
Received 16 May 2023, accepted 2 June 2023, date of publication 7 June 2023, date of current version 14 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3283571

An Elitist Artificial Electric Field Algorithm Based
Random Vector Functional Link Network for
Cryptocurrency Prices Forecasting
SARAT CHANDRA NAYAK 1, SUBHRANGINEE DAS 2,
SATCHIDANANDA DEHURI3, (Senior Member, IEEE),
AND SUNG-BAE CHO 1, (Senior Member, IEEE)
1Department of Computer Science, Yonsei University, Seoul 03722, South Korea
2Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Hyderabad 500075, India
3Department of Computer Science, Fakir Mohan University, Balasore 756019, India

Corresponding author: Sung-Bae Cho (sbcho@yonsei.ac.kr)

This work was supported by the Yonsei Fellow Program funded by Lee Youn Jae, Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korean government, Ministry of Science and ICT (MSIT) (No. 2020-0-01361, Artificial
Intelligence Graduate School Program (Yonsei University); No. 2022-0-00113, Developing a Sustainable Collaborative Multi-modal
Lifelong Learning Framework). Prof. Satchidananda Dehuri acknowledge the support of Teachers Associateship for Research Excellence
(TARE) Fellowship (No. TAR/2021/00006) of the Science and Engineering Research Board (SERB), Government of India.

ABSTRACT Cryptocurrencies have carved out a significant presence in financial transactions during the
past few years. Cryptocurrency market performs similarly to other financial markets with considerable
nonlinearity and volatility and its prediction is a growing research area. It is challenging to capture the
inherent uncertainties connected with cryptocurrency using the currently used conventional methodologies.
The popularity of random vector functional link networks (RVFLN) is attributed to its simple structural
layout, quick rate of learning, and enhanced generalization ability. It computes the output layer weights using
non-iterative techniques like least square methods or iterative techniques like gradient methods, and assigns
hidden neuron parameters at random. Random initialization of non-optimal hidden neuron settings, however,
degrades the performance. Population-based metaheuristics are a superior option to random initialization
for determining the ideal parameters and avoiding the problem of local optima stagnation. In the current
article, an elitist artificial electric field algorithm (eAEFA) for training RVFLN is proposed. Here, eAEFA
is utilized to create an ideal RVFLN by determining the weights and biases of the hidden layer connections.
The elitism method is used by AEFA to maximize its strength. Here, the most suitable entities are directly
inserted to create the population of the following generation. By predicting the closing values of six
widely used cryptocurrencies, including Bitcoin, Litecoin, Ethereum, ZEC, XLM, and Ripple, one may
determine how well the eAEFA+RVFLN model is performing. For comparison study, models including
ARIMA, multi-layer perceptron (MLP), basic RVFLN, support vector regression (SVR), LSTM, GA trained
RVFLN, and AEFA trained RVFLN are also constructed concurrently. In terms of performance and statistical
significance testing, the suggested eAEFA+RVFLN findings outperform the comparator models. On an
average, it achieves a MAPE (mean absolute percentage of error) value of 0.0573, R2 (coefficient of
determination) of 0.9589, POCID (prediction of change in direction) of 0.9676, RMSE (root mean squared
error) of 0.0685, MAE (mean absolute error) of 0.0727 and an average rank of 1.346; as a result, it is possible
to recommend it as a useful financial forecasting tool.

INDEX TERMS Cryptocurrency, bitcoin, random vector functional link network, financial time series
forecasting, artificial neural network, AEFA.
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I. INTRODUCTION
Avirtual currency produced via encryption techniques is
called cryptocurrency. Due to its sharply increasing price
in a short period of time, this digital money become very
popular. Despite the fact that cryptocurrency is unregulated,
many nations accept a variety of types of it for usage in
commerce. These currencies were developed without the use
of a central authority on a distributed, decentralized peer-to-
peer network, which ensures pseudo-anonymity and double
spending attack prevention to avoid disputes [1]. Among the
available cryptocurrencies, Bitcoin is most well-known [2].
They have a large user base and expanding market share
and their worth fluctuates based on the market. Therefore,
investors and experts are concerned about being able to accu-
rately estimate their market worth. The crypto market’s vari-
ous trading opportunities and advantages are reviewed in [3].
An interesting explanation about cryptocurrency systems is
available in the literature [4]. The literature takes into account
a variety of market-controlling characteristics, including high
unpredictability, decentralized governance, modest capital-
ization, and data accessibility [5]. Even though this market
has inherent volatility like other stock markets, investors’
conviction may be seen in it [6], [7]. The cryptocurrency
market’s viability in comparison to other active financial
markets is well-documented in [8] and [9]. It is clear that
cryptocurrencymarket performswith considerable nonlinear-
ity and volatility similar to other financial markets.

It is challenging to capture the inherent uncertainties con-
nected with cryptocurrency using the currently used conven-
tional methodologies. The literature suggests a number of
computationally sophisticated models that capture the under-
lying non-linearity of cryptocurrencies. However, there is still
a need to investigate a computationally efficient model with
acceptable accuracy. Random forest method is found accu-
rate at predicting high frequency Bitcoin data on hourly and
daily forecast horizons [10]when comparedwith feedforward
ANN, SVM, random walk and ARIMA model. However, the
model performance is not evaluated on other cryptocurrencies
available in the market. Historical market prices of four cryp-
tocurrencies are modelled using an ensemble of ANNmodels
such as convolutional neural network and bidirectional LSTM
and the proposed ensemble model yielded better predictions
over individual models [11]. A reconstructed dynamic bound-
ary ANN model is developed by authors in [12] and applied
on prediction of Bitcoin. Deep ANN models are developed
using historical prices, social media and trading features of
Ethereum and Bitcoin and have shown significant predic-
tion accuracy [13]. A comparison framework of statistical,
machine learning, deep learning, and ensemble-based models
is proposed in [14] where, the deep learning-based models
are found as the best predictor. The next section shading
lights on several computational intelligent methods applied
so far on cryptocurrency predictions, their advantages and
limitations. Probably ANNs are the efficient mechanisms
which deal the nonlinearity exhibited by the financial data
accurately. As can be shown, the network architecture and

learning technique used to determine the ideal ANN param-
eters have a significant impact on its accuracy. Though ANN
models have several drawbacks like; suffering from slow rate
of convergence, more computational cost; but they are still
considered as a better method for crypto prediction. Training
of an ANN is challenging because it needs thousands of
iterations to converge. Due to the local minima issue, it might
even fail to converge in some circumstances. Besides, all
these drawbacks, ANN requires many parameters selection
before execution.

