discharging power of

the PEV in kW.
PCCh

s,t,n/PC
Dis
s,t,n Charging/discharging power of

the CAES in kW.
PCSim

s,t,n Simple cycle power of
the CAES in kW.

PGrids,t,n Power transaction of the nth EH
with utility grid.

PLOT,t,s Parking lot power in kW.
Pele,Downt,s /Pele,Upt,s Electric power descended and

ascended by DRP in kW.
SOCBESS

s,t,n State of charge of the BESS.
SOCPEV

s,t,j State of charge of the PEV.
TWS
s,t,n Water temperature at t.
T indoor
t,s /T outdoor

t,s Indoor/outdoor household’s
temperature.

VCOLD
s,t,n Volume of the cold water entering

the tank.

BINARY VARIABLES
ucChs,t,n/uc

Dis
s,t,n/uc

Sim
s,t,n Charging, discharging, and simple

cycle states of the CAES.
bChs,t,n/b

Dis
s,t,n Charging and discharging binary

variables of the BESS.
ICh,PEVs,t,j /IDis,PEVs,t,j Charging and discharging binary

variables of the PEV.
I ele,Downt,s /I ele,Upt,s Decrement and increment status

of electric demand.

I. INTRODUCTION
Nowadays, the multi-carrier system has attracted significant
attention globally [1], [2]. Compared to traditional decou-
pled energy systems, a multi-carrier energy system (MCES)
presents a flexible, reliable, and efficient approach for the
coordination of different energy resources [3], [4], [5]. In this
regard, the energy hub (EH) concept basically interfaces
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networked streamlines for various energy infrastructures such
as electricity, natural gas, and heat which are required to
satisfy consumers’ demands [6]. When connected to the
distribution system, EH can facilitate the local co-generation,
tri-generation, transfer, and distribution of different energy
forms [7]. Furthermore, an EH employs a diverse variety
of technologies, including renewable energy sources (RES),
combined heat and power (CHP), plug-in electric vehicles
(PEV), compressed air energy storage (CAES), and battery
energy storage systems (BESS).

So far, numerous studies have investigated the optimal
scheduling andmanagement of various energy resources inte-
grated into the multi-carrier EH-based microgrids. In this
regard, authors of [3] have investigated a two-level opti-
mization scheme for optimal day-ahead scheduling of an
active distribution system integrating multiple EHs. In addi-
tion, [8], [9] have proposed MCES management to partici-
pate in the energy market and present a model of a smart
city. Moreover, optimal day-ahead scheduling of a networked
multi-carrier energy microgrid system is proposed in [10],
including CHP units, gas-fired boilers, power-to-gas units
(P2G), electrical and thermal storage, and electrical heat
pumps, which shows the flexible day-ahead operation of the
networked multi-carrier energy microgrid system.

Regarding the fossil energy crisis and global warming,
global agreements have been set to move towards cleaner
resources [11], [12]. Consequently, RES has been employed
extensively across the globe, providing a cleaner, sustain-
able, and more stable environment for the survival of human
beings. Accordingly, authors in [13], and [14] have addressed
the minimization of CO2 as an objective with the integration
of RES to contribute to CO2 reduction. Yet, the optimal
scheduling and management of the RES (e.g., photovoltaics
(PV) and wind turbines (WT)) can be quite challenging due to
uncertainty associated with the natural resources, e.g., solar
radiation and wind speed. For instance, a comprehensive
multi-carrier microgrid scheme is established in [15] to boost
system flexibility and compensate for the volatility nature of
the RESs. The unstable nature of the demands and prices has
also been considered by utilizing the probabilistic load flow
approach.

Generally, Compressed air energy storage (CAES) is pre-
sented as a mechanical energy storage technology for storing
electrical energy [16]. Typically, CAES could play a vital
role in providing some ancillary services in the network,
such as load leveling, peak shaving, time shifting, energy
management, and enhancing power quality in case of the
high penetration level of RES [17]. Therefore, an optimal
operation schedule is considered in [18], based on integrat-
ing a CAES for storing electrical energy and considering
uncertainty associated with the RES generation, electrical,
thermal, and freshwater demands. Nevertheless, waste heat
is generated during the discharge process, which could lead
to severe heat pollution, exacerbate the greenhouse crisis, and
lead to more thermal issues. As a remedy, the authors in [19]
have introduced a waste heat recovery system that explicitly

utilizes waste heat recovery cycles, e.g., Rankine and Kalina
cycles leading to an increase in the production capacity up to
2.47% and an improvement in energy round trip efficiency by
1.69–2.67% compared to stand-alone CAES plants.

Furthermore, electrochemical energy storage, such as
BESS, has also been proven to provide stability and secu-
rity for the distribution network operation by ensuring the
balance between the intermittent generation of RES and the
demands [20].Moreover, BESS is vital inminimizing the cost
of imported grid energy and maximizing profit [21]. Com-
pared to CAES, BESS does not generate harmful emissions
during the charge and discharge cycles leading to cleaner
operation. Nevertheless, it will eventually produce hazardous
waste making its disposal an extremely challenging task [22].
Typically, a stochastic model investigation of the optimal
operation of the EH was addressed in [23]. The objective was
to minimize the total energy costs, including different energy
conversion and storage devices.

Along with the undesirable emissions generated by con-
ventional electrical distributed generators, harmful emissions
are massively produced due to the operation of the internal
computation engine vehicles [24]. Accordingly, global regu-
lations have been set calling for alternatives, resulting in PEV
being at the top of the list [25]. Not only that PEV contribute
to a de-carbonized operation, but it also provides aggregation
for electrical energy storage. Accordingly, The authors of [26]
have proposed the optimal operation of the EH by integrating
RES, plug-in hybrid electric vehicles (PHEV), fuel cells, and
hydrogen storage units. The authors have suggested using
the information gap decision theory (IGDT) to model the
uncertainty posed by the PHEV.

One vital aspect of obtaining a reliable microgrid operation
is to have a controlled-based demand. Therefore, consumers’
cooperation with the energy hub operator (EHO) in terms
of changing their consumption patterns according to typical
demand sidemanagement programs (DSMP)would provide a
stable and reliable operation for themicrogrid [27]. This alter-
ation in consumption patterns could be according to price or
incentive-based programs [28]. An integral aspect of DSMPs
termed as demand response program (DRP) concept is well-
established and widely deployed to EHs. Therefore, various
research works have been addressed to clarify the role of DRP
deployment in EHs. For instance, [29] has introduced the
bender decomposition approach to solve a complex model of
stochastic operation and planning of EHs, considering DRPs.

Industrial, residential, and commercial EHs were proposed
in [30] to investigate the influence of coordinated and uncoor-
dinated power transactions on power loss, operation cost, and
emission. Here, the AC optimal power flowwas implemented
to avoid any unauthorized power transfers in the system.
Moreover, an integrated energy hub system as part of the elec-
trical system is modeled. A bi-level optimization framework
was established to obtain a cost-effective operation, consider-
ing the uncertainties of wind speed, electrical demands, and
real-time prices. In [32], the optimal power and gas flow was
investigated. The objective was to minimize the operation
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TABLE 1. A comparison among literature related to energy hub-based microgrids.

costs of electric and gas, in consequence, the proposed model
has accounted for a 4% total reduction in the operation
cost.

