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ABSTRACT This paper describes MixGAN-TTS, an efficient and stable non-autoregressive speech syn-
thesis based on diffusion model. The MixGAN-TTS uses a linguistic encoder based on soft phoneme-level
alignment and hard word-level alignment approach which explicitly extracts word-level semantic informa-
tion, and introduces pitch and energy predictors to optimally predict the rhythmic information of the audio.
Specifically, we use the GAN to replace the Gaussian function to model the denoising distribution, aiming to
enlarge the denoising steps size and reduce the number of denoising steps to accelerate the sampling speed
of diffusion model. Diffusion model using GAN can significantly reduce the denoising steps, and to some
extent solve the problem of not being able to apply in real-time. The mel-spectrogram is converted into the
final audio by the HiFi-GAN vocoder. Experimental results show that the MixGAN-TTS outperforms the
other models compared in terms of audio quality and mel-spectrogram modeling capability for 4 denoising
steps. The ablation studies demonstrate that the structure of MixGAN-TTS is effective.

INDEX TERMS Speech synthesis, diffusion model, mixture attention mechanism, deep learning.

I. INTRODUCTION
As one of the core technologies of intelligent human-
computer interaction, speech synthesis technology has been
widely used in intelligent question and answer, intelligent
navigation and so on. Speech synthesis, also known as text-
to-speech (TTS), is a multimodal generation task that con-
verts text to speech. The traditional TTS model consists of
three key elements: text analysis frontend, acoustic model
and neural vocoder [1], [2]. The text frontend normalizes
the input text and converts the input text into linguistic rep-
resentation features. The acoustic model converts the lin-
guistic representation features into time-domain spectrogram
acoustic features (e.g., mel-spectrogram). Finally, the time
domain spectrogram acoustic features are converted into time
domain waveform features by a neural vocoder. A large
amount of research has been focused on vocoders in recent
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years [3], [4]. Common vocoders include WaveNet [5], HiFi-
GAN [6], WaveGlow [7], and so on, have been widely used
to generate human-like speech.

The autoregressive TTS model uses frame-by-frame pre-
diction method and has demonstrated the ability to generate
high quality audio. However, the autoregressive approach
leads to slow training and inference, and has some robustness
problems such as word skipping and repeating [8], [9], [10].
To solve these problems, non-autoregressive models have
been proposed one after another. The FastSpeech model is
one of the most successful non-autoregressive TTS models,
which uses an encoder-decoder framework for processing the
input phoneme sequences. FastSpeech introduces a duration
predictor to obtain the duration of the training phonemes
and obtains the alignment information between phoneme
sequences and mel-spectrogram with the help of knowledge
distillation [11]. The FastSpeech2 model introduces addi-
tional pitch and energy variance information and obtains
alignment information between phoneme sequences and
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mel-spectrogram with the help of the Montreal forced align-
ment (MFA), simplifying the training process and achieving
a large improvement in audio quality [12]. The Glow-TTS
model uses normalized flow and dynamic programming
methods to directly search for the most likely monotonic
alignment information between the phoneme sequences and
mel-spectrogram [13]. The PortaSpeechmodel uses soft-level
phoneme, hard-level word alignment, Variational Autoen-
coder (VAE), and normalized flow method that enables high
quality audio and expressive features [14].

Another generative model using denoising diffusion
probabilistic models (DDPMs) has obtained satisfactory
results [15], [16], [17], [18], [19]. Denoising diffusion prob-
ability models, or diffusion models, have proven to have
powerful modeling capabilities in areas such as music synthe-
sis and image synthesis [20], [21]. The traditional diffusion
model is divided into a diffusion process and a denoising
process. The diffusion process adds small random noise to
the data through a parameter-free T -step Markov chain. The
denoising process gradually removes the added noise by a
parameterized T -step Markov chain. Although the diffusion
model exhibits strong modeling capabilities, it suffers from
slow sampling speed and requires a large enough number
of denoising steps, making it difficult to use for real-time
applications. Traditional diffusion models use a Gaussian
distribution to approximate the true denoising distribution in
the denoising process and assume a small value of predefined
variance in the Gaussian distribution. Therefore, when the
real data is complex, it is not possible to model the noise
information by a simple Gaussian distribution, which will
affect the quality of the synthesized audio and the speed of
inference [21]. To enlarge the denoising steps size, the diffu-
sion model uses conditional generative adversarial networks
(GAN) as a non-Gaussian distribution function to model the
denoising distribution [15], [21].

