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ABSTRACT Point cloud completion aims to complete partial point clouds captured from the real world,
which is a crucial step in the pipeline of many point cloud tasks. Among the existing methods for solving
this problem, SnowflakeNet is the most outstanding. However, SnowflakeNet cannot recover the detailed
structure of point clouds in latent code because it uses many max-pooling operations in the encoding stage.
Therefore, we propose an improved architecture to effectively acquire and preserve more detail information
from input point clouds, thereby enhancing the quality of point cloud completion. Specifically, the improved
lightweight DGCNN is added to the encoder to extract local features. The geometric perception block of
PoinTr is introduced to extract the global features of the point cloud, which can fully model the structural
information and inter-point relationships of known point clouds. The new optimizer Adan is also used in
the training process to complete the partial point clouds. Comparative experiments on Completion3D and
PCN datasets show that our method is better than most current point cloud completion methods. Our method
has the ability to produce the entire shape with details, including but not only smooth surfaces, well-defined
edges, and distinct corners.

INDEX TERMS Point cloud completion, feature extraction, improved lightweight DGCNN.

I. INTRODUCTION
Point clouds have driven the development of computer vision
[1], [2], [3], [4], [5] as a commonly used, easily accessible
data format that requires little memory to store and can
convey detailed 3D shape information. Devices for capturing
point clouds have become increasingly advanced provoking
a significant amount of research (e.g., robotics, autonomous
driving, and manufacturing). However, the point cloud data
captured directly by these devices are often incomplete in
realistic scenarios because of occlusion, reflection, and limi-
tations in device resolution and angle. Therefore, the comple-
tion of such missing point clouds to obtain high-quality point
clouds is crucial to facilitate downstream applications.

Recently, researchers have attempted to solve this problem.
Early attempts at point cloud completion [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16] via voxelization and
3D convolution. However, the amount of computation and
the cost of these methods in processing point clouds are
very large. With the success of PointNet and PointNet++
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[17], [18], the 2D convolutional neural network that directly
processes 3D point cloud itself has become mainstream. Cur-
rently, many tasks related to point cloud completion rely on
PointNet and PointNet++ [17], [18]. The primary method
involves extracting global features from the input point cloud
using an encoder, which is subsequently decoded to generate
a completion point cloud. However, these methods cannot
recover the detailed structure of point clouds in code because
it uses many max-pooling operations in the encoding stage.
Therefore, capturing regional geometric details and structural
characteristics(e.g., smooth surfaces and distinct borders),
remains a challenging task in completing partial 3D shapes,
as depicted in Fig. 1. (see Fig. 1(b) and Fig. 1(c)).
To address this issue, we propose an improved network

structure that concentrates on improving input point cloud
features extraction during the encoder phase. First, we pro-
pose an improved lightweight DGCNN for local region
feature extraction in the encoder stage. DGCNN [21] is
a dynamic graph-based CNN, which mainly addresses the
problem of PointNet and PointNet++ [17], [18] only focus
on point features and does not consider the geometric
structure relationship in the local information. We further
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FIGURE 1. A comparative analysis of completed point cloud results through visual inspection. In contrast to PMP-Net [19] and SnowflakeNet [20], our
network has the ability to produce the entire shape with details, including but not only smooth surfaces (blue box), well-defined edges, and distinct
corners.

incorporate transformer structure into original DGCNN to
enhance the capabilities of detail feature preservation. Sec-
ond, we introduce the geometric perception block of PoinTr
[22] to fully model the structural information and inter-point
relationships of known point clouds. The output of the geo-
metric perception block is used as the input of Snowflak-
eNet’s decoder [20] to generate complete point clouds. Third,
we also adopt a new deep model optimizer called Adan
during training process to make the point cloud complete
more effectively. Experiments on many public datasets show
that our network architecture is better thanmost existing point
cloud completion networks.

The main contributions of this paper are summarized as
follows:

• The encoder is improved to better retain the fine-grained
information of the input point cloud, which is conducive
to the generation of complete point clouds at the decoder
stage;

• An improved lightweight DGCNN is proposed for local
feature extraction, which not only pays attention to the
features of points, but also integrates the relationships
between points in point cloud processing;

• To solve the shortage of SnowflakeNet in extract-
ing global skeleton structure information from incom-
plete point clouds, inspired by poinTr, we introduce a
transformer-based geometry-aware module to solve this
problem.

II. RELATED WORK
A. POINT CLOUD COMPLETION BASED ON VOXEL
2D convolutional neural network has achieved great success
in the application of plane image inpainting and restoration.
Therefore, an intuitive idea for 3D shape completion is to
build directly on the success of the 2D CNNs. Early methods
for completing point clouds [6], [7], [9] attempted to transfer
mature methods from 2D completion tasks to 3D point clouds
using voxel positioning and 3D convolution. However, with
an increase in spatial resolution, the computational cost of
these methods is very high.