Higher order ANNs are good enough to avoid the draw-
backs associated with ANN at the same time capable of
keeping all the advantages that ANNs have. RVFLN belongs
to class of higher order ANN and handles the associated
nonlinearity in the dataset through auto enhancement of input
nodes. It has attracted many researchers because of its signif-
icant less training time, as it selects hidden node parameters
randomly and uses inversemethod that helps to get learning in
one-step. The structural simplicity, computational efficiency,
and advanced learning of RVFLN motivated us to investigate
the efficiency of RVFLN-based forecasting. From the litera-
ture it can be seen though RVFLNmodel is successfully used
in solving various problems, its application to financial data
is scarce. Also, random initialization of hidden node param-
eters may degrade RVFLN performance. AEFA is a recently
proposed optimization strategy inspired by the electrostatic
force principle. It has shown quite acceptable approximation
capability in solving realistic problems as discussed in the
next section. However, it is suffering from poor exploitation
ability which needs to be improved.

The following insights are drawn from the aforementioned
discussions.

• Cryptocurrency prices fluctuate frequently and it is hard
to explain the behavior of such price movements with
conventional methodologies.

• There is still lack of sophisticated intelligent methods
for cryptocurrency movement forecasting and need to be
explored.

• Being a low complex ANN, RVFLN is not yet examined
in cryptocurrency forecasting.

• Being a recently proposed metaheuristic, AEFA per-
formance is not investigated in ANN optimization and
cryptocurrency prediction.

The objective of this study is to design an intelligent method
for cryptocurrency prices prediction using computationally
efficient RVFLN with efficient learning algorithm. We first
design an improvedAEFAwith elitism concept called eAEFA
and then used eAEFA for training RVFLN (i.e., adjusting
hidden node parameters of RVFLN by eAEFA). Therefore,
a hybrid forecast termed as eAEFA+RVFLN is formed and
employed for extrapolation of cryptocurrencies time series.
The eAEFAused for RVFLN training ensures that the training
process starts from a good initial point. Here sliding window
method has been used to create the train and test samples
from the original data series.We took into account the closing
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values of six well-known cryptocurrencies, including Ripple,
Litecoin, Ethereum, Z-Cash, Lumens, and Bitcoin. The pre-
dictions are assessed through error metrics such as POCID,
R2, MAPE, RMSE, and MAE to ensure the consistency of
the models. There are a few comparable approaches that
are designed similarly, such as MLP, SVR, ARIMA, long
short-term memory (LSTM), basic RVFLN, GA+RVFLN,
and AEFA+RVFLN, and the performances of the methods
are assessed in terms of fivemetrics. The unique contributions
of this article are as follows.

• The elitism concept is united with basic AEFA
to advance its performance and convergence rate
thus, suggesting an elitist AEFA (eAEFA) learning
algorithm.

• The eAEFA is used to adjust the hidden node parameters
of RVFLN and thus, improves its performance.

• The hybrid eAEFA+RVFLN is applied on prediction of
next day prices of six fast budding cryptocurrencies.

• To determine the supremacy of the suggested eAEFA+

RVFLN forecasts, extensive simulation studies, com-
parison analysis, and statistical tests are carried
out.

The article is structured into seven major portions. Related
articles are discussed in Section II. Themethods andmaterials
are presented in Section III, benchmark function optimiza-
tion with eAEFA is discussed in Section IV, experimental
outcomes are analyzed in Section V, statistical test are car-
ried out in Section VI, concluding remarks are drawn in
section VII, and potentially useful references are listed at
the end.

II. RELATED STUDIES
This section discusses some of the related articles. Accord-
ing to the literature, various soft computing models have
been successfully employed for market direction predic-
tion [15], [16]. Inspired by the stockmarket prediction works;
different soft computing approaches like long short-term
memory neural networks (LSTM) [11], MLP [17], Random
walk theory [18], SVR [19], etc. have been recommended
in the literature to forecast cryptocurrencies indices. Also,
for capturing threats in Cryptocurrency recurrent neural net-
work has been [20]. In the literature, it can be seen that
many researches have been conducted using different sta-
tistical approaches as well as machine learning approaches
like ANN, on Bitcoin only [21], [22], [23]. Price predic-
tion of Litecoin and Monero using reinforcement learning
approach integrated with blockchain framework is conducted
by authors in [24]. The study claimed to achieved better
accuracy, however, it is lacking with a thorough comparative
study and considering prediction of other developing digi-
tal currencies. Bitcoin and Ethereum prices are forecasted
using sparrow search algorithm optimized extreme learning
machine in [25]. Unlike regular stock market, cryptocurrency
can be traded any time rather than specific trading time and
the continuous information can affect its price instantly [26].

The complexity in accurate prediction of cryptocurrency
prices is well documented in several literatures [27], [28].
Using different market and sentiments variables, Bitcoin
price has been analyzed [29]. Bitcoin price forecasting meth-
ods are suggested by the authors using statistical and neu-
ral network-based methods [30], [31]. Several machines
learning-based forecasting methods [32], [33], Bayesian time
varying volatility model [33], random forest and gradient
boosting approach [34], neural network [35], and convolu-
tional neural networks [36] are implemented to explore and
forecast cryptocurrency data.

Higher order ANNs are good enough to avoid the draw-
backs associated with ANN at the same time capable of keep-
ing all the advantages that ANNs have [37], [38], and [39].
Here the network consists of higher-order functional units
which helps to replace multiple layers of ANN by a single
layer. It counts the correlation among input elements which
helps to get non-linear discriminant function that is useful for
non-linear classification of data. RVFLN is a type of higher
order ANN where to handle the non-linearity auto enhance-
ment of input nodes is incorporated by random vector enhan-
cements [40]. Thus, by adding functional expansions in
the input layer this network efficiently replaces multiple
hidden layers. According to literature RVFLN has shown
significant advances in learning with proper expansion
functions [40].

RVFLN models are used in a variety of fields, including
the prediction of solar power [41], the classification of bio-
logical data [42], the prediction of crude oil prices [43], the
forecasting of electric load [44], and the prediction of dis-
ease in the healthcare industry [45]. Combination of RVFLN
with other data mining methods found success in different
areas of research. Combining cascade AdaBoost detector
and RVFLN, a more accurate pedestrian detection system
is proposed by the authors in [46]. Combining convolu-
tional neural network with RVFLN, a CRVFLN is designed
for visual tracking [47]. A semi-supervised RVFLN is pro-
posed by Scardapane et al. combining transudative learning
theory with RVFLN [48]. To estimate the particle size in
blast furnaces grinding processes, RVFLN with least-squares
method is used by Dai et al. [49]. A Successive projections
algorithm is used to create selective ensembles of RVFLN
by Mesquita et al. [50]. In an iterative training procedure
by randomly dropping out sets of connections, the ensem-
ble RVFLN could perform better than other as proposed
by authors in [51]. Ensemble empirical mode decomposi-
tion with RVFLN is used for the electricity load demand
forecasting [52]. A hybrid of discrete wavelet transforms,
empirical mode decomposition, and RVFLN with incremen-
tal learning approaches is used to forecast short-term electric
load [53].