As the literature review reveals, a comprehensive multi-
objective scheduling framework addressing the EH-based
microgrid has not been fully established. Most of the pub-
lished literary work has ignored the simultaneous joint oper-
ation of the CAES along with the BESS, PEV, and TES
to achieve an economic operation and eco-friendly process.
Moreover, as the seasons change, solar irradiance, wind
speed, and the pattern of the end-users’ electrical and ther-
mal demands change accordingly. Thus, the comprehensive
scheduling scheme should consider the seasonal scheduling
horizon. The effect of the stochastic nature associated with
the RES, demand, price, and PEV has also been neglected in
most of the literature reviewed. Moreover, the effect of the
DRP must be emphasized.

This paper proposes a stochastic multi-objective mixed-
integer nonlinear programming (MINLP) optimization
approach for optimizing the operation and coordination of
RES, EH systems, and PEVs to minimize operational costs
and emissions. A hybrid CAES and BESS-based-EHs inter-
connected to microgrids are considered. Moreover, thermal
demand satisfaction is handled utilizing the thermal discharge
of the CAES along with TES. The model also includes
the DRP that considers the discomfort cost of end-users.
Furthermore, the study investigates the impact of the presence
of PEV parking lots at various locations and the uncertainties
associated with RES, different load demands, and electricity
prices. The multi-objective grey wolf (MOGWO) optimizer
is employed to solve the proposed optimization problem and
obtain the Pareto-optimal solutions. The main contribution

of this work is summarized in Table 1 and can be concisely
stated as follows:

• Proposing a stochastic multi-objective MINLP opti-
mization framework considering the uncertainty asso-
ciated with RES, distance traveled, arrival time, and
the initial state of charge of PEVs, besides thermal and
electrical demands and electricity market prices.

• Developing a hybrid coordinated operation model con-
sisting of CAES and BESS based-EHs along with TES
for satisfying electrical and thermal demand.

• Considering multiple parking lots connected to the
microgrid to analyze the influence of the coordinated
seasonal charging/discharging of the PEVs which would
serve as a moveable storage system to improve the sus-
tainability and flexibility of the system.

• Analyzing the impact of DRP on the total operation cost.
Consequently, the end-users would be confronted with a
degree of discomfort. In this regard, the minimization of
an end-users discomfort cost is addressed.

This paper is organized as follows; the system descrip-
tion is established in section II. Afterward, a mathematical
formulation is carried out in section III. The uncertainty
modeling is introduced in section IV, while electrical and
thermal power equilibrium equations are set in section V. The
solution algorithm is explained in sectionVI. The case studies
and simulation results are introduced in sections VII and VIII,
respectively. Eventually, the study conclusions are organized
in section IX.

II. SYSTEM DESCRIPTION
In this section, the proposed model regarding the optimal
scheduling and management of multiple EHs incorporated
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FIGURE 1. The basic construction of the proposed EHs-based system.

into the distribution system is fully developed, as depicted
in Figs. 1 and 2. Firstly, Fig. 1 represents a comprehensive
overview of the proposed multi-carrier system, which con-
sists of an electrical distribution system and a natural gas
network. The energy sources are the incoming electricity
and natural gas; meanwhile, the consumption consists of
electricity and thermal infrastructures. The energy exchange
among different energy equipment takes place at various
points marked as a point of common coupling (PCC), that
is, the electrical PCC, the natural gas PCC, and the thermal
PCC. Typically, the electrical system consists of the utility
grid, RESs, parking lots, EHs, and demands located at various
bus locations.

Mainly, the electric distribution system used in this study
consists of a typical IEEE-33 radial distribution system.
Moreover, the distribution network incorporates two types
of non-dispatchable generations located at suggested loca-
tions according to the investors’ preferences for particular
locations and space availability. Alternatively, other techni-
cal suggestions to allocate these resources would consider
making them planning decision variables in the optimization
algorithm. As evident from Fig. 2, three PV systems are
located on buses 19, 23, and 27. Additionally, threeWT farms
are located on 14, 16, and 31. Furthermore, the proposed
model implements four EHs at suggested electric buses 8, 13,
16, and 33. Generally, and as illustrated in Fig. 1, each EH
is equipped with CAES, BESS, TES, and thermal demands
besides controllable-based electric demands, which could be
controlled in response to a controlling signal from the EHO.

It is noteworthy that each EH at each bus has the same con-
figuration, though these configurations could differ according
to the specific case study under consideration. In case of any

deficiency in the demand satisfaction process, each EH could
purchase energy from the upstream grid. On the contrary,
whenever experiencing a surplus generation EH could sell
this power leading to a power transaction with the upstream
grid in either direction. As an electrical energy, storage aggre-
gator, four parking lots were plugged into buses 5, 12, 19,
and 28. The optimal scheduled charging and discharging of
the PEV could mitigate operational costs and emissions.

III. MATHEMATICAL FORMULATION
A. OBJECTIVE FUNCTIONS
The suggested model addresses the minimization of two
objectives, as in (1). The proposed stochastic model is an
expected value-based model that is developed to handle
uncertain parameters. Each function is then evaluated and
weighted according to the probability obtained, as depicted
in (2).

min
θ
(f1, f2) (1)

fEXP =

∑
t∈T

∑
s∈S

f (t, s) × ρ(t, s) (2)

Here, f1 and f2 represent the cost and emission objectives,
respectively; θ represents the vector of the decision variables,
which includes the charging power of the nth CAES at sce-
nario sand time t(PCCh

s,t,n), the discharging power of the CAES
(PCDis

s,t,n), the simple cycle power of the CAES (PCSim
s,t,n), the

charging power of the BESS attand scenario s at the nth EH
(PBCh

s,t,n), the discharging power of the BESS (PBDis
s,t,n), and

the parking lot power (PLOT,t,s) all in kW; fEXP denotes the
expected value obtained for objective function f (t, s) for each
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FIGURE 2. Scheme of the proposed IEEE-33 bus system with multiple EHs and RES.

time segment tand scenario s; The probability obtained for
specific t and s is denoted by ρ (t, s).

Initially, the total operation cost for multiple EHs is repre-
sented by (3), which includes the operation cost of nth CAES
at time t and scenario s represented as OCCAES

s,t,n . Moreover,
the power transaction of the nth EH with the upstream grid
for a specific electricity market price in kWh is defined as
PGrids,t,n and γGrid , respectively. The implementation cost
of the electric DRP, considering the discomfort experienced
by the participants, is represented by CeleDR.

f1 =

S∑
s=1

ρs

(
T∑
t=1

N∑
n=1

{
OCCAES

s,t,n +PGrids,t,n×γGrid
}

+CeleDR) (3)

f2 =

S∑
s=1

ρs

(
T∑
t=1

N∑
n=1

{
PGrids,t,n

×

(
γ
CO2
Net +γ

NOx
Net +γ

SOx
Net

)
+(PCDis

s,t,n×HRDis
+PCSim

s,t,n×HRSim)

×(γ CO2
c +γNOx

c +γ SOx
c )

})
(4)

The emission diffused due to burning natural gas in the
CAES plants and equipment owned by the upstream grid is
established in (4). The terms γ

CO2
Net , γ

NOx
Net , and γ

SOx
Net rep-

resent the emission factor of the grid in g/kWh. Further-
more, HRDis and HRSim represent the CAES heat rate in
discharging and simple cycle modes in Gj/kWh, respectively.
Finally, the terms γ

CO2
c , γ

NOx
c , and γ

SOx
c indicate emission

factors of the CAES in g/kWh.