B. 3D SHAPE COMPLETION BASED ON
ENCODER–DECODER
PointNet [17] is the first outstandingmodel that uses encoder-
decoder architecture for point cloud processing tasks, which
mainly addresses how to directly process 3D point clouds
themselves using 2D CNNs. It can extract point set fea-
tures stably even if the point clouds are fluctuating, noisy,
or missing. However, PointNet [17] cannot effectively extract
local fine features. To overcome this problem, PointNet++

[18] was proposed. PCN [23] directly processes the original
point cloud without any structural assumptions (e.g., symme-
try) or annotations of the underlying shape (e.g., semantic
classes) and has a decoder design that allows the generation
of fine-grained completions while maintaining a small num-
ber of parameters. DGCNN [21] addresses the problem that
previous works focused only on point features and ignored
the relationships between points, which employs EdgeConv
to incorporate the relationship between points to build a
dynamically updated graph model. In GRNet [24], grid and
grid inversion methods are designed to convert point clouds
into 3D grids, and a cubic feature sampling layer is proposed
to extract information about neighboring points and preserve
contextual knowledge. GRNet [24] allows convolution on
3D point clouds while preserving their structure and contex-
tual information. PoinTr [22] considers point cloud comple-
tion as a set-to-set transformation problem, and proposes a
transformer for point cloud completion. The point cloud is
first transformed into a series of point agents, and then the
transformer performs the point cloud generation. To facilitate
the transformer to better exploit the sensing bias of the 3D
geometric structure of the point cloud, they further design
a geometry-aware block that explicitly models the local
geometric relationships. SnowflakeNet [20] uses snowflake
point deconvolution (SPD) and applies a transformer-based
structure to the decoding process. SnowflakeNet [20] mod-
els complete point cloud generation as a snowflake-like
growth of points in 3D space. After each SPD, child
points are gradually generated by splitting their parent
points.
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III. METHODS
A. ARCHITECTURE OVERVIEW
The overall architecture of our network is shown in Fig. 2.
We introduce our method in detail as follows.

1) FEATURE EXTRACTION MODULE
The purpose of feature extraction is to obtain a 1xC shape
code, which captures the characteristics of input point cloud
and relationships between points. To achieve this, we first
improve the DGCNN [21], and then use the improved
lightweight DGCNN in Fig. 5 (a) to extract the features of
input point cloud. Finally, the global feature of input point
cloud is obtained using the geometric perception transformer.

2) SEED GENERATION MODULE
The Seed generation module is borrowed from Snowflak-
eNet. The purpose of the seed generation module in Fig. 3
is to generate a coarse point cloud P0 of size N0x3. It is
a complete point cloud that includes point cloud features,
structure, and relationships between points. A coarse point
cloud is used as the input of the point generation module in
Fig. 2 to generate fine-grained point clouds.

The details of the Seed generation module are presented
in Fig. 3. First, the global feature f from the feature extrac-
tion module is used as the input of the seed generation
module, and then point features pf are generated through
ConvTranspose1d. Second, a coarse point cloud is obtained
by integrating f and pf using multi-layer perceptrons. Third,
to make a coarse point cloud contain more prior information,
we further concatenate Pc and the input incomplete point
cloud P, and then we conduct down-sampling of its results
to P0 through FPS.

3) POINT GENERATION MODULE
In the decoding stage, we use the transformer-based SPD
module of SnowflakeNet [20] in Fig. 3. The SPD is a decon-
volution network with multiple layers. Each SPD layer uses
the previous point cloud as its input and splits every parent
point into several child points. This kind of generation process
is like snowflakes growing in 3D space. To better restore
local detail features during point splitting, each SPD layer is
equipped with Skip-Transformers to capture regional shape
characteristics and standardize the splitting patterns between
adjacent SPDs. This approach not only allows point splitting
to conform to local features but also enables neighboring
SPDs to cooperate with each other, which ensures consistency
in multi-step point splitting.

The details of SPD are shown in Fig. 4. Within the SPD,
we first obtain each point feature in Pi−1 using PointNet
[17] (PN). Second, we concatenate each point feature and
the global feature. Third, we use a Skip-Transformer (ST)
to integrate the local shape context information and the dis-
placement features of the previous SPD step. Then, we split
each parent point feature by ConvTranspose1d to generate
child point features, and the child point feature uses MLP
to generate the displacement feature and the displacement
vector of the child points. The displacement feature is intro-
duced into the next SPD step to guide the next splitting step;

The displacement vector1Pi represents the displacement of a
child point relative to its parent point. Finally, upsample point
Pi−1 and add its result to 1Pi to obtain Pi.