To optimize the alignment information between phoneme
sequences and mel-spectrogram and to improve the quality
of model synthesized audio. Inspired in part by the TTS mod-
els [14], [15], this paper proposes a non-autoregressive model
MixGAN-TTS.MixGAN-TTSmodel, which combines some
structures of PortaSpeech and DiffGAN-TTS models and
improves them accordingly. TheMixGAN-TTS addresses the
hard-level phoneme alignment problem of the FastSpeech2
by introducing a linguistic encoder with pitch and energy
information, which uses soft-level phoneme, hard-level word
alignment method (mixture alignment mechanism) can effec-
tively solve the hard-level phoneme alignment problem
caused by the MFA. Moreover, for the powerful modeling
capability of diffusion models and the advantage of GAN
that can cope with complex data distributions, we introduce
the use of GAN as diffusion decoder for denoising distri-
bution modeling methods, aiming to solve the problem that
diffusion model exists which requires a large enough num-
ber of denoising steps. We evaluate the MixGAN-TTS on
the AISHELL3 dataset [22], and the experimental results

FIGURE 1. The overall architecture for FastSpeech2.

show that MixGAN-TTS achieves notable results in terms
of synthesized audio quality, predicted mel-spectrogram, and
attention alignment.

II. BACKGROUND
In this section, we first introduce the non-autoregressive
model FastSpeech2, and then we introduce the diffusion
model.

A. FASTSPEECH2
The FastSpeech2 is based on FastSpeech, and the
alignment information between phoneme sequences and
mel-spectrogram is obtained with the help of the MFA to
solve the problem of increased training cost of the FastSpeech
using the teacher-student model. As shown in Figure 1, Fast-
Speech2 introduces the Variance Adaptor which consists of a
duration predictor, a pitch predictor and an energy predictor.
The Variance Adaptor extracts variance information such as
duration, pitch and energy from real audio in the training,
and provides rich variance information as input conditions
to improve the quality of synthesized audio in the inference.
FastSpeech2 uses the feed-forward transformer (FFT) as the
basic structure of the encoder and decoder, which consists of
a self-attention mechanism and 1D convolution network. The
audio quality has also achieved good results.

B. DIFFUSION MODEL
The diffusion model is divided into a diffusion process and
a denoising process. Diffusion process, also known as the
forward process, refers to the complete collapse of the data
by gradually adding noise to the data until after T steps.
Diffusion process is accompanied by predefined variance
information βt , and variance information β1:T employed at
each step is independently distributed. Diffusion process is
shown in equations (1) and (2), and the diffusion process
gradually adds noise information to x0, and iterates x1:T in
turn to obtain the collapse data xT :

q (x1:T | x0) =

∏
t≥1

q (xt | xt−1) (1)

q (xt | xt−1) = N (xt ;
√
1 − βtxt−1, βtI) (2)
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FIGURE 2. The overall architecture for MixGAN-TTS.

Denoising process, also known as the inverse process,
gradually removes the noise information from the col-
lapsed data by defining a denoising function. As shown by
equations (3) and (4):

pθ (x0:T ) = p (xT )
∏

t≥1
pθ (xt−1 | xt) (3)

pθ (xt−1 | xt) = N
(
xt−1; µθ (xt , t) , σ 2

t I
)

(4)

The pθ (xt−1 | xt) denoising distribution is usually modeled
using a Gaussian distribution, µθ (xt , t) and σ 2

t denote the
mean and variance of the denoising function, and θ denotes
the parameter of the denoising function. Denoising process
gradually and iteratively denoises xT−1:0 from the Gaussian
noise xT to obtain the final generated data x0. The training
objective of the diffusion model is to maximize the pθ (x0)
likelihood, which is achieved by maximizing the evidence
lower bound (ELBO ≤ log pθ (x0)). The diffusion model is
optimized by ELBO to force the parameterized denoising
model pθ (xt−1 | xt) to match the true denoising distribution
q (xt−1 | xt). The ELBO is shown in equations (5) and (6):

ELB0 =

∑
t≥1

Eq(xt )DKL + C (5)

DKL = DKL (q (xt−1 | xt) ||pθ (xt−1 | xt)) (6)

DKL denotes the relative entropy, also known as the Kullback-
Leibler (KL) scatter. C represents the constant term that does
not depend on the θ parameter.