B. COMPRESSED AIR ENERGY STORAGE MODEL
To realize the economic operation management of the nth
CAES for each scenario and time segment, the CAES opera-
tion cost is considered as follows:

OCCAES
s,t,n =

[
PCDis

s,t,n ×

(
HRDis

× γNG
+ OMexp

)]
+

[
PCSim

s,t,n ×

(
HRSim

× γNG
+ OMc

)]
+

[
PCCh

s,t,n × OMc
]

∀ s, t, n (5)

Generally, CAES could operate in three modes: charging,
discharging, and simple cycle modes [33]. For discharging
variable and operation costs, the first term is established.
The parameters γNG and OMexp define the natural gas price
($/Gj) and variable operation and maintenance cost of the
CAES in discharging mode ($/kWh), respectively. Similarly,
the second and third terms of (5) declare simple cycle and
charging costs. The parameter OMc represents the variable
operation and maintenance cost of the CAES in charging and
simple cycle modes ($/kWh).

It is essential to restrict the operation of CAES to
some technical constraints, which are stated in (6) to
(13). It is worth mentioning that CAES cannot operate
in different modes simultaneously; this is denoted by (6),
where ucChs,t,n, ucDiss,t,n, and ucSims,t,n denote the binary deci-
sion variables indicating charging, discharging, and simple
cycle states.

ucChs,t,n + ucDiss,t,n + ucSims,t,n ≤ 1 , ∀ s, t, n (6)

In terms of limiting the charging power, the charging power
must not exceed a maximum charging power of PCC

max as
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described in (7). Similarly, the discharging and simple cycle
power have been set not to exceed a maximum capacity of
PCEXP

max , as denoted by (8) and (9).

0 ≤ PCCh
s,t,n≤ PCCmax × ucChs,t,n, ∀ s, t, n (7)

0 ≤ PCDis
s,t,n≤ PCEXP

max × ucDiss,t,n, ∀ s, t, n (8)

0 ≤ PCSim
s,t,n≤ PCEXP

max × ucSims,t,n , ∀ s, t, n (9)

At each time segment, the energy content of CAES is
calculated via (10). Here, Er denotes the energy ratio of the
CAES; in addition, the energy content is limited to be within
ECmin and ECmax , as stated in (11).

ECs,t,n = ECs,t−1,n + PCCh
s,t,n − PCDis

s,t,n × Er,

∀ s, t, n (10)

ECmin ≤ ECs,t,n ≤ ECmax, ∀ s, t, n (11)

During the discharging process, a considerable amount
of heat is produced, which is formulated by (12), where
γ
Dis,E2T
CAES and γ

Sim,E2T
CAES represent electrical to thermal output

coefficients in discharging and simple cycle modes. If recov-
ered efficiently [19], this heat energy could realize end-users
thermal demands leading to more efficient thermal operation
of the CAES plants. Nevertheless, in terms of satisfying ther-
mal demands, the high dependency between the discharging
process and the heat recovered could be challenging when
relying on CAES alone. Eventually, the natural gas consumed
NGCAES

s,t,n is limited to less than NGCAES
max as expressed in (13).

HCAES
s,t,n = PCDis

s,t,n × γ
Dis,E2T
CAES + PCSim

s,t,n × γ
Sim,E2T
CAES ,

∀ s, t, n (12)

0 ≤ NGCAES
s,t,n ≤ NGCAES

max , ∀ s, t, n (13)

C. BATTERY ENERGY STORAGE SYSTEM MODEL
The BESS noticeably mitigates the operation cost and emis-
sion generated. Consequently, BESS charging and discharg-
ing model is established in this section. The SOC at each time
segment t is denoted in (14). Additionally, γ Ch

BESS and γDis
BESS

denote the charging and discharging efficiency, respectively.

SOCBESS
s,t,n = SOCBESS

s,t−1,n + PBCh,BESS
s,t,n × γ Ch

BESS

−
PBDis,BESS

s,t,n

γDis
BESS

, ∀ s, t, n (14)

The operation constraints of the BESS are fully considered
in (15)-(18). To limit the charging and discharging power,
(15) and (16) are set which CR represents the power rate
limit of the BESS in kW. Moreover, bChs,t,n and bDiss,t,n are
binary variables, respectively, indicating the charging and
discharging states at time t.

0 ≤ PBCh
s,t,n ≤ bChs,t,n × CR, ∀ s, t, n (15)

0 ≤ PBDis
s,t,n ≤ bDiss,t,n × CR, ∀ s, t, n (16)

The SOC is not allowed to exceed the maximum and mini-
mum values of SOCBESS

max and SOCBESS
min , respectively which is

illustrated by (17). Eventually, to ensure that the simultaneous
charge and discharge are forbidden, (18) is established.

SOCBESS
min ≤ SOCs,t,n ≤ SOCBESS

max , ∀ s, t, n (17)

bChs,t,n + bDiss,t,n ≤ 1, ∀ s, t, n (18)

D. PLUG-IN ELECTRIC VEHICLE MODEL
PEV parking lots could be highly beneficial in promoting sys-
tem stability and profit. However, the stochastic nature of the
PEVs represented in the distance traveled, arrival and depar-
ture times, initial SOC, and driving habits during the different
seasons could pose severe issues regarding the planning of the
charge and discharge of PEVs. Accordingly, this section is
broken into three subsections explaining the stochastic nature
of PEV, the modeling of PEVs’ batteries, and finally, the
constraints restricting PEVs’ scheduling scheme.

1) STOCHASTIC NATURE OF PEV
Initially, a logarithmic distribution function is represented to
depict the daily driving distance as follows [34]:

fDis,j(x) =
1√

2πσDis,tx
exp

(
−

(
lnx − µDis,t

)2
2σDis,t2

)
, (19)

where σDis,t and µDis,t denote the mean, and standard devia-
tion of the distance traveled at time t , respectively. Afterward,
the arrival time of each PEV is formulated using the normal
distribution function as follows [35]:

fAr,t,j (tAr) =
1√

2πσAr,t2
exp

(
−

(
tAr − µAr,t

)2
2σAr,t2

)
(20)

Here, σAr,t and µAr,t represent the mean and standard
deviation of the arrival time at t. It is worth mentioning
that each PEV is allowed to be plugged into the system for
12 hours and then leave the parking lot with a minimum SOC
of 75%, consequently ensuring the owner’s satisfaction with
participating in the vehicle-to-grid scheme (V2G). Eventu-
ally, the initial SOC of each PEV entering the parking lot is
considered. The initial SOC depends on the distance traveled
and the all-electric range. The initial SOC can be computed
as follows:

SOCinitial,j

=


AMRj − Distancej

AMRj
, 0 < Distancej < AMRj

20%, Distancej > 0.8 × AMRj
(21)

where Distancej and AMRj denote the traveling distance and
all-electric range for the jth PEV. As a safety precaution
against battery degradation, the depth of charge is set not to
exceed 80%. The AMR is calculated by (22) where Cbatt,j
denotes the battery capacity of the jth PEV and Econ/mile,j
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represents the energy consumption per mileage.