Non-derivative optimization techniques derived from
nature have been employed in the past years.
The nature-inspired algorithms are utilized to address a
variety of complicated real-world issues [54]. However, due
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to their numerous fine-tuned parameters, sluggish rate of
convergence, lengthy execution times, etc., the applicability
of these nature-inspired approaches is constrained. Evolu-
tionary optimization techniques like GA, ACO, PSO, and
DE, which require less parameters, are more effective meth-
ods [55]. There has not yet been discovered a single strategy
that can tackle all types of current issues; thus, researchers
have been continuously working to improve the existing
approaches by either enhancing or hybridizing existing algo-
rithms [37], [39], [56]. Recently, AEFA, an optimization
strategy inspired by the electrostatic force principle, was
proposed [57]. Based on the significant correlation between
charged particles, i.e., the force of attraction and repulsion in
an electric field, the learning capacity and convergence rate
of AEFA have been observed in the base article.

III. METHODS AND MATERIALS
This section presents the baseline methods, design of eAEFA
training algorithm, proposed eAEFA+RVFLN forecasting
method and a summary of cryptocurrencies data used for
experimentation.

A. BASIC RVFLN
RVFLN avoids the need of multiple hidden layers using
functional expansions in the input layer. In this case,
the customary hidden layer is shifted to the input layer.
The non-linear expansion of the input nodes helps to
achieve the non-linearity associated with any problem.
So, selection of a suitable non-linear expansion function
is very important aspect of RVFLN. The training pro-
cess is explained as follows. Consider the training set be
X = { (x (t) , z (t))| x (t) ∈ Rn, z (t) ∈ R, ∀1 ≤ t ≤ N}. Here
we have considered a neural network having nnumber of
input units and one output unit. Let’s assume m number of
nodes in hidden layer. The total number of inputs for the
output node is n+m since both the hidden layers and the input
layer operate as input layers in this situation. In RVFLN, only
computation is necessary to obtain the output layer weights,
i.e., βs, as the weights are arbitrarily allocated for the link
between the input and hidden layer and remain fixed during
the training phase.

A mapping between the input layer and the hidden layer
serves as higher order neurons in RVFLN. Let vj (t) repre-
sents the output of local induced field on node j at t th iteration.
So, for any node j in the hidden layer

vj (t) =

n∑
k=0

ωjk (t) xk (t) (1)

Here ωjk (t) is the weight distributed randomly from a uni-
form distribution [−u, u] for j = 1tom, k = 1ton for the kth
input neuron to the jth node. The weightωj0(t) (for fixed input
x0 = +1) is the bias bj applied to neuron j. The bias ωj0 (1)
are taken from [0, u] , u is a positive constant, in this case.
Throughout the process, these weights are fixed, i.e., ωjk (1)

is assigned randomly and ωjk (1) = ωjk (2) = . . . = ωjk (N )

for j = 1 to m, k = 0 to n.
At iteration t, the hidden neuron j will produce the value

yj (t) which was calculated using the formula in Eq. 2.

yj (t) = ϕj(vj (t)) (2)

Here, ϕj is the activation function at node j. For each hidden
node j = 1 to m, we have to calculate yj. Now the net
input that will pass to output layer is the combination of
the original input set along with the calculated hidden layer
outputs. This extended input set is I = [x1 (t) , x2 (t) , . . . ,

xn (t) , y1(t), y2(t), . . . , ym(t)]. Consequently, the output neu-
ron’s net input will be∑n+m

l=0
βl (t) Il (t) . (3)

Here, βl, l = 0, 1, . . . , n + m; is the weight that any input
neuron l assigns to the output neuron, and β0 is the bias
that the output layer node receives. The output signal ẑ (t)
occurring at the output in iteration t is determined as in Eq.4.
if the output neuron has a linear transformation function.

ẑ (t) =

(∑n+m

l=0
βlIl (t)

)
(4)

The basic RVFLN architecture is depicted in Figure 1. Let
D and S represent the matrix of the characteristics that every
training data samples will use as inputs and their anticipated
results. So,

D =



I0 (1) , I1 (1) , . . . In+m (1)
I0 (2) , I1 (2) , . . . In+m (2)

:

:

I0 (t) , I1 (t) , . . . In+m (t)
:

:

I0 (N ) , I1 (N ) , . . . In+m (N )


(5)

S = [z (1) , z (2) , . . . , z(N )]T (6)

DT be the transpose of the extended input matrix D
and B be the weight matrix containing β s i.e., B =

[β0, β1, . . . , βl, . . . , βn+m]T . If the input matrix is invertible,
closed-form solutions can be used to derive the output layer
weights in a single step. The values of D and S are extracted
from equation 5 and 6 and are applied in equation 7.

DTB = S, so B = D−1S (7)

When the system of equations is inconsistent in nature so,
finding inverse directly is impossible Using any pseudo-
inverse techniques, we can achieve this. In such scenario we
can calculate B as in Eq.8.

B = (DTD)
−1
DT S (8)

Here to get better solution Moore-Penrose generalized
inverse also can be used to calculate matrix inverse. Once the
weight matrix has been appropriately constructed, we may
use Eq. 4 to forecast the test results. Usually, the number
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of input samples N is large enough compared to m number
of hidden neuron units, i.e., N≥m. Eq. 8 indicates that there
are more equations than unknowns. As a result, generalized
inverse matrices are used to solve the over-determined equa-
tion system. The obtained result assures a unique solution.
Transposing a matrix, multiplying a matrix, and inverting a
matrix are all calculations needed in the aforementioned Eq. 8
technique used to determine the inverse. Only extra storage
space is needed to store these matrixes in this non-iterative
RVFLN.

FIGURE 1. RVFLN architecture.