B. THE IMPROVED LIGHTWEIGHT DGCNN
Among the existing methods, the fine-grained details of input
point cloud are easily lost during the pooling operation in the
encoding phase. It is difficult to recover from diluted global
features in the generation. To capture many more features
of input point cloud, we propose an improved lightweight
DGCNN to enhance feature extraction ability. First, the
Transformer in Fig. 5 (b) is added to the DGCNN for feature
extraction. Second, each extracted feature is passed through
skip-concatenation, as shown in Fig. 5 (a). Module1 includes
three steps: get graph feature, conv2d, and transformer. Mod-
ule2 includes two steps: get graph feature, conv2d.

The details of the improved lightweight DGCNN are
shown in Fig. 5. First, input a point cloud Pwith a size of Nx3.
Second, we use the Input transformer module to turn each
point of the input point cloud into an 8-dimensional coor-
dinate. Third, we use module1 and max pooling operation
to obtain features f1 and f2 of the input point cloud. Then,
we use farthest point sampling (fps) to decrease the number
of points of the input point cloud N1, N2. Next, we obtain the
input point cloud features f3 usingmodule21 andmax pooling
operation. Fifth, we concatenate f1, f2, and f3 using skip-
concatenation. Then, the dimension of concatenated features
is increased and max pooling is applied to obtain the feature
f4. Finally, f1, f2, f3, and f4 are concatenated to form the input
point cloud features. Coor and f represent the output results
of points and features, respectively.

C. THE GEOMETRIC PERCEPTION TRANSFORMER BLOCK
Inspired by PoinTr, we also propose a geometry-aware block,
as shown in Fig. 6 to fully model the structural information
of known points and relationships between points so as to
reduce information loss of input point cloud. First, we process
the point coor and feature f obtained from the improved
lightweight DGCNN: (1) capture the geometric relation knn
in the coor by knn_index; (2) encode the global position of
the coor by position embedding to obtain pos; (3) reduce
dimension of the feature f and represent the result in x.
Second, the geometric features and semantic features are
obtained by the KNN query and Self-Attention. Third, the
geometric features and semantic features are concatenated,
and then, the global features f of the input point cloud are
obtained by increasing dimension and pooling operation to
the result.

D. TRAINING LOSS
In the experiment, the model is optimized using the chamfer
distance (CD). To constrain the point clouds produced during
the decoder stage, we downsample the ground-truth point
cloud with the same sample density as P0, P1, P2 and P3 in
Fig. 2. The predicted point clouds with the same density are
grouped two by two with the ground-truth point cloud, the
average distance of the nearest points between each group
is calculated by CD, and the completion loss is derived by
aggregating the losses of the four CDs, denoted by Lcom.
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FIGURE 2. The overall architecture of network. We first extract local features from input point cloud by the improved lightweight
DGCNN, and then we get the global features by the geometry-aware module. Then seed generator generates coarse point clouds,
and finally, fine-grained point clouds are generated by Multiple SPDs and Skip-Concatenations.

FIGURE 3. The overall of the Seed generation module.

FIGURE 4. The overall of the SPD (Snowflake Point Deconvolution).

Moreover, we introduce Lpre loss to ensure that the shape
structure of the input point cloud is retained. The final loss
expression is as follows:

Lcom = CD0 + CD1 + CD2 + CD3 (1)
L = Lcom + aLpre. (2)

IV. EXPERIMENTS
To demonstrate the effectiveness of our network, we eval-
uated it on PCN and Completion3D datasets, respectively.
In point cloud completion research, our experiments show
that our network is better than most existing networks
available.

A. EVALUATION ON PCN DATASET
The PCN [23] dataset for dense point cloud completion,
a synthetic CAD model of ShapeNet [25], is used to create

a large scale dataset containing paired local and complete
point clouds (X, Y). The dataset contains eight categories:
airplanes, cabinets, cars, chairs, lamps, sofas, tables, and
vessels. The complete point cloud was created by sampling
16384 points uniformly from the mesh surface, and the
partial point cloud was generated by back-projecting the
2.5D depth map to 3D. To demonstrate the effectiveness
of the network, in point cloud completion study methods,
our network is compared with other networks on the PCN
dataset, where L1 chamfer distances are used for evaluation.
In order to ensure a fair comparison on the PCN dataset,
our experimental configuration is identical to that of prior
methods.