AMRj =
Cbatt,j

Econ/mile,j
(22)

2) MODELING OF PEV BATTERY
After a charging/discharging cycle, the updated SOC of the
PEV battery denoted as SOCPEV

s,t,j , could be calculated from
the following:

SOCPEV
s,t,j = SOCPEV

s,t−1,j + PBCh,PEV
s,t,j × γ Ch

PEV

−
PBDis,PEV

s,t,j

γDis
PEV

, ∀s, t, j (23)

Here, PBCh,PEV
s,t,j and PBDis,PEV

s,t,j represent the charging and
discharging power for the jth PEV at time t for scenario s,
respectively. In addition, the charging and discharging effi-
ciencies of the jth PEV are represented as γ Ch

PEV and γDis
PEV,

respectively.
Generally, the parking lot charging and discharging capac-

ity will be partitioned among PEVs at each time segment.
As a result, several aspects, such as arrival time, departure
time, current SOC, and battery capacity, should be consid-
ered while prioritizing the distribution process. Thereby, the
charging and discharging power of the jth PEV at each time
segment t and scenario s could be modeled as [36].

PBCh,PEV
s,t,j =

(Cbatt,j − SOCPEV
s,t,j × Cbatt,j) × PLOT,t,s

trem,j×
∑J

k=1
1

trem,k
(Cbatt,k−SOCPEV

t,k,s×Cbatt,k )
(24)

PBDis,PEV
s,t,j =

trem,n(Cbatt,j × SOCPEV
s,t,j ) × PLOT,t,s∑K

k=1
1

trem,k
(SOCPEV

t,k,s × Cbatt,k )
(25)

where trem,j represents the remaining time in the parking lot,
which could be calculated knowing the entrance (tarr,j) and
exit times (texit,j) as follows:

trem,j = texit,j − tarr,j (26)

3) PEV CONSTRAINTS
The PEV scheduling scheme should undergo some technical
constraints. The energy balance of the batteries is realized by
(27), where EPEV

s,t,j denotes the electric energy stored in jth
PEV at t . Moreover, the energy stored should be restricted
to an assured range, as reflected in (28).

EPEV
s,t,j = EPEV

s,t−1,j + PBCh,PEV
s,t,j × γ Ch

PEV × 1T

−
PBDis,PEV

s,t,j × 1T

γDis
PEV

, ∀ s, t, j (27)

EPEV
min ≤ EPEV

s,t,j ≤ EPEV
max , ∀ s, t, j (28)

The charging power is restricted to bewithin amaximumof
PBCh,PEV

max with a binary indicator ICh,PEVs,t,j indicating that the
jth PEV is charging at a specific time segment t, as shown by
(29). Similarly, the discharging power is maintained within
a maximum discharging power of PBDis,PEV

max with a binary

indicator IDis,PEVs,t,j indicating that the jth PEV is discharging
at a specific time segment t as demonstrated by (30). The
SOC of the PEV is then limited to falling within SOCPEV

max and
SOCPEV

min limits as shown in (31). Nevertheless, simultaneous
charging/discharging is strictly prohibited by (32).

0 ≤ PBCh,PEV
t,j,s ≤ PBCh,PEV

max × ICh,PEVs,t,j , ∀ s, t, j
(29)

0 ≤ PBDis,PEV
t,j,s ≤ PBDis,PEV

max × IDis,PEVs,t,j , ∀s, t, j
(30)

SOCPEV
min ≤ SOCPEV

s,t,j ≤ SOCPEV
max , ∀ s, t, j (31)

0 ≤ ICh,PEVs,t,j + IDis,PEVs,t,j ≤ 1 , ∀ s, t, j (32)

E. DEMAND RESPONSE PROGRAM MODEL
DRP is considered one effective DSMP program strategy
that allows end-users to participate actively in the electricity
market. Generally, the participants would modify their con-
sumption patterns mitigating peak load and filling the valleys
in response to a price signal. However, this would impose
discomfort affecting participants’ tendency to be engaged in
the DRP. The discomfort cost resulting from load pattern
change is formulated as follows [40]:

CeleDR =

T∑
t=1

(
π
ele,Down
DRP × Pele,Downt,s

+π
ele,Up
DRP × Pele,Upt,s

)
× 1T (33)

where π
ele,Down
DRP and π

ele,Up
DRP denote the ascending and

descending costs of electric DRP and the variables Pele,Downt,s

and Pele,Upt,s define the electric power descended and ascended
by DRP, respectively. Typically, the electric DRP constraints
are established as follows:

T∑
t

Pele,Upt,s =

T∑
t

Pele,Downt,s (34)

0 ≤ Pele,Upt,s ≤ Mrele,Up × Pelet,s × I ele,Upt,s (35)

0 ≤ Pele,Downt,s ≤ Mrele,Down × Pelet,s × I ele,Downt,s (36)

The sum of electric power transferred up and down is
restricted as in (34). The upper limits of up-down electric
power charge are represented in (35) and (36) where Mrele,Up

and Mrele,Down denote the maximum up-down electric power
ratios transferred. According to DRP contract constraints, the
controllable demands could be increased up to 50% of the
base consumers’ demand Pelet,s during low electricity prices.
Furthermore, for a high electricity price period, the control-
lable demands could be decreased up to 50%, as tabulated in
Table 2.
Eventually, the inapplicability of simultaneous up-down

electric charge transfer is addressed in (37). I ele,Upt,s represents
a binary variable that indicates the increment in the electricity
demand; when equal to 1, it denotes an increase in electricity
demand in period t; otherwise, it is equal to 0. Similarly,
I ele,Downt,s denotes a decreased status in electricity demand in
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period t; otherwise, it equals 0.

0 ≤ I ele,Upt,s + I ele,Downt,s ≤ 1 (37)

F. AIR AND HOT WATER DEMAND MODEL
In this work, air temperature regulation and hot water are the
main thermal demands that must be satisfied. To calculate
the households’ temperature, a straightforward equation was
proven in [37]. The indoor and outdoor temperature differen-
tial is addressed, which leads to a heat energy transfer from
the hotter to colder matter taking place as follows:

T indoor
s,t,n = T indoor

s,t−1,n × e
−1

R×CAIR +

(
R× HAIR

s,t,n + T outdoor
s,t,n

)
× (1 − e

−1
R×CAIR ) (38)

As it is clearly indicated from the previous equation, the
indoor households’ temperature Tindoor

t,s mainly depends on
outdoor households’ temperature Toutdoor

t,s , thermal energy
transferred into household HAIR

t,s , heat resistance of the
walls R, and specific heat of the air CAIR.
For hot water demand satisfaction, cold water is blended

with hot water in the storage tank leading to a state of tem-
perature equilibrium. In this study, it is assumed that hot water
consumed is constantly being substituted with cold water
having the same volume. The dynamic of the water flow is
beyond the scope of this paper. The water temperature at each
time step TWS

s,t,n is obtained as follows [38]:

TWS
s,t,n =

[
VCOLD
s,t−1,n ×

(
TCW

− TWS
t−1,s

)
+ VWS

× TWS
s,t−1,n

]
VWS

+
HWS
s,t,n

VWS × CW
(39)

The first term of this equation elaborates on the temper-
ature balance in the tank, which depends on the volume of
the cold water entering the tank at time t and scenario s
which is denoted as VCOLD

s,t,n ; the temperature of cold water
is defined as TCW; the volume of hot water storage is denoted
by VWS. The second term relates to stored water temperature
calculated knowing the thermal energy transferred to the hot
water storage at time t depicted as HWS

s,t,n; the volume of hot
water storage; the specific heat of water is defined by CW.
It is primarily apparent that customer satisfaction must

be considered; that is, the satisfaction strategy should be
enforced to a reasonable limit as established in (40) and (41).