III. MIXGAN-TTS
This paper proposes the MixGAN-TTS model, which aims
to improve the alignment information between the phoneme
sequences and mel-spectrogram and audio quality. In this
section, we first describe the motivation of MixGAN-TTS,
model composition structure, and then we describe the train-
ing losses of the MixGAN-TTS.

A. MOTIVATION
FastSpeech2 uses the MFA to obtain the alignment mecha-
nism between the phoneme sequences and mel-spectrogram,
ignoring the fact that phonemes have no obvious boundaries
in the mel-spectrogram distribution, which will lead to a
boundary blurring problem between different phonemes in
the alignment process. To address the phoneme-level hard
alignment problem of the FastSpeech2, a mixture alignment
mechanism based linguistic encoder is introduced in Por-
taSpeech. PortaSpeech has demonstrated satisfactory model
performance. In this work, we aim to further optimize the
performance of the PortaSpeech model. We investigate pitch
and energy variance information in the linguistic encoder
structure. Experiments show that the introduced pitch and
energy predictors can optimize the rhythmic information of
the synthesized audio and obtain better audio quality.

Currently, diffusion models using the GAN to model
denoising distributions have achieved significant results.
Diffusion model based on GAN training discriminator to
force the predicted denoising model distribution pθ (xt−1 | xt)
to approximate the true denoising distribution q (xt−1 | xt),
which can effectively extract the rich information of the true
sample. Therefore, we design theMixGAN-TTS based on the
diffusion model. The MixGAN-TTS architecture is shown in
Figure 2(a), which uses a linguistic encoder based onmixture
alignment mechanism, a diffusion decoder and a discrimina-
tor as the basic structure. In the next few subsections, we will
introduce the structure of the MixGAN-TTS and describe the
training losses of the MixGAN-TTS.

B. LINGUISTIC ENCODER
The linguistic encoder structure is shown in Figure 2(b),
‘‘LR’’ denotes the length regulator proposed in FastSpeech,
‘‘WP’’ denotes the word-level pooling operation proposed in
PortaSpeech and Sinusoidal-like symbol denotes the posi-
tional encoding [23]. The linguistic encoder contains a
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phoneme encoder, a pitch predictor, an energy predictor,
a word encoder, a duration predictor, and a word-phoneme
attention module. Both the phoneme encoder and word
encoder have forward feedback blocks as the basic struc-
ture. We first input Chinese characters and get the corre-
sponding phoneme sequences (e.g., n i3 h ao3 sh iii4 j ie4).
And then we normalize the phoneme sequences to identify
aspects of Chinese characters such as polysyllabic characters,
numbers and proper nouns. The linguistic encoder receives
phoneme sequences with word boundaries (e.g., n i3 h ao3 |

sh iii4 j ie4, ‘‘|’’ denotes word boundaries in the phoneme
sequences) and encodes them as phoneme hidden states.
The pitch and energy predictors extract extra variance infor-
mation from the real audio for training, and then add the
variance information to the phoneme hidden states in the
inference stage. The phoneme hidden states are applied by
the word-level pooling to obtain the input representation of
the word encoder, which averages the phoneme hidden states
inside each word according to the word boundary. The word
encoder encodes the input representation as the word-level
hidden states and expand them to match the length of the
target mel-spectrogram using a length regulator with word-
level duration. Finally, the word-phoneme attention module
takes the word-level hidden states as the query Q and the
phoneme hidden states as the key K and the value V . The
phoneme hidden states and word-level hidden states are then
encoded with word-level relative position and fed them into
the word-phoneme attention module.