1) QUANTITATIVE COMPARISON
The performance of our network and other point cloud com-
pletion methods on the PCN dataset are presented in Table 1.
Our method exhibits the highest performance among all eval-
uated methods. (Lld refers to the network that learning local
displacements for the point cloud completion)

2) VISUAL COMPARISON
We select three typical point cloud completion meth-
ods(PMPNet [19], PMP-Net++ [31], and SnowflakeNet
[20]) fromTable 1, and illustrate a visual comparison between
our network and the methods in Fig. 7. Reconstructed point
clouds of PMP-Net and PMP-Net++ have 2048 points, other
methods have 16384 points. It can be inferred from the visual
results that our network is better at completing the partial
point cloud. For example, in the cabinet category, the cabinet
generated by our network with smooth surfaces, well-defined
edges, and distinct corners.

B. EVALUATION ON COMPLETION3D DATASET
The Completion3D dataset is utilized for completing sparse
point clouds, with its complete point cloud containing
2048 points. Its origin can be traced back to the ShapeNet
[25] dataset. It is an online platform used to evaluate
shape completion methods. Both the input and ground-truth
point clouds have a resolution of 2048 points. Therefore,
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FIGURE 5. (a) Shows the overall of the improved lightweight DGCNN; (b) and (c) are components of the improved lightweight DGCNN.

FIGURE 6. The geometric perception transformer block.

TABLE 1. Point cloud completion on PCN dataset in terms of per-point L1 Chamfer distance × 1000 (lower is better).

L2 chamfer distances are also used for evaluation on
the Completion3D dataset. To ensure fairness, the exper-
imental configuration is identical to that of the prior
methods.

1) QUANTITATIVE COMPARISON
The performance of our network and other point cloud com-
pletion methods on the Completion3D dataset are presented
in Table 2. Our method outperformed all evaluated methods.
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FIGURE 7. Visual comparison of PMP-Net, PMP-Net++, SnowflakeNet and our network on PCN dataset. The point clouds complete by our network have
smooth surfaces, well-defined edges, and distinct corners.

TABLE 2. Point cloud completion on Completion3D dataset in terms of per-point L2 Chamfer distance × 10000 (lower is better).

2) VISUAL COMPARISON
We selected three typical point cloud completion meth-
ods(PMPNet [19], PMP-Net++ [31], and SnowflakeNet
[20]) fromTable 2, and illustrate a visual comparison between
our network and these methods. Reconstructed point clouds
of all the methods have 2048 points. The visual results show
our network is better at completing the partial point cloud,
as shown in Fig. 8. For example, in the boat category, the
boat is generated by our network with smooth surfaces, well-
defined edges, and distinct corners.

C. ABLATION STUDIES
To prove the effectiveness of several architecture designs
in our network, experiments are conduct ablation. The
results are presented in Table 3. By default, all experimental

configurations are identical, except for the analysis compo-
nent. And all experiments are trained on the Completion3D
dataset.

TABLE 3. Effect of each part in our designed network.

In order to analyze the effectiveness of the geometric
perception block and the improved lightweight DGCNN
separately, we develop two network variations as follows.
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FIGURE 8. Visual comparison of PMP-Net, PMP-Net++, SnowflakeNet and our network on Completion3D dataset. Our network is superior to
many other existing point cloud completion techniques in completing point clouds.

(1) Add the geometric perception block to SnowflakeNet for
obtaining a global feature; (2) Use the improved lightweight
DGCNN instead of Pointnet++’s [18] SA local feature
extraction method to obtain local features of the input
point cloud. Specially, transformers are added to DGCNN
to obtain more local features. In addition, we mark Full
as the complete network containing the geometric percep-
tion block and the improved lightweight DGCNN. It can
be observed from Table 3 that the Full network surpasses
all other analyzed network variations in terms of per-
formance. The comparison between the Full model and
the No-the-improved-lightweight-DGCNN model demon-
strates the effectiveness of using the improved lightweight
DGCNN, and the comparison between the Full model and the
No-the-geometric-perception-block model justifies the
advantage of using the geometric perception block.

V. CONCLUSION
In this paper, we propose an improved neural network for
point cloud completion. By using the improved lightweight
DGCNN to replace SA local feature extraction method, the
local features extracted from the input point cloud not only
focus on the point features but also incorporate the relation-
ship between points into the point cloud processing. It is
worth noting that further introduce transformers to DGCNN
greatly improves the situationwhere fine-grained information
is easily lost during the pooling processes at the encoder
stage. Through experimental analysis, we demonstrate the
superiority of our network by experiment comparisons with
other networks on both the Completion3D dataset and the

PCN dataset. In the future, I will further improve the comple-
tion effect of parint clouds by improving the SnowflakeNet
decoder and enhance the feature extraction ability of the
improved lightweight dgcnn.
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