TWS
min ≤ TWS

s,t,n ≤ TWS
max , ∀ s, t, n (40)

T indoor
min ≤ T indoor

s,t,n ≤ T indoor
max , ∀s, t, n (41)

G. THERMAL ENERGY STORAGE MODEL
As a result of humanity’s massive thermal energy consump-
tion, technological advancement regarding thermal energy
storage and planning needs to be addressed. Accordingly,
TES has emerged globally as a critical thermal energy man-
agement function [39]. Thereby, the applicability of this
technology has been analyzed in an EH-based microgrid

to achieve the thermal equilibrium whenever the unbalance
between generation and consumption is triggered; this is
illustrated as follows:

ETES
s,t,n = ETES

s,t−1,n +

(
PTES,in
s,t,n × σin −

PTES,DR
s,t,n

σDR

)
, ∀s, t, n

(42)

Here, and for the nth EH, ETES
s,t,n denotes the thermal energy

content of the TES in kWh. Additionally, H in
s,t,n and HDR

s,t,n
represent the injected and drawn thermal energy to/from the
TES. The efficiency of the injection and drawing processes
has been denoted by σin and σDR, respectively.

To assure a stable and reliable operation, the operation of
the TES is restricted within a defined limit illustrated by (43)
and (44). That is to say, the injected and drawn heat energy
is not allowed to exceed a maximum value of PTES,in

max and
PTES,DR
max , respectively. The binary variables uins,t,n and uDRs,t,n

denote the heat energy injection and drawing states of the
TES.

0 ≤ PTES,in
s,t,n ≤ PTES,in

max × uins,t,n, ∀ s, t, n (43)

0 ≤ PTES,DR
s,t,n ≤ PTES,DR

max × uDRs,t,n, ∀ s, t, n (44)

To prevent the simultaneous injection and draw of heat
energy, (45) has been established. Moreover, the stored
energy should not exceed a maximum and minimum thresh-
old of ETES

min and ETES
max , respectively as is evident by (46).

uDRs,t,n + uins,t,n ≤ 1, ∀ s, t, n (45)

ETES
min ≤ ETES

s,t,n ≤ ETES
max , ∀ s, t, n (46)

IV. UNCERTAINTY MODELING
This study comprehensively analyzes the impact of uncer-
tainties associated with photovoltaic systems, wind turbines,
electrical and thermal demands, and electricity market prices.
To provide a more in-depth analysis; this section is divided
into subsections as follows:

A. PHOTOVOLTAIC SYSTEM
PV module output power is determined mainly by solar
irradiance, which comes with a significant degree of unpre-
dictability. Accordingly, to model this uncertainty, the beta
probability distribution function (PDF), which depicts a
bimodal distribution, is regularly employed and formulated
as follows [18]:

fbeta (∅)

=


0 (αsr

+ βsr)

0(αsr)0(βsr)
× ∅

(αsr
−1)

× (1 − ∅)(β
sr
−1),

0 ≤ ∅ ≤ 1, αsr
≥0, βsr

≥0

0, otherwise

(47)

Here, ∅ represents the solar irradiance in kW/m2. In addi-
tion, αsr and βsr denote the shape factor parameters of beta
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distribution which are dependent on the mean (µsr) and
standard deviation (σ sr) as follows:

βsr
= (1 − µsr) ×

(
µsr

× (1 + µsr)

σ sr 2
− 1

)
(48)

αsr
=

µsr
× βsr

1 − µsr (49)

Afterward, the power output for the lth PV module for
scenario s is calculated as follows [33]:

PPVs,t,l = σ PV
× SPV × ∅s,t,l ×

(
1 − 0.005

(
TAm

− 25
))

,

∀ s, t, l (50)

Here, σPV , SPV , and TAm denote the efficiency, surface
area, and ambient temperature of PV modules, respectively.

B. WIND TURBINE
To simulate the behavior of wind speed under uncertainty
utilizing a statistical approach, Rayleigh PDF, which is a
particular derivative ofWeibull PDF in which the shape factor
K is equal to 2 [6], is employed and expressed as follows:

fW
(
VWT

)
=

K
C

×

(
VWT

C

)(K−1)

× exp

(
−

(
VWT

C

)K)
(51)

In this equation, the scale factor C is equal to vavg/0.9 ,
in which vavg denotes the incident average wind speed at a
particular site. VWT represents wind speed in (m/s). After-
ward, a piecewise cubic power curve can be exploited to
compute the output power of the mth wind turbine as a
function of ambient wind speed formulated as:

PWT
s,t,m=



0 VWT
s,t,m ≤ VCI

PWT
RATED×

(
VWT
s,t,m − VCI

VRATED − VCI

)3

VCI ≤ VWT
s,t,m ≤ VCR

PWT
RATEDVCR ≤ VWT

s,t,m ≤ VCO
0 VWT

s,t,m≥VCO
(52)

Here, VCI, VCR, and VCO are cut-in, rated, and cut-out wind
speeds, respectively. PWT

RATED is the rated power output in kW.

C. ELECTRICAL AND THERMAL DEMANDS
Generally, the uncertainty associated with the electrical and
thermal demand is established by the normal PDF [40] as
follows:

fdem (Ldem) =
1

√
2πσdem

exp

(
−
(Ldem − µdem)2

2σ 2
dem

)
(53)

Here, fdem (Ldem) denotes PDF of the demand uncertainty.
µdem and σdem represent the mean and standard deviation of
the historical demand data, respectively.

D. ELECTRICAL PRICE
The electricity price tariff has been upgraded to the time
of use tariff (TOT) [23]. Consequently, significant reduc-
tions in capital investments and transmission costs have been
obtained. In fact, TOT constantly encourages end-users to
shave and reduce peak power. To simulate the uncertainty of
the electric tariff; a normal PDF is employed as follows:

P
(
X = xPr|µPr, σ

2
Pr

)
= fPrice (xPr)

=
1

√
2πσPr

exp

(
−
(xPrice − π)2

2σ 2
Pr

)
(54)

For electricity price variable xPr, the parameters σPr
and µPr denote the standard deviation and average value,
respectively.