C. DIFFUSION DECODER AND DISCRIMINATOR
The true denoising distribution q (xt−1 | xt) is usually
unknown, so it is difficult to calculate the KL scatter directly
as shown in equation (5) [16]. Diffusion model uses a Gaus-
sian function distribution to model the noise information in
the diffusion stage. To calculate the KL scatter, denoising pro-
cess tends to take smaller predefined variance information βt
and a large enough number of denoising steps T , which forces
the denoising process to use the same Gaussian function
modeling approach as the diffusion process [16]. We intro-
duce the same diffusion decoder [15] and use conditional
GAN to model the denoising distribution by increasing the
denoising steps size and decreasing the number of denoising
steps. High quality audio generation can be obtained with
only a few denoising steps. The ablation study shows that
the best results are achieved with the MixGAN-TTS when
T is equal to 4. The structure of the diffusion decoder is
shown in Figure 3. The basic structure uses non-causal
residual blocks, and the output of the residual blocks is
used as additional input conditions for the subsequent struc-
tures through residual connections. Each residual block has
a hidden state dimension of 256 dimensions and total of
20 blocks. The diffusion decoder takes the output of the lin-
guistic encoder, diffusion step coding, noise mel-spectrogram
xT and speaker embedding as input conditions. The output
of the linguistic encoder is passed into the residual block
through a 1D convolution network, and xT is diffusion step

FIGURE 3. The architecture for diffusion decoder.

coded through the residual connection by a 1D convolution
network and ReLU activation function. MixGAN-TTS uses
relative position encoding on the diffusion steps t , which
is accessed into the diffusion decoder via the full connec-
tion layer (FC) and the swish activation function [24]. The
speaker embedding as an independent input condition aims to
generate multi-speaker style audio, which is passed into the
residual block via a 1D convolution network. The residual
block introduces a gating mechanism [5] making full use
of the Tanh and Sigmoid activation function. Finally, the
final diffusion decoder output is obtained by sequentially
accessing the output of the residual blocks through the skip
connection and alternately using the 1D convolution network
and ReLU activation function.

The discriminator structure is shown in Figure 2(c), with
noise information xt , predicted spectrogram xt−1, diffu-
sion step embedding t and speaker embedding s as input
conditions, aiming to calculate the convergence degree
Dadv between the true denoising distribution q (xt−1 | xt)
and the denoising model distribution pθ (xt−1 | xt) during
each denoising step. We use the least-squares GAN [25]
to train the discriminator. The discriminator structure is
modeled and represented by Dϕ (xt−1, xt , t, s) with learn-
able parameters ϕ. The discriminator uses joint conditional
and unconditional loss (JCU) [26], which combines condi-
tional and unconditional adversarial losses to further improve
the accuracy of the mel-spectrogram and speech waveform
mapping.
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FIGURE 4. Training process of MixGAN-TTS.

D. TRAINING AND INFERENCE
The MixGAN-TTS training process as show in Figure 4,
MixGAN-TTS samples the real mel-spectrogram x0 to obtain
the noise spectrogram xt . The linguistic encoder and the
diffusion decoder aremodeled by the generatorGθ (xt , y, t, s)
parameterized with θ . The generator takes xt noise sam-
ple, phoneme sequences y, diffusion step sequences t and
speaker embedding s as input conditions and obtains the
predictedmel-spectrogrammap x ′

0 through a T step denoising
process. In the training stage, x ′

0 is obtained as the pre-
dicted mel-spectrogram x ′

t−1 by the posterior distribution
q

(
x ′

t−1 | xt , x ′

0

)
, and is passed into the JCU discrimina-

tor together with the noise spectrum xt to calculate the
convergence degree of the denoising process Dadv. In the
inference stage, the sample x ′

0 is generated by the generator,
and the final predicted mel-spectrogram is obtained by the
process of diffusion sampling and denoising. Finally, we use
the HiFi-GAN vocoder to convert the mel-spectrogram into
speech waveform.