B. ARIMA
ARIMAmodels are among the widely used statistical models
in financial forecasting. These are commonly referred as
Box-Jenkins models and based on the hypothesis that allied
time series can be generated from a linear combination of
predefined number of past observations and addition of a
noise term, mathematically represented as:

∅ (S) (1 − S)d (yt) = θ (S) εt (9)

In Eq. 9, ∅ (S) = 1−
∑p

i=1 ∅iS i, θ (S) = 1+
∑q

j=1 θ jSj . The
parameters p, q, and d represent the number of autoregressive,
the moving average terms, and the degree of differencing
respectively. The term εt is the random error term and yt
represents the actual observations. The random error term
basically satisfies the i.i.d property. Generally, these models
are referred as ARIMA(p, d, q). The appropriate parameters
can be determined following the Box-Jenkins model build
specifications.

C. SVR
SVR is a supervised learningmethod used for regression anal-
ysis problems. The basic formulation of SVR is as follows.
Given training dataX =

{
(x1, y1), (x2, y2), · · · , (xn, yn)

}
with xi ∈ Rd as input and yi ∈ R as corresponding output,

SVR aims to find two parameters ω0 ∈ R and ω ∈ Rd by
solving the constraints:

min
1
2

∥ω∥
2

+ C
(∑n

i=1
δ+

i +

∑n

i=1
δ−

i

)
subject to


(ω.xi) + ω0 − yi ≤ ϵ +δ−

i
yi −(ω .xi) − ω0 ≤ ϵ +δ+

i
δ+

i , δ−

i ≥ 0
(10)

where, δi is the slack variable, C and ϵ are input parameters
greater than 0. The solution can be obtained as follows.

ω =

∑n

j=1

(
β−

i − β+

i

)
xi (11)

ω0 = yi − ωT
· xi + ϵ (12)

where, β−

i and β+

i are the two Lagrangian parameters
obtained through solving the convex quadratic programming.
Now the regression function is obtained as in Eq. 13.

f (x) = ωT
· x+ ω0 (13)

D. LSTM
LSTM is a type of recurrent neural network with feedback
connections and can learn long term dependencies in the data.
It is most suitable for sequential data analysis such as video,
speech, and dynamic time series. A typical LSTM consists a
cell that remembers values over arbitrary time intervals and
three gateswhich regulate the flow of information into/out of
the cell. New information can be added or updated through
the input gate. Irrelevant information is removed through the
forget gate. The updated information is then passes by the out-
put gate to the following LSTM cell. A gate has resemblance
with a series of matrix operations that encompass discrete
individual weights. The LSTM operations can be illustrated
as follows:

ft = Sigmoid
(
Wf Xt + Uf ht−1 + bf

)
(14a)

it = Sigmoid (WiXt + Uiht−1 + bi) (14b)

ot = Sigmoid (WoXt + Uoht−1 + bo) (14c)

gt = Tanh (WcXt + Ucht−1 + bc) (14d)

ct = ft⊙ct−1 + it⊙gt (14e)

ht = ot⊙tanh(ct ) (14f)

where, X t is an input vector at time stamp t ,W and b are the
weights and bias respective layer. The cell state vector and
hidden state vector are represented by ht and ct respectively.
The input feature dimension is d and hidden unit width is h.
The operator ⊙ stands for element-wise product.

VOLUME 11, 2023 57697



S. C. Nayak et al.: eAEFA Based RVFLN for Cryptocurrency Prices Forecasting

E. MLP
MLPs are widely implemented topologies applied to vari-
ous fields of researches. Consider a feed forward MLP of
nm − 1 architecture where, n is input layer size, m is hidden
layer size and single output neuron. Consider linear activa-
tions at input layer and sigmoid activations at hidden and
output units. With Xi as the ith input vector, Vij as the weight
vector between ith input neuron and jth hidden neuron, each
hidden unit computes as follows.

zj = Sigmoid
(
biasj +

∑n

i=1
Vij∗X i

)
(15)

The hidden nodes capture non-linear relationships among
variables. The final output yi for ith input vector at the output
unit is computed using weight vectorWj as follows

yi = Sigmoid
(
bias0 +

∑m

j=1
Wj ∗ zj

)
(16)

This output is compared with the true output and error is
calculated as in Eq. 17.

error i =
1
2

∑
i
(truei − yi)2 (17)

The mean error from all training patterns is calculated
and propagated back to train the MLP. The parameters are
adjusted by the gradient descent rule. Because of the gra-
dient descent learning, few issues may arise such as poor
convergence rate, local optima etc. which may affect the
predictability.

F. BASIC AEFA
In this section we describe the optimization process of basic
AEFA. It mimics a charged particle as an agent in the search
space and the strength of such agent can be measured in
terms of charges it possesses. A mass of such charged par-
ticles floats in a search domain with the help of electrostatic
force of attraction/repulsion exist among them. Particles can
interact among themselves through charges they owned. The
positions of these charges are measured as potential solutions
for a problem undertaken. The force of attraction is only
considered in the basic AEFA, which means that all the
particles associated with lower charges are attracted towards
a particle owning highest charge, called as best particle or
individual. The position of ith charged particle (Xi) at time t
is represented as in (18).

Xi (t) =

(
X1
i ,X2

i ,X3
i , · · · ,XDi

)
,

i = 1, 2, 3, · · · ,N and d = 1, 2, 3, · · · ,D

(18)

where N and D is the total number of charged particles and
total number of parameters (dimension) respectively. The
position of ith particle at time (t + 1) is updated as in Eq. 19,

when it achieves the best fitness value.

Pdi (t + 1)

=

{
Xdi (t + 1) if fitness (Xi (t + 1)) ≤ fitness (Pi (t))
Pdi (t) if fitness(Xi (t + 1)) > fitness (Pi (t))

(19)

The charge associated with ith particle (Qi(t)) at time t is
represented by Eq (20).

Qi (t) =
qi(t)∑N
i=1 qi(t)

i = 1, 2, · · · ,N (20)

where qi (t) is a suitable charge function and calculated as in
Eq (21) using the best fit and worst fit particles in the search
space.

qi (t) = exp

(
fitnessi(t)−fitnessworst (t)

fitnessbest (t)−fitnessworst (t)

)
(21)

The force Fdij (t) experienced at ith particle holding charge
Qi (t) due to jth particle holding charge Qj (t) is defined as in
Eq. 22.

Fdij (t) = K (t)
Qi (t) · Qj (t) · (Pdj (t) − Xdi (t))∥∥Xi (t) − Xj (t)

∥∥2 + ε
(22)

where, K (t) is the Coulomb’s constant calculated in terms of
current iteration and maximum iteration as in Eq (23) and ε

is a small positive constant.

K (t) = K0 · exp

(
−α iteration

max.iteration

)
(23)

The value of parameter α = 30 and K0 = 500. The bigger
initial value of K0 helps in better exploration in the search
process and gradually decreases through iterations to regulate
the accuracy. The resultant electrostatic force Fdi acting on
ith particle at time t can be calculated as in Eq (24) and the
electric field is calculated as in Eq (25).