V. ELECTRIC, GAS AND HEAT FLOW CONDITIONS
AND EQUILIBRIUM
The electrical power flow Peleci,j,t,s from the ith to the jth bus is
represented as follows [32]:

Peleci,j,t,s = Vi,t,sVj,t,s ×
(
Gi,jcosθi,j,s + Bi,jsinθi,j,s

)
− Gi,jV 2

i,t,s (55)

Here, Vi,t,s and Vj,t,s are the voltages of the buses i and
j, respectively. Additionally, Gi,j and Bi,j denote the conduc-
tance and the substance of the branch ij, respectively. The
angle difference between bus voltages i and j is indicated as
θi,j,s. For the electric power balance achieved for each bus in
the IEEE-33 system, the following equation is established:

PelecG,i,t,s − PelecD,i,t,s ± PLOT,t,s ± PelecEH,n,t,s −

∑
j∈i

Peleci,j,t,s = 0,

(56)

where, PelecG,i,t,s and PelecD,i,t,s indicate the generated and
demanded power for bus i. Moreover, PelecEH,n,t,s denotes the
aggregate power of the electric equipment of the nth EH.
Generally, natural gas flowing through the natural gas net-
work with i and j branches are illustrated as follows [32]:

N gas
i,j,t,s = ki,j,t,ssi,j,t,s ×

√∣∣∣ρ2
i,t,s − ρ2

j,t,s

∣∣∣
where si,j,t,s =

{
1 ρi,t,s≥ρj,t,s
−1 otherwise

(57)

Here, ρi and ρj correspondingly indicate the pressure of the
down and up streams. Moreover, the transmission coefficient
between nodes i and j is denoted as ki,j. Finally, the gas flow
balance at node x, which mainly depends on gas generation
N gas
G,i,t,s and consumption N gas

D,j,t,s, is established as follows:

N gas
G,i,t,s − N gas

D,i,t,s −

∑
j∈i

N gas
i,j,t,s = 0 (58)

To promote the reliability of the optimization model, it is
crucial to consider the power and heat flow conditions. The
power flow between the EHs and the distribution network is
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bidirectional. Moreover, the PEVs are employed with V2G
capability. If the power is consumed, it would be assigned
to a positive value, whereas it would be negative if it is
injected into the grid. The power balance condition within
each EH is guaranteed by applying (59), where PGrids,t,n and
Demands,t,n represent the grid power and electrical demand
for t under scenarios s for the nth EH.

PDiCss,t,n + PCSim
s,t,n + PBDis,BESSs,t,n + PPVs,t,l + PWT

s,t,m

+ PGrids,t,n + Pele,Downs,t ≥Demands,t,n + PCCh
s,t,n

+ PBCh,BESSs,t,n + Pele,Ups,t , ∀s, t, n, l,m (59)

To meet the heat flow equilibrium for each time segment
and under each scenario, (60) is set as follows:

HCAES
s,t,n + HDR

s,t,n≥ HAIR
s,t,n + HWS

s,t,n + H in
s,t,n∀s, t, n (60)

VI. SOLUTION ALGORITHM
In this study, it is desired to minimize the operation cost
and the emissions by optimizing the decision variables to
effectively schedule the proposed multi-carrier EH-based
microgrid framework. For this purpose, the multi-objective
grey wolf optimizer (MOGWO) is employed. Like other
metaheuristic algorithms, a population or search agents are
generated randomly, mainly depicting the social leadership of
grey wolves chasing and hunting their prey. Accordingly, the
critical parameters that need to be set are alpha, beta, and delta
(α, β, and δ) leadership wolves. Thus, search agents tend to
converge from/towards the prey according to well-established
position equations until optimality is fulfilled.

Concerning having a rapid convergence to solutions and
obtaining highly competitive results, MOGWO can be advan-
tageous since it has superiority in the exploration phase
compared to other well-known algorithms. For instance,
the multi-objective particle swarm optimization algorithm
(MOPSO) was proven to have fast convergence characteris-
tics that make it more likely to terminate with false Pareto
front solutions [41]. Meanwhile, the adaptive values of the
different MOGWO provide a smooth transition between the
exploration and exploitation which results in convergence
toward a true Pareto optimal front [42].

Once Pareto’s optimal front is stored in the archive, higher-
level qualitative factors should be addressed when making
the final decision. The fuzzy set theory could be established
to summarize the issue and locate the most effective non-
dominant solution. It is noteworthy that selecting one optimal
solution among the Pareto front to satisfy both objectives
simultaneously could impose such a challenge. This could be
related to the fact that objectives usually possess a conflicting
nature with each other.

Fuzzy set theory is applied to find a trade-off between
the objectives. As it is considered the most suitable function
for the power system’s optimal solution space, the linear
membership function has been deployed in this study as

FIGURE 3. Linear membership function of the kth objective.

follows [40]:

µk
i =


1 f ki ≤ f kmin

f kmax − f ki
f kmax − f kmin

f kmin ≤ f ki ≤ f kmax

0 f ki ≥f kmax

(61)

For the ith Pareto front solution and kth objective, µk
i

denotes the linear membership function. Whereas the min-
imum and maximum values of the kth objective are denoted
as f kmin and f

k
max, respectively. The membership function could

be obtained for a set of non-dominated solutions of the multi-
objective problem to have any value between 1 and zero as
illustrated in Fig. 3.

Generally, as the value of the evaluated membership
function increases, the degree of objective fulfillment also
increases, reaching complete fulfillment at the value of 1.
Otherwise, the degree of satisfaction decreases indicating a
complete deficiency in meeting the objective when equal to
zero. Afterward, each Pareto front is normalized using the
normalized membership function as follows:

µi =

∑NOBJ
k=1 µk

i∑NPF
i=1

∑NOBJ
k=1 µk

i

(62)

where NOBJ and NPF represent the total number of objectives
and Pareto front solutions, respectively. After evaluatingµ for
each Pareto front and each objective, the values are arranged
in descending order to prioritize the optimality of the solution.
This would lead to assigning the solution with maximum µ

to be the best compromised one.
For a more in-depth analysis of the solution process,

a flowchart describing the primary steps toward the optimal
schedule of the proposed scheme is illustrated in Fig. 4. The
optimal scheduling of the proposed scheme is carried out
considering three basic aspects, these are, (i) preparing and
passing the input data, (ii) running the optimal scheduling
framework, and (iii) evaluating the output data and results
represented in the seasonal schedule of the CAES, BESS,
TES, and PEV.
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FIGURE 4. Flowchart for evaluation of the best compromised non-dominated solution for the proposed scheduling scheme of the multiple
EHs-based microgrid.

For the uncertain input data collections, and after analyzing
the historical data, PDFs are constructed and segmented into
several scenarios assigned to their probabilities, which are
then passed and sent to the optimal scheduling framework.
For each hour, the number of PEVs entering the parking
lots and their initial SOC is determined to establish the
charging/discharging margin for these parking lots. Based on
the available energy stored in the currently existing PEVs’
batteries, the allowable charging/discharging power margin
to be shared with the utility grid from the differed parking lots
is determined as illustrated in Fig. 4. Particularly, the optimal
scheduling framework implements the MOGWO to initiate
the optimal scheduling process, taking the operational mar-
gins and constraints of the CAES, BESS, and TES installed
at the different EH; besides, the parking lots margin placed at
the different bus locations.

The MOGWO then goes through many iterations until the
convergence to a set of non-dominated solutions is reached.
The total number of iterations has been considered as the
stop criteria of the program. It is noteworthy to mention that
the Pareto optimal front is generated, and the set of non-
dominated solutions is persistently obtained for every single
operating hour; afterward, the best-compromised solution is
selected by applying the fuzzy set theory at that specific hour.
The membership function is obtained for cost and emission
objectives with their non-dominated solutions µk

i where k =

1, 2; i= 1, 2, 3, .., population size, then the normalized mem-
bership function is evaluated and assigned for each one of the
non-dominated solutionsµi where i = 1, 2, 3, .., population
size. Eventually, the non-dominated solution with the highest
normalized membership is selected and the corresponding
results are obtained, which consist of the seasonal scheduling
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TABLE 2. Technical data sets of the proposed model [32], [33], [42], [47].

of the optimized decision variables and the annual operating
costs and emission amounts generated from the proposed
EH-based microgrid.