E. TRAINING LOSS
The MixGAN-TTS training loss consists of generator loss
and discriminator loss. We use the feature matching loss
Lfm [27], acoustic reconstruction loss Lrecon and denoising
convergence loss Ladv to train the generator together. Lfm
learns the similarity measure to distinguish the real data
from the generated data in the discriminator. As shown
in equation (7), Lfm is computed by summing the l1
distance between the real and generated samples in the
discriminator:

Lfm = Eq(xt )

[
N∑
i=1

Diϕ (xt−1, xt , t, s) − Diϕ
(
x ′

t−1, xt , t, s
)
||
1

]
(7)

N denotes the number of hidden layers of the discriminator.
Lrecon calculates the basis reconstruction loss, and Ladv cal-
culates the convergence degrees between the true denoising
distribution q (xt−1 | xt) and the denoising model distribution

pθ (xt−1 | xt), as shown in equations (8) and (9):

Lrecon = Lmel + λdLduration + λpLpitch
+ λeLenergy + Lhelper (8)

Ladv =

∑
t≥1

Eq(xt )Epθ(xt−1,xt)

[(
Dϕ (xt−1, xt , t, s) − 1

)2]
(9)

where λd , λp and λe denote loss weights set to 0.1. Lmel
uses MAE loss, Lduration, Lpitch and Lenergy use MSE loss,
and Lhelper uses Guided Attention Loss [28]. The generator
is trained by minimizing LG:

LG = Lfm + Lrecon + Ladv (10)

The discriminator is trained by minimizing the LD loss:

LD =

∑
t≥1

Eq(xt )q(xt−1 | xt)

[(
Dϕ (xt−1, xt , t, s) − 1

)2]
+ Epθ(xt−1 | xt)

[
Dϕ (xt−1, xt , t, s)2

]
(11)

IV. EXPERIMENTS AND RESULTS
To evaluate the audio modeling performance and audio qual-
ity of the MixGAN-TTS, we design the comparison exper-
iments between FastSpeech2, PortaSpeech, DiffGAN-TTS
(T = 4) and DiffGAN-TTS (two-stage) and MixGAN-TTS.
In this section, we first introduce the datasets and the model
configuration, and then we describe the evaluation meth-
ods and experimental results. Finally, the modules added to
MixGAN-TTS are studied for ablation to verify the effective-
ness of each structure.

A. DATASETS
We evaluate the performance of the MixGAN-TTS on the
AISHELL3 dataset, which is recorded by 218 Mandarin
speakers and contains 88,035 Chinese audio clips and cor-
responding text transcripts. We divide the dataset into three
subsets: 87011 samples for training, 512 samples for val-
idation, and 512 samples for testing. We randomly select
160 samples from the test dataset for objective evaluation and
20 samples from the test dataset for subjective evaluation.
We use the pypinyin library to convert text sequences to
phoneme sequences, and convert the original waveform to
mel-spectrogram at a sampling rate of 22050Hz with 16bit
sampling bits. The mel-spectrogram has a window size of
1024 and a hop count of 256. All sentences in the dataset
are pre-processed to remove gaps before and after the audio,
as well as to normalize the text.

B. MODEL CONFIGURATION
We train theMixGAN-TTSmodel on an NVIDIA 3060GPU,
setting the processing batch to 8 and using the Adam opti-
mizer with parameters set to β1 = 0.5, β2 = 0.9, ϵ = 10−9

both the generator and discriminator followed by [14] and
[15]. We set the learning rate of gradual decay, and the initial
values of the learning rate of the generator and discriminator
are set to 10−3 and 2 × 10−3 respectively. The CUDA version
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TABLE 1. Model experiment evaluation and model efficiency results. Higher SSIM values are better, while lower values of MCD and F0 RMSE are better.

for all the experiments is 11.6, and the model program-
ming utilizes python 3.8 with pytorch version 1.8.0+cu111.
MixGAN-TTS is trained for at least 900k steps until losses
converge. We use the HiFi-GAN vocoder publicly trained in
github to transform the mel-spectrogram into audio samples.
We randomly select some of the test dataset for mean opin-
ion score (MOS) [29] and comparative mean opinion score
(CMOS) [30] tests.We keep the text content consistent across
models, exclude other confounding factors, and check only
the audio quality. Each audio sample are rated by a minimum
of 10 testers.