Fdi (t) =

∑
rand · Fdij (t), j = 1, 2, · · · ,N and i ̸= j

(24)

Edi (t) =
Fdi (t)

Qi (t)
(25)

As per Newton’s law of motion, the acceleration adi (t) of ith

charged particle having unit massMi(t) at time t is computed
as in Eq (26).

adi (t) =
Qi (t) · Edi (t)

Mi(t)
(26)

The velocity and position of ith charged particle at time (t+1)
are updated according to Eq (27) and Eq (28) respectively.

V d
i (t + 1) = rand i ∗ V d

i (t) + accelerationdi (t) (27)

Xdi (t + 1) = Xdi (t) + V d
i (t + 1) (28)

A particle associated with maximum quantity of charges can
be considered as a best individual. This individual particle
attracts other particles having lesser charge and voyages in
the search domain.
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G. eAEFA
As was previously said, a charged particle with the highest
charge among them all is deemed to be the best individual,
draws other charged particles with a lower charge, and pro-
ceeds through the search field. Elite solutions, on the other
hand, can make up a small percentage of the good ones in the
preceding step. In an elitism mechanism, the elite solutions
are immediately and unchanged passed on to the following
generation. Instead of inferior solutions, use elite ones. The
elite identified in the generation before replace any gener-
ation’s worst solutions. Numerous swarm and evolutionary
algorithms are used in conjunction with the elitism mecha-
nism, which replaces the poorest solutions with the best ones
after each generation [58].

We use the elitism method to accelerate AEFA’s conver-
gence. Figure 2 displays the eAEFA algorithm. This ensures
that the system always initiates the best candidates during the
optimization process. A randomly chosen initial population
of solutions is used to begin the process. The initial bias and
weight of a potential ANN are represented by an entity drawn
from the population. The ANN model’s fitness is assessed
once this population and the input samples have been fed into
it. An elite group of solutions is chosen based on fitness. The
regular operators of AEFA take care of the rest of the popu-
lation. When the current generation is finished, the modified
and original solutions are contrasted, and the winning one is
used going forward. Here, the elite solutions take the place of
the inferior ones, and the cycle repeats itself for the following
generation. The elite solutions are transmitted in this way
through succeeding generations. Finally, the best answer is
held upon and put to test.

H. eAEFA+ RVFLN FORECASTING METHOD
Here, we outline themethod of input selection, normalization,
and eAEFA+RVFLN forecasting procedure.

1) INPUT SELECTION
The digital currencies that have been gathered from websites
are regarded as financial time series. We then used a moving
window from the original series to build the input patterns for
the model. Fig. 3 depicts the input pattern generating process.
Instead of choosing closing prices from all previous days to
feed the network, we have used a sliding window with a pre-
determined width as training input in this case. As a substitute
of selecting all observed data, we make decisions based on
current and a few recent data points. The window receives
new data and discards the oldest with each movement. In this
manner, the moving window moves along the index’s series,
and the width of the window is calculated. For financial data,
we cannot select random samples and assign them to either
the test set or the train set, in contrast to the cross-validation
approach, which is a normal procedure for ordinary time
series. This is because it is absurd to use values from the
future to forecast values in the past. As a result, using the
sliding window approach, we first projected for the later data

FIGURE 2. eAEFA optimization process flow.

FIGURE 3. Input selection from original time series using sliding window
method.

using a subset of the data for training, then we verified the
forecast’s accuracy. Following that, the identical forecasted
data point is incorporated in the next training dataset, and
following data points are forecasted.
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TABLE 1. Cryptocurrency series for experimentation.

2) NORMALIZATION
The patterns are normalized in order to scale the data for each
input characteristic into a consistent range. We employed the
tanh estimator approach, as shown in Eq. 29, to normalize
time series data. The moving window’s mean and standard
deviation are shown here by µ and σ , respectively.

x̂ = 0.5 ∗

(
tanh

(
0.01 ∗ (x − µ)

σ

)
+ 1

)
(29)

3) FORECASTING
Following normalization, the patterns are successively

fed into the eAEFA+RVFLN forecast along with the ran-
domly initialized weight and biases for the hidden layer.
Given a series of krecent past prices and current day price
{Pricecurrent−k , · · · ,Pricecurrent−1.Pricecurrent , the process
predicts a price for nest day, i.e., Pricenext as follows.

Pricenext = eAEFA+ RVFLN (Pricecurrent−k ,

· · · ,Pricecurrent−1.Pricecurrent)

(30)

eAEFA+RVFLN compute the output layer weights as of
Eq.7. Only one defendant variable exists, hence there is only
one neuron in the output layer (the model is only predicting
one value). The fitness is defined as the magnitude of the
discrepancy between the actual output and the estimated
output at the output layer. The model is then trained using
eAEFA as described in Section III-G, using the weights
determined in RVFLN as the initial population. Algorithm 1
gives a description of the fundamental RVFLN algorithm
and Algorithm 2 shows the high-level RVFLN-based fore-
casting. The schematic diagram of eAEFA+RVFLN based
cryptocurrency forecasting is depicted in Figure 4. As in
Eq.31, the model estimated an output (y) at the output layer.
The magnitude of the estimation’s deviation from the target
(y) is calculated as an error in Eq. 32. The accuracy of the
model’s forecast is increased by having a low error.

ŷ =

∑m

i=1
(βi ∗ xi + b) (31)

error = abs
(
y− ŷ

)
(32)

Each particle of eAEFA represents a set of hidden layer
parameters (weights, biases, and number of hidden neu-
rons). The fitness function for the learning process is

Algorithm 1 Evaluate RVFLN (X,P)
Input: Training set X = {ai, ti} , i = 1, ..,N , non-linear
activation functions ∅, number of enhancement nodesm,
and population {P = Wjk}.
Output: Predictionerror

Begin
1. For an input vector be An×1 ∈ X , with target set

Tt×1
2. Initialize random weights of hidden layerWn×m
3. Compute weighted sum Y = W TA
4. Compute Y ∗

= ∅ (Y )

5. Construct extended matrix B(m+n)×1 = [Y ∗A]
6. Compute output weight matrix Z(m+n)×t using least

square norm solution.
7. Compute ZT = TB+ and T ∗

= ZTB.
8. Compute error = ∥T ∗

− T∥

9. return error
End

Algorithm 2 eAEFA+RVFLN Forecasting Method
Step 1. Form TrainData and TestData using sliding win-
dow
Step 2. Normalize TrainData and TestData
Step 3. /∗Train RVFLN with TrainData∗/

While (Data not exhausted)

Fitness = EvaluateRVFLN (TrainData,P)

Sort the solutions according to fitness and
identify k elite solutions.
Apply eAEFA and update population.
Obtain optimal population P

end While
Step 4. /∗Test RVFLN with TrainData∗/

Error = EvaluateRVFLN (TestData,P)

shown in Eq. 33.

