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ABSTRACT Power line collisions pose a significant threat to the safety of drones. This is because it is
difficult for drone pilots to recognize power lines at long distances, even on sunny days, and power lines
are less visible in rainy or foggy weather. Therefore, power line detection is necessary for safe drone flight.
This article proposes an algorithm that can recognize various shapes and locations of multiple power lines
while improving the recognition performance of power lines compared to previous studies. YOLO, a deep
learning technology used for object detection, is used to recognize power lines as multiple bounding boxes,
and center points of these bounding boxes are sorted and integrated. This algorithm improves the power line
detection performance by excluding incorrectly detected power lines and restoring undetected parts of the
power lines. The performance of the proposed method was evaluated using the intersection-over-union (IoU)
and F1-score, which were 0.674 and 0.528, respectively. This performance was superior to those of U-Net,
LaneNet and BiSeNet V2 which are deep learning technologies for segmentation. The proposed method was
mounted on the embedded system of the test drone, and tests were conducted indoor and outdoor. Then, the
average frames per second (FPS) value was calculated as 10.05. Various shapes and locations of multiple
power lines can be recognized in real-time using the power line recognition method proposed in this paper.

INDEX TERMS Power line detection, continuous object, segmentation, agricultural spraying drone,
unmanned aerial vehicle (UAV).

I. INTRODUCTION
With technological advancements, drones are being used
in various fields, such as military, disaster relief, traffic
observation, and agriculture. Recent studies on drones
have focused on obstacle detection and collision avoidance
[1], [2], [3]. Power lines are among the most dangerous
obstacles for drone flight. When a drone is far from its pilot,
it is difficult for the pilot to identify the power line, which
increases the risk of drone collision. Therefore, power line

The associate editor coordinating the review of this manuscript and

approving it for publication was Halil Ersin Soken .

collision accidents are increasingly threatening the safe flight
of drones.

In recent years, several techniques have been proposed
for detecting power lines. Power line detection using the
traditional image processing technology method detects the
edge map of the image and the power line using the Hough
transform or line trace algorithm [4], [5], [6]. However,
with the development of deep learning methods, recent
studies have been conducted to detect power lines using
convolutional neural networks (CNNs). Traditional image
processing requires manual design of power line features, but
deep learning can automatically train the features. Therefore,
deep learning can maintain higher recognition accuracy
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in various environments than traditional image processing.
A study on power line detection has used a method of
constructing learning data using a physically based rendering
approach. For the deep learning of power lines, a model with
a custom version of the VGG-16 network as the backbone
was used [7]. The other study used networks such as U-Net,
SegNet, and PSPNet to learn power lines. Their learning data
were composed only of images with power lines. Semantic
segmentation was performed using a CNN on multispectral
images obtained from an unmanned aerial vehicle (UAV) [8].
However, the detection of curved power lines has not
yet been attempted. A fast power line detection network
(fast-PLDN), which is a real-time semantic segmentation
model, detects straight and curved power lines based on a
pixel-by-pixel. To improve the power line detection results
along the boundary, a network with low-high-pass blocks
and edge-attention fusion modules that effectively extract
spatial and semantic information was used. It recognized a
curved power line, but the curvature was gentle [9]. Most
studies using deep learning for conventional power line
detection have been conducted using GPU computers for
high performance. In a previous study for the embedded
system, tiny YOLOv3 using the multiple bounding box
method was used to detect power lines. This method is trained
by labeling continuous objects with multiple bounding
boxes, at which the mean Average Precision (mAP) was
evaluated to be 94.00, and the frames per second (FPS) value
was 12.5 [10].

The main contributions of this study are as follows.

1) Segmented power line detection (SPLD), applying a
post-processing algorithm to the multiple bounding
box method using deep learning for the power line
detection, is proposed. The SPLD improves the power
line detection performance by excluding incorrectly
detected power lines and restoring undetected parts of
the power lines.

2) Through the SPLD, the shape and location of power
lines can be known simultaneously.

3) The SPLD can recognize not only horizontal power
lines but also diagonal and curved power lines, and
inform the number of power lines in images.

This study has been conducted to recognize power lines using
deep learning for agricultural spraying drones. To attach it
to the drone, an embedded computer