C. EVALUATE
To measure the quality and performance of the model synthe-
sized audio, we use structural similarity index (SSIM) [31],
mel-cepstral distortion (MCD) [32] and F0 root mean squared
error (F0 RMSE) metrics for objective evaluation of the
model, and MOS and CMOS metrics for subjective evalu-
ation of the model. The higher the SSIM value, the closer
the synthesized spectrogram is to the real mel-spectrogram,
indicating that the synthesized audio is closer to the original
audio to some extent. Dynamic time warping (DTW) [33]
is used for MCD and F0 RMSE calculations to align the
generated audio with the real reference audio. In our work,
the logarithmic method is used to calculate the F0 RMSE
value. The lower values ofMCD and F0 RMSE indicate better
quality of the synthesized audio to some extent. As shown in
Table 1, the MixGAN-TTS proposed achieves the best SSIM
and MCD values. In terms of F0 RMSE evaluation metrics,
MixGAN-TTS is lower than the DiffGAN (two-stage) model
and slightly higher than the FastSpeech2, PortaSpeech and
DiffGAN-TTS (T = 4) models. The experimental results
show that the MixGAN-TTS model achieves satisfactory
performance in alignment information between the phoneme
sequences and mel-spectrogram, and is able to achieve high
quality audio, as we can also find in terms of subjective
evaluation and audio samples. Params denotes the number
of parameters of the model. From the results in Table 1,
it can be seen that the MixGAN-TTS achieves significant
results in optimizing the number of parameters, which is
25.31M, much less than the rest of the compared models.
In addition, we use the real- time factor (RTF) as a measure
of the model inference speed. RTF indicates the time required
by the model to generate on second of audio. The smaller the
RTF value, the faster the model synthesizes audio. We select

20 generated audio samples for RTF testing, with durations
ranging from 3 to 6 seconds and the number of Chinese
words ranging from 8 to 20 characters. RTF test results are
shown in Table 1. All models are trained and inferred on an
NVIDIA 3060 GPU.

To assess the quality of the synthesized audio, a sample of
20 sentences are randomly selected from the test dataset for
MOS subjective evaluation with a set confidence interval of
95%. Each audio sample is evaluated by at least 10 testers.
We conduct the test in a quiet classroom and assign a dozen
testers to score the test. The process from configuration to
testing took several hours. As a result, there are fluctuations
in the number of people. We break up all samples involved
in the test. No label is given as to which model the sample
is generated from. Testers are asked to score each speech
carefully, ranging from 1 to 5 with a 0.5-point increment,
in terms of speech naturalness and accent performance. All
testers are native Chinese and wear headphones for the test.
As can be observed from the data in Table 1, MixGAN-TTS
achieves an MOS value of 3.89, which is better than Fast-
Speech2, DiffGAN-TTS (T = 4) and DiffGAN-TTS (two-
stage), and comparable to the audio quality of PortaSpeech,
which indicates that the MixGAN-TTS is able to better learn
the alignment information between the phoneme sequences
and mel-spectrogram, and the synthesized audio quality is
better. In addition, CMOS is used to compare the performance
between the models. FastSpeech2 model is used as a base-
line, and testers listen to the audio generated by each model
separately for comparison. From the results in Table 1, it is
observed that the audio quality of the MixGAN-TTS model
is better than that of the FastSpeech2 and achieves audio
quality comparable to that of the PortaSpeech, DiffGAN-TTS
(T = 4), and DiffGAN (two-stage) models.

D. FEATURE PREDICTION
We analyze the mel-spectrogram and attention alignment
mechanism. The mel-spectrogram predicted by different
models are given in Figure 5. Combining the SSIM evalu-
ation metrics as shown in Table 1 and the predicted mel-
spectrogram, we can observe the MixGAN-TTS has an
advantage in predicting the mel-spectrogram details in fre-
quency bins between two adjacent harmonics, unvoiced
frames and low-frequency parts, and the model generates
better quality audio. Figure 5(g) gives the attention align-
ment convergence of the MixGAN-TTS during the training
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FIGURE 5. Feature prediction.

TABLE 2. CMOS comparison for MixGAN-TTS.

process. The MixGAN-TTS achieves better results in the
alignment information between the phoneme sequences mel-
spectrogram, the brightness and lines of the points in the
alignmentmap are clear, and the convergencemap is clear and
smooth, showing that the MixGAN-TTS has a notable ability
to align the phoneme sequences with the mel-spectrogram
map.