Fitness =

∑N
j=1

∑m
i=1

∣∣(βi × f
(
wixj + biasi

)
− target j

)∣∣
m× N

(33)

I. CRYPTOCURRENCY DATA
The data on cryptocurrencies used in this study, their sources,
and a summary description were all described in this sec-
tion. To determine the data’s stationarity and non-linearity,
some tests are run on it. Six cryptocurrency indices, includ-
ing Bitcoin, Litecoin, Ethereum, ZEC, XLM, and Ripple,
are used to simulate the proposed and compared mod-
els. For these six series, the closing prices were taken
from ‘‘https://www.CryptoDataDownload.com.’’ Table 1 dis-
plays information about the six financial series. The data
was gathered between April 17, 2017, and May 6, 2021.
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TABLE 2. Summary statistics from cryptocurrency series.

FIGURE 4. Schematic diagram of eAEFA+RVFLN based cryptocurrency price forecasting.

The descriptions of the statistical characteristics of the
datasets that we examined are condensed in Table 2. The six
closing price series are shown in Figure 5 - 10. All of the
series contain significant volatility and standard deviation,
as seen in Table 2. Positive skewness pervades every series.
All series’ non-zero skewness values point to asymmetry in
the distributions. Since all series have larger kurtosis values,

they all have large tails. The return series connections with
the return prices are less strong.

To check for series stationarity, we employed two well-
known tests such as Phillips-Perron (PP) test and Aug-
mented Dickey-Fuller (ADF). The statistics from the series
stationarity check are presented in Table 3. Stationarity of a
financial dataset is a vital feature to make reports about its
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TABLE 3. Statistics from PP test and ADF test for non-stationarity in the
datasets.

FIGURE 5. Price movement patterns of Bitcoin.

future. The stationarity checking process investigates pres-
ence of unit root in the dataset. The following are the null
hypothesis and alternative of ADF.
H0: α = 0, indicates the presence of a unit root and that the

series is non-stationary.

FIGURE 6. Price movement patterns of Litecoin.

FIGURE 7. Price movement patterns of Ethereum.

FIGURE 8. Price movement patterns of Ripple.

Halt .: α < 0, means there is no unit root and the series is
stationary.

It is evaluated as tα =
α̂

se(α̂) , Where α̂ is an estimation
for and se(α̂) is coefficient standard error. The calculated
statistics is compared with the critical values.H0 is rejected if
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FIGURE 9. Price movement patterns of XLM.

FIGURE 10. Price movement patterns of ZEC.

FIGURE 11. Convergence curves of comparative algorithms on Ackley’s
function.

tα < critical value, saying that no unit root found and the
series is stationary. The PP test is a non-parametric approach,
similar to ADF, but it also acknowledges that residues are

FIGURE 12. Convergence curves of comparative algorithms on
Rosenbrock’s function.

FIGURE 13. Convergence curves of comparative algorithms on Rastrigin’s
function.

FIGURE 14. Convergence curves of comparative algorithms on Griewank’s
function.

auto-correlated by an automated correction during testing.
The results from Table 3 confirmed the Box-Jenkins tech-
nique by demonstrating non-stationarity in levels, stationarity
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TABLE 4. Comparative results of Ackley’s function.

TABLE 5. Comparative results of Rosenbrock’s function.

TABLE 6. Comparative results of Rastrigin’s function.

in first differences, and support rejection of the null hypoth-
esis that all data series are significantly non-stationary.

IV. eAEFA PERFORMANCE ON BENCHMARK
FUNCTION OPTIMIZATION
The optimization capability and convergence of basic AEFA
is proved by the inventors in [57]. The powerful global

TABLE 7. Comparative results of Griewank’s function.

TABLE 8. Performance metrics used to evaluate the forecasting models.

optimization ability of AEFA is compared with few states
of the art evolutionary algorithms and established as a supe-
rior metaheuristic. We proposed eAEFA in this article and
to realize the effect of elitism on AEFA learning, we first
employed eAEFA for benchmark function optimization and
compared its performance with basic AEFA, and two widely
used optimization algorithms such as PSO and GA. The
four benchmark functions are Ackley’s function (Eq. 34),
Rosenbrock’s function (Eq. 35), Rastrigin’s function (Eq. 36),
and Griewank’s function (Eq. 37) detailed as follows.

f1 (x) = −20exp

(
−0.2

√
1
D

∑D

i=1
x2i

)

−exp
(
1
D

∑D

i=1
cos (2πxi)

)
+20+e (34)

f2 (x) =

∑D−1

i=1

(
100

(
x2i − xi+1

)2
+ (xi − 1)2

)
(35)

f2 (x) =

∑D

i=1

(
x2i − cos(2πxi) + 10

)
(36)

f2 (x) =

∑D

i=1

x2i
4000

−

∏D

i=1
cos

(
xi
√
i

)
+ 1 (37)
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TABLE 9. MAPE statistics from six datasets and six prediction models.

TABLE 10. R2 statistics from six datasets and six prediction models.

TABLE 11. POCID statistics from six datasets and six prediction models.

The domain dimension and search range of these functions
was set to 50 and [−100 100] respectively. The learning
parameters of four optimization techniques are chosen exper-
imentally. The algorithms are iterated 200 times. The number
of particles for AEFA and eAEFA was set to 50. The swarm

size of PSO and chromosome number for GA are chosen
as 80 and 100 respectively. The crossover and mutation
probability of GA are chosen as 0.7 and 0.002 respec-
tively. For PSO, the inertia weight, cognitive and social
parameter values are set to 0.736248, 1.42374, and 1.42374
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TABLE 12. RMSE statistics from six datasets and six prediction models.

TABLE 13. MAE statistics from six datasets and six prediction models.

TABLE 14. Overall ranking of the forecasts considering five metrics and six prediction models.

respectively referring to literature. The convergence graph of
four optimization methods from four benchmark functions
are illustrated by Figures 11 – 14. The mean fitness values
of the four objective functions are recorded at 50, 100, and
150 number of iterations and enlisted in Table 4 - 7.
From these convergence plots, it can be observed that,

both eAEFA and basic AEFA converged rapidly and more
accurately than PSO and GA. The eAEFA converged slightly
better than AEFA and maintained well balance between
exploration and exploitation. In each row of Table 4 – 7, the
best fitness values are presented in boldface. It is found that
eAEFA and AEFA obtained best values within 50 iterations
while PSO and GA reached their best values with more
than hundred iterations. In comparison with three algorithms,

eAEFA performed significantly better than others. The GA
yielded superior results compared to PSO.