VII. CASE STUDIES
Mainly, the electric distribution system used in this study
consists of a typical IEEE-33 radial distribution system
realizing a peak active and reactive power of 3.715 MW
and 2.3 MVAR, respectively, and a substation voltage of
12.66 kV, as given in Fig. 2 [43]. In compliancewith theANSI
C84.1 requirement, the buses’ voltage has been restricted
to have minimum and maximum voltages of 0.95 and 1.05,
respectively [44].

Gas infrastructure has also been considered in the model.
For the proposed multi-carrier EH-based microgrid under
study, the technical parameters and constraints for the various
types of integrated equipment are set as shown in Table 2.

FIGURE 5. Expected market prices for electricity and natural gas.

The expected seasonal data sets of electricity price, solar
irradiance, and wind speed are provided in Figs. 5 and 6
[45], [46], and [47]. Moreover, the hourly seasonal electrical
generation for PV and WT systems is plotted in Fig. 7. The
expected electrical and thermal demands for each EH are
obtained from [31] and [45] and displayed in Fig. 9.

Tesla Model S is realized for the PEVs’ battery charac-
teristics, which have a capacity of 85 kWh [36]. The essen-
tial parameters of the PEV are tabulated in Table 2. It is
assumed that 60 PEVs exist in each parking lot each season
and remain there for 12 hours. Meanwhile, the PEVs can
contribute to supplying the demand during the initial hours,
discharging and injecting power to the parking lot, and then to
the upstream grid. Nevertheless, over their final hours, PEVs
regain their charging state and leave with not less than 75%
SOC.

Basically, this study proposes four different case stud-
ies regarding the operation of EH-based microgrids as
follows:

Case 1: The base case considers four EHs connected to
the IEEE-33 bus system at four different suggested locations
according to the investors’ preferences, as illustrated in Fig. 2.
Each EH original configuration primarily consists of CAES
and TES.

Case 2: In this case, the configuration of each EH is
upgraded to realize the BESS operation along with the CAES
and TES.

Case 3: The DRP is employed to mitigate the operation
cost.

Case 4: Parking lots are established in the predefined
locations in the system, and the V2G mode is activated.

For all the mentioned cases, the objective was to mitigate
the operation cost of the EHs besides the harmful emissions.

It is worth noting that CAES is the main source to satisfy
electrical and thermal demands for all cases. However, the
deficiency in the electrical generation is compensated by pur-
chasing from the upstream grid, which in turn would increase
the operation cost and emission amount. As progressively
proceeding through the cases, the cost and emissions are
expected to reduce as storage devices, that is, BESSs and
PEVs besides DRP are realized. For the thermal network,
TES is employed for all cases to govern the thermal gener-
ation and consumption equilibrium.
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FIGURE 6. Expected hourly solar irradiance and wind speed during
scheduling horizon.

FIGURE 7. Hourly PV and wind generation during the scheduling horizon.

FIGURE 8. Optimal trade-off between cost and emission at one typical
operation hour during the scheduling horizon.

VIII. SIMULATION RESULTS AND DISCUSSION
A. PERFORMANCE OF THE PROPOSED
SCHEDULING MODEL
To analyze and evaluate the performance of the proposed
scheduling model, the behavior of its various equipment is
assessed based on different case studies. For the base case, the
results for the Pareto optimal solution and optimal scheduling
of electrical power flow for the different EHs in the microgrid
are plotted in Fig. 8 and Fig. 9, respectively.

The fuzzy set theory is employed for each operating hour
to select the optimal trade-off between the cost and emission
objectives, as illustrated in Fig. 8. As Fig. 9 verifies, the
CAESs undergo charging, discharging, and simple cycles to
satisfy demand. As it is well established, CAESs start charg-
ing during low-peak price periods to store electrical energy.
Once a high-peak price period is experienced, CAESs start
discharging to satisfy electrical demands and reduce power
purchased from the upstream grid.

Due to the fact that a simple cycle state could lead
to double the fuel consumption and thus increases the

operation cost, the solution algorithm avoids going through
this state during the entire scheduling time horizon to sat-
isfy the minimization of the operation cost [33].Furthermore,
going through a simple cycle mode, which means operat-
ing as a conventional gas turbine, could lead to significant
emissions. It is worth noting that surplus power from the
CAESs is sold to the upstream grid; consequently, the power
experiences a reverse flow direction, as noted during hour
12 for EH1 and 29 for EH2. This explains the bidirectional
flow of the power between the grid and each EH.

For the thermal demand, the scheduling results for each EH
during the study time horizon are shown in Fig. 10. Herein,
the heat generated during the discharge of the CAESs and the
thermal discharge of TESs are provided to satisfy the thermal
demand. The discharge of the TES is plotted against the upper
half of the abscissa axis; on the other hand, the charge is
plotted against the lower half. Once thermal demand is low,
TES starts chargingmostly from discharged heat of the CAES
and stores thermal energy for the next-day use. As it is evident
from Fig. 10, the thermal balance is achieved between the
thermal demands and generation at each operating hour.

The energy stored in the CAES for each EH is displayed in
Fig. 11. As the figure reveals, CAES only provides relatively
shallow cycles of discharges before reaching the minimum
limit of 300 kWh; this situation is due to the fact that environ-
mentally harmful emissions are diffused during the discharge
of the CAES. The energy stored in each TES is displayed in
Fig. 12. As the figure reveals, the energy stored in each TES
is updated each hour according to its charging/discharging
status. At the end of each day, the surplus thermal energy
could be effectively stored and used the next day.

For Case 2, part of the electrical demand satisfaction is
taken over by BESS alongside the CAES. As observed in
Fig. 13, BESS contributes to significant discharge power
compared to CAESs. This is reasonably expected as BESS
charging and discharge do not contribute to pollution emis-
sions. For instance, at 9 AM on a typical winter day for EH1,
the power discharge from BESS is evaluated to be 62.1 kW
compared to only 8.18 kW from CAES.

Additionally, at the same operation hour for EH2, 27.6 kW
of discharge power is obtained from BESS compared to only
8.17 kW from CAES. The same principle applies to the rest
EHs. The various operation cycles of CAESs and BESSs are
depicted in Figs. 14 and 15, respectively. In consequence,
a reduction in the operation cost and emission amount is
achieved as will be comprehensively illustrated in the upcom-
ing subsection.

To manage end-user consumption patterns, DRP is applied
for Case 3, see Fig. 16. Accordingly, consumers engaged in
such a program start shifting a set of residential appliances
from peak to off-peak times, taking into consideration the
satisfaction of the comfort preferences level of the consumer.
As a result of appliance rescheduling, the aggregate peak
demand would turn into a roughly flattened curve. As a
consequence, the operation cost and the pollution emissions
aremitigated as will be explained in the upcoming subsection.
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FIGURE 9. Optimal seasonal scheduling results for electrical power flow of Case 1.

FIGURE 10. Seasonal scheduling results for thermal power flow of Case 1.

The results obtained for the optimal dispatch of electri-
cal power under Case 4 are given in Fig. 17. For this case
study, various parking lots have been incorporated into the
system to optimally manage the charge and discharge of
the PEVs.

For example, most PEVs arrive between 12 PM and 10
PM on a typical winter day. Once the PEV is plugged into
the lots, it starts charging during its initial hours to store
electrical power. Afterward, and during its middle hours, the
PEV starts discharging to contribute to the satisfaction of
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TABLE 3. The annual operation cost results for different case studies.