E. ABLATION STUDIES
To verify the effectiveness of the structure of the
MixGAN-TTS, an ablation study of the pitch and energy
variance information introduced in the linguistic encoder
module and the also diffusion decoder module is conducted.
Comparison results of the ablation study of the variance
information introduced by the model are given in Table 2.
The MixGAN-TTS leads to a degradation of audio qual-
ity after the removal of pitch and energy information. The
CMOS value of theMixGAN-TTSwith the pitch information
removed is -0.231; with the energy information removed,
the CMOS value is 0.176; and the CMOS value of the
MixGAN-TTS model with both pitch and energy removed
is -0.316. Experimental results show that the MixGAN-TTS
can improve the audio quality by introducing pitch and energy
variance information in the linguistic encoder, and the model
can learn the pitch and energy variance information of real
audio in the training stage, which provides rich variance
information for the model in the inference stage.

TABLE 3. Ablation studies comparison for diffusion decoder.

FIGURE 6. The mel-spectrogram comparison for ablation studies of
diffusion decoder.

TABLE 4. Ablation studies comparison for denoise step T.

To verify the effectiveness of the diffusion decodermodule,
we useMCD, F0 RMSE and CMOSmetrics for the study. The
comparison models are structured as a linguistic encoder with
pitch and energy information and a transformer decoder in
the FastSpeech2 model. As can be observed from the results
in Table 3, the introduction of the diffusion decoder can
effectively improve the quality and model performance of the
synthesized audio, while the number of parameters is also
effectively introduced, indicating that the diffusion decoder
can take full advantage of the powerful modeling capabilities
of adversarial generative networks to resolve complex data
distributions and alignment information between phoneme
sequences and mel-spectrogram.

In addition, we investigate the mel-spectrogram before
and after the introduction of the diffusion decoder module.
Figure 6(a) shows the mel-spectrogram predicted by the
MixGAN-TTS, and Figure 6(b) shows the mel-spectrogram
predicted by the MixGAN-TTS (Transformer decoder)
model. It can be observed from the figure that the
MixGAN-TTS with the introduction of the diffusion decoder
predicts a richer internal detail and better speech quality of
the mel-spectrogram.

We investigate the number of denoising steps T , as shown
in Table 4, and the results show that the best MCD
and F0 RMSE results were obtained when T = 4, with
17.127 and 0.764, respectively, and the best audio quality.
The MixGAN-TTS is gradually diffusion sampled from the
initial data x0 to get the collapse data x4, and x4 is passed
into the generator as noise information for training, and
the gradual denoising sampling x′

3:1 gets the final predicted
mel-spectrogram x ′

0.
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V. DISCUSSION
In this paper, we propose the non-autoregressive speech
synthesis MixGAN-TTS model, which combines some
structures of PortaSpeech and DiffGAN-TTS models and
improves them accordingly. The MixGAN-TTS solves
the phoneme boundary ambiguity problem of hard-level
phoneme alignment, introduces a mixture alignment mech-
anism based on linguistic encoder, and adds pitch and energy
predictors to further handle the variance information of real
audio. In addition, the original diffusion model uses a Gaus-
sian function distribution to model the denoising distribution,
which is limited by the small denoising steps size and the
large number of denoising steps, resulting in poor real-time
performance of the diffusion model. MixGAN-TTS uses the
GAN to model the real denoising distribution, which can
generate high-quality audio with a large number of denoising
steps size and a small number of denoising steps. We use a
discriminator to calculate the convergence of noise informa-
tion between the sample distribution predicted by the gener-
ator and the real noise distribution, and synthesize the audio
output using the HiFi-GAN vocoder.

We perform a subjective and objective evaluation of the
MixGAN-TTS. MOS and CMOS metrics are used for the
subjective side, and then SSIM, MCD and F0 RMSE metrics
are used for the objective side. MixGAN-TTS obtain the best
SSIM and MCD values, but is slightly weaker in terms of
F0 RMSE. In addition, we conduct an ablation study on the
structure of the MixGAN-TTS model to show the validity
of each part of the model. Experimental results show that
the MixGAN-TTS achieves the best results with 4 denois-
ing steps, and the mel-spectrogram reconstruction and audio
quality are both improved significantly.MixGAN-TTSmodel
is not a true end-to-end model, it still needs to be converted to
speech waveform with the help of vocoder. A full end-to-end
model will be our future research plan.
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