V. EXPERIMENTAL OUTCOMES FROM
CRYPTOCURRENCY FORECASTING
Six data series described in the preceding section are used in
a variety of experiments to test the suggested and compared
models. Using the identical input patterns, seven compara-
ble models such as ARIMA, MLP, SVR, LSTM, RVFLN,
GA+RVFLN, and AEFA+RVFLN are built and assessed.
The training and test patterns are normalized and given
independently to the eight models following the windowing
method. An error signal is a model estimated output that
deviates from the desired result. The accuracy of a model is
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FIGURE 15. Actual v/s estimated from BTC forecasting.

FIGURE 16. Actual v/s estimated from LTC forecasting.

increased by a lower error value. The closing prices of six
series are predicted for one day in advance.

A. PERFORMANCE METRICS
The five performance measures indicated in Table 8 such as
POCID, R2, MAPE, RMSE, and MAE are used to evaluate
the performance of all models.

B. EXPERIMENTAL DESIGN
The parameter values of different forecasts are chosen care-
fully without compromising their accuracy. We note that, all
the models implemented are stochastic in nature. The optimal
parameter values for all the models are selected experimen-
tally (i.e., trial and error method) during the model training
as there is no standard rule to select the optimal values of
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FIGURE 17. Actual v/s estimated from ETH forecasting.

FIGURE 18. Actual v/s estimated from ZEC forecasting.

parameters for a stochastic model. Rigorous experimenta-
tions are carried out to select the optimal values of the param-
eters during the model training. Once the optimal values are
selected at the end of training process, they are kept fixed and
used for the test process. For ARIMA model, we considered

p = 1, d = 1, and q = 2 (single autoregressive term, one
nonseasonal difference term and two lagged forecast error).
The MLP is implemented using a single hidden layer, and its
size is determined empirically. With 20 to 50 neurons investi-
gated, the ideal design is determined to be 5-32-1. (i.e., 5 input
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FIGURE 19. Actual v/s estimated from XLM forecasting.

FIGURE 20. Actual v/s estimated from XRP forecasting.

layer neurons, 32 hidden layer neurons and 1 output neuron).
It is trained by back propagation learning with learning rate
α = 0.03 and momentum factor of µ = 0.001. For MLP and

RVFLN, the number of input neuron is equals to the input
data size and there is a single neuron at output layer. The
enhancement layer size of RVFLN is explored similar toMLP
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FIGURE 21. Error distributions and eAEFA+RVFLN predictions vs true closing prices from BTC series.

FIGURE 22. Error distributions and eAEFA+RVFLN predictions vs true closing prices from LTC series.

and set to 20. The AEFA parameters were set as particle size
50, α = 30 and K0 = 500 referring base articles [57]. The
SVR adopted used polynomial kernel of degree 5, gamma
= auto, tolerance = 0.001, and regularization parameter
C = 100. For LSTM, the size of convolutional layer, lstm
layer, and dense layer were set to 64, 72, and 16 respectively.
Both convolutional and dense layer used ReLU activations.
The learning rate is chosen as 0.0001. The elitism factor was
set to 5% and the algorithm was iterated fifty times to reach
the optimal parameter values. For PSO, the inertia weight,
cognitive and social parameter values are set to 0.736248,
1.42374, and 1.42374 respectively. For GA, the crossover and

mutation probability values were set to 0.7 and 0.003 respec-
tively and it was iterated 100 generations. To compensate
the stochastic behavior of neural-based forecasts, each one
is executed 30 times with the above-mentioned parameters
and random initial weight and threshold values. The average
prediction error values from 30 runs are recorded for perfor-
mance comparisons.

C. EXPERIMENTAL RESULTS
Tables 9 – 13 summarizes error statistics from forecasts made
over six datasets. For each dataset, we perform a separate
ranking of models. With 1 being the best and 8 being the
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FIGURE 23. Error distributions and eAEFA+RVFLN predictions vs true closing prices from ETH series.

FIGURE 24. Error distributions and eAEFA+RVFLN predictions vs true closing prices from ZEC series.

worst, the rating is done from 1 to 8. An average value is
supplied if the ranks are the same. Each model is given a
ranking here depending on the value of its error statistic.
The average rank and re-ranking of all models are displayed
in the final two columns of Table 9 - 13. The reranked matrix
for the employed models and metrics is shown in Table 13.
Let’s say that r ji signifies rank and that j for the chosenmethod
falls between (1, k) and i between (1, N) for the chosen

dataset. Here, Rj =
1
N

∑
i r
j
i stands for an algorithm’s mean

rank.

D. DISCUSSION
Considering the results summarized in Table 9, it is observed
that the proposed forecast generated the lowest MAPE val-
ues compared to others. Its performance on XLM series is
exceptional where, AEFA+RVFLN is found better. There is
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FIGURE 25. Error distributions and eAEFA+RVFLN predictions vs true closing prices from XLM series.

FIGURE 26. Error distributions and eAEFA+RVFLN predictions vs true closing prices from XRP series.

no significant difference in MAPE values of AEFA+RVFLN
and GA+RVFLN. Both ARIMA and SVR showed
inferior performances to neural network-based models.
LSTM yielded acceptable MAPE values however, inferior
performance compared to hybrid models. It concluded
that hybrid neural models could generate more accurate
predictions. For example, eAEFA+RVFLN generated a

MAPE value of 0.0260 for LTC followed by GA+RVFLN
with MAPE value of 0.0558, AEFA+RVFLN with MAPE
value of 0.0585, LSTM and RVFLN with MAPE value
of 0.0762 each, SVR with 0.0793, MLP with 0.1827,
and ARIMA with 0.4427. The re-ranking value of
eAEFA+RVFLN is 1 (one) followed by AEFA+RVFLN and
GA+RVFLN.
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FIGURE 27. MAPE reduction (%) on adopting eAEFA+RVFLN.

FIGURE 28. R2 reduction (%) on adopting eAEFA+RVFLN.

FIGURE 29. POCID reduction (%) on adopting eAEFA+RVFLN.

From R2 metrics shown in Table 10, similar trend has
seen. Here, eAEFA+RVFLN stood first again, followed by
GA+RVFLN and AEFA+RVFLN. MLP and ARIMA per-
formances are close to each other. In Table 11 and Table 13,
again eAEFA+RVFLN performed best. However, in Table 12
(RMSE) it secured second rank. Here, AEFA+RVFLN
obtained best overall rank. Similar findings are obtained from
other tables. According to Table 14, eAEFA+RVFLN-based
forecasting achieved rank one. Hence, the eAEFA+RVFLN
model performs better overall than others.