TABLE 4. The annual emission amounts result for different case studies.

TABLE 5. Comparison between the proposed approach and approaches in [5] and [33].

FIGURE 11. Seasonal electrical energy content for CAESs for Case 1.

the end-users demand. Though, the parking lot would give
each PEV the priority to start charging within its final hours
and eventually depart without exceeding the minimum SOC
threshold of 75%.

Fig. 18 represents the seasonal charging and discharging
power of the different parking lots in the microgrid, denoted
by negative and positive values. For instance, during the peak
price period elapsed between 4 PM and 8 PM on a typical
winter day, parking lots prefer to sell energy stored to the
upstream grid. On the other hand, once off-peak periods are
experienced and the PEV approaches its final hours in the lot,
the lot purchase energy from the upstream grid and adjust the
state of the PEV to start charging. One can observe that the
presence of the parking lots in the microgrid has dramatically
influenced the operation of the EHs. As can be monitored

FIGURE 12. Seasonal thermal energy content for TESs for Case 1.

and compared to the base case, the power purchased from the
grid, specifically during peak hours, has reduced drastically
as a portion of the demands is being fed from the parking lot
discharge rather than the grid, see Fig. 17.

B. SUMMARY AND COMPREHENSIVE COMPARISON
In this subsection, a comprehensive comparison regarding the
proposed stochastic optimal operation of multi-carrier energy
hub-based microgrids is carried out. As previously discussed,
the study was conducted on four different case studies.

To evaluate the effectiveness of the proposed stochastic
optimal scheduling framework, the total seasonal operation
cost and emission amounts are calculated, tabulated, and plot-
ted in Tables 3 and 4, and Fig. 19. For the base case, the total
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FIGURE 13. Optimal seasonal scheduling results for electrical power flow for Case 2.

FIGURE 14. Seasonal electrical energy content of CAESs for Case 2.

FIGURE 15. Seasonal SOC scheduling of BESSs for Case 2.

operation cost and emissions are calculated as 221,553.2$ and
1.1976e+09 g, respectively, as shown in Tables 3 and 4.

Moreover, the total cost and emissions obtained each
season are also displayed in Tables 3 and 4. For Case 2,

the total operation cost was reduced by 42.9%, while the
total emissions were reduced by 12.5% compared to the
base case. Consequently, cost and emissions reductions are
obtained each season. This could be justified by BESS sup-
porting the CAES to meet a more significant portion of the
demand, leading to less power importing from the utility
grid, and more may be sold during peak hours. Another
factor that could lead to significant cost and emissions
reductions is the DRP. As for Case 3, the employing of
the DRP has accounted for 54.5% and 19.3% reductions
in the total operation cost and emissions compared to the
base case.

Furthermore, the costs and emissions during the various
seasons were mitigated compared to the previous two cases
(Case 1 and Case 2). For instance, during the wintertime, the
cost was evaluated to be 17,383.1$ compared to 22,896.2$ in
Case 2. This reduction is reasonably expected as the price-
based DRP encourages end users to shift their consumption
to the off-peak and low-price hours, resulting in less power
purchased from the utility grid during high-price periods.
Finally, parking lots have been implemented in Case 4. The
total operation cost was significantly reduced by 64.1% and
emissions were reduced by 57.6% compared to the base
case. Indeed, the total operation cost during the different sea-
sons was reduced. This implies that the charging/discharging
scheduling of the PEV contributes to supplying the end-users
demands and thus reducing the power imported from the grid.
Fig. 19 shows that the total operation cost and emissions are
significantly reduced as progressively proceeding from the
base case.
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FIGURE 16. Energy hub demands before and after DRP for Case 3.

FIGURE 17. Optimal seasonal scheduling results for electrical power flow for Case 4.

To highlight the effectiveness of the proposed approach,
a comparison between the proposed models in [5] and [33]
has been undertaken in Table 5. For [5], the energy hub model
was primarily constructed of CHP, PV, BESS, and PHEV.
Accordingly, this approach accounted for 40% and 50.0%
reductions in cost and emission, respectively. For [33], the

proposed model has completely ignored the V2G capability
of the PEVs. As stated earlier, the V2G mode could substan-
tially affect the operation cost and emission by reducing the
electric power imported from the grid. On the other hand,
the charging of the PEVs could be carried out by the RESs
installed. For this case, only 39.5% and 36.8% reductions
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FIGURE 18. Seasonal charging/discharging power for the different
parking lots in the system for Case 4.

FIGURE 19. Comprehensive comparison between total operation costs
and emission amounts for the different case studies considered.

are obtained in the cost and emission in [33], respectively,
compared to 64.1% and 57.6% reductions from the proposed
work.

IX. CONCLUSION
A stochastic multi-objective optimization framework is pro-
posed in this paper to address the coordinated operation of
the CAES, BESS, TES, and PEV along with RES. The model
under study has been established to depict four different EHs
interconnected into the IEEE-33 at various suggested loca-
tions according to the investors’ preferences. Uncertainties
represented in RES, demands, electricity prices, and driving
habits of the PEVs’ owners have been considered in the
proposed approach. Furthermore, the DRP is implemented
to shift the non-obligatory demands to off-peak periods to
mitigate the operation cost.

Particularly, this study has considered minimizing two
objectives, which are, the operation costs and emission
amounts. The MOGWO has been deployed to handle the
multi-objective optimization approach and a set of a Pareto
front optimal solutions are generated. For decision-making
and to select one trade-off optimal solution among the differ-
ent non-dominated ones, the fuzzy set theory and linear mem-
bership function are implemented. The significant findings of
this study could be summed up as follows:

• For the first case study, the EHmainly consists of CAES
and TES. The CAES undergoes charging, discharging,
and simple cycles to satisfy electrical demands. Addi-
tionally, the CAES has the capability to satisfy thermal
demand. Yet, the thermal generation has a degree of
interdependency with the electrical generation as heat
could only be generated and efficiently recovered during
the discharging cycles. One demerit of relying only on
CAES for electrical-thermal demand satisfaction is that
the discharge process is associated with a significant
amount of CO2, NOx, and SOx which would inevitably
deteriorate the emission issues.

• To get around the problem related to the base case, the
CAES is coordinated with a BESS. Most of the time
during the scheduling horizon, the BESS takes over the
satisfaction of the demands as it does not contribute to
harmful emissions, leading to a total emission amount
reduction of 12.5% compared to the base case. In addi-
tion, the generation capacity of each EH has increased
which means purchasing less power from the grid and
leading to a 42.9% reduction in overall operating cost.

• For the third case, the DRP is applied to shift non-
obligatory demands from peak to valley periods, taking
into consideration the satisfaction of the comfort prefer-
ences level of the consumer. As a result, less power is
purchased from the utility grid during high-price peri-
ods which is accounted for by a reduction of 54.5% in
operation cost. Furthermore, the emission amounts have
been mitigated by 19.3%.

• The final case has considered the adoption of the V2G
mode of the PEVs which exist at different parking lots
located at different buses in the IEEE-33 bus system. The
seasonal charging/discharging scheduling of the PEV
contributes to supplying the end-users’ demands and
thus reducing the annual imported power from the grid.
As a result, the total operation cost has been mitigated
by 64.1%. Moreover, the emission amounts have been
dramatically reduced by 57.6%, leading to a greener
operation as desired.
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