Figure 15 – 20 show plots of anticipated prices versus
actual prices to demonstrate the effectiveness of the sug-
gested forecasts. These charts demonstrate how well the

FIGURE 30. RMSE reduction (%) on adopting eAEFA+RVFLN.

FIGURE 31. MAE reduction (%) on adopting eAEFA+RVFLN.

eAEFA+RVFLN estimates match the actuals. According to
Figure 21 - 26, which display the error distribution graphs
for six data series, the majority of training patterns tend to
provide prediction errors that are close to zero. The reduction
in error metrics on adopting eAEFA+RVFLN over others
calculated by Eq. 38 are illustrated in Figure 27 – 31. It can be
seen that except nominal cases, the reduction in error metrics
is significant.

error metric reduction

=
|error of comparative model−error of proposed model|

error of comparative model
× 100 (38)

VI. STATISTICAL SIGNIFICANCE TEST OF FORECASTS
To determine whether there exists statistically significant
difference among performances of forecasts, we conducted
Friedman’s test which is a non-parametric test. The null and
alternative hypothesis are as follows.

H0: all forecasts are equivalent and their ranks are equal.
Halt: performances of forecasts are significantly different.
In our study, for number of forecast k = 8, num-

ber of performance metric N = 5, and considering the
model ranks from Table 8, the Friedman statistic χ2

F =[
12

[N∗k∗(k+1)]

]
∗
∑

R2
− [3 ∗ N ∗ (k + 1)] =

[
12

[5∗8∗9)]

]
∗

R2
− [3 ∗ 5 ∗ (8 + 1)]= 2.1156. And the F-distribution FF =

(N−1)χ2
F

N(k−1)−χ2
F

=
(5−1)∗2.1156

5∗(8−1)−2.1156= 0.2573.
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TABLE 15. Statistics from Wilcoxon signed test for eAEFA+RVFLN.

Here, 2.1156 ≫ 0.2573, i.e., χ2
F > FF therefore, null

hypothesis of equivalence is rejected.
Since the cryptocurrency datasets used are not normally

distributed, we conducted another nonparametric post hoc
test, i.e., Nemenyi post hoc test to ascertain whether there
is a statistical difference between two forecasts. When the
grade difference between the worst-performing model and
the model under examination is more than the crucial
difference (CD) value, the null hypothesis of no difference
is rejected. In our study, we took into account N performance
measures and k number of models, Table B.16 of [60] and
α = 0.01, qαis found to be 0.4643 and the corresponding

CD = qα

√
k(k+1)
6N = 0.4643 ∗

√
8∗(8+1)

6∗5 = 0.7192.

Considering ARIMA as the worst performing model with
average rank of 7.482, the significant difference between
of models are computed as follows. Except SVR, all
other models satisfy the post hoc test among which the
eAEFA+RVFLN found best performing model.

AverageRank(ARIMA)−AverageRank(MLP)
= 7.4826.464 = 1.018 > CD.

AverageRank (ARIMA) − AverageRank (SVR)

= 7.4826.898 = 0.584 < CD.

AverageRank(ARIMA)−AverageRank(LSTM )
= 7.4824.28 = 3.202 > CD.

AverageRank(ARIMA)−AverageRank(RVFLN )
= 7.4824.462 = 3.02 > CD.AverageRank(ARIMA)

−AverageRank(GA+ RVFLN ) = 7.4822.948
= 4.534 > CD.

AverageRank(ARIMA)−AverageRank(AEFA+ RVFLN )
= 7.4822.096 = 5.386 > CD.

AverageRank(ARIMA)−AverageRank(eAEFA+ RVFLN )
= 7.4821.346 = 6.136 > CD.

Next, another significance test using the Wilcoxon signed-
rank method is performed. The disparity between the

proposed and feasible models can be attributed to a zero
medians distribution, according to the results of the paired,
two-sided test for the null hypothesis. Logic value h = 1
indicates rejection of the null hypothesis. Table 15 provides
an overview of the Wilcoxon signed-rank test outcomes for
the eAEFA+RVFLN dataset. These statistical results demon-
strate how significantly different from other models the sug-
gested model is.

VII. CONCLUSION
In this article, a hybrid forecast known as eAEFA+RVFLN
is suggested. First, an upgraded variant known as eAEFA is
aimed to enhance the performance of AEFA by combining
it with the elitism mechanism. Second, the eAEFA is used
to train a flat and computationally effective RVFLN, which
computes the output layer weights non-iteratively using least
square methods and assigns input layer parameters at ran-
dom without additional modification. The next goal of this
study was to evaluate how well the eAEFA+RVFLN fore-
cast performed in terms of forecasting six cryptocurrencies.
Using the identical input patterns, seven comparable mod-
els, including MLP, SVR, ARIMA, LSTM, basic RVFLN,
GA+RVFLN, and AEFA+RVFLN are built and assessed.
The models are assessed through five performance measures.
The outcomes from exhaustive simulations and statistical
significance test results have proven that eAEFA+RVFLN
based forecasting superiority exists when taking into account
all six cryptocurrency data series. Thus, it is determined that
the eAEFA+RVFLN is best performing model and suitable
for capturing the unpredictability of cryptocurrency data.
Overall, adaptation of elitism concept and eAEFA based
RVFLN training empowered the resulted eAEFA+RVFLN
based hybrid forecast robust and competent in modelling
the dynamic cryptocurrency data. Considering six datasets,
it achieved an average MAPE of 0.0573, R2 of 0.9589,
POCID of 0.9676, RMSE of 0.0685, and MAE of 0.0727.
Amongst the eight forecasting models developed, it secured
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an average rank of 1.346 which is the best. Our models are
designed to predict daily prices only. Prediction of hourly
prices might be helpful to the investors. Also, along with the
historical prices, several other factors affecting crypto data
such as social media trend, regulations, investor sentiments
and interdependent relationships among available currencies
could be integrated for model training that might produce
more accurate predictions. The proposed model is selecting
optimal number of enhancement nodes empirically. As the
size of enhancement layer plays a vital role on RVFLN per-
formance, its selection process could be automated. Further
performance enhancement on AEFA can be achieved with
oppositional based learning concept. Variants of RVFLN,
new modifications, and its applicability to different domains
are the further interest. The current study can be extended
with forecasting few other cryptocurrencies to ascertain the
predictability of the proposed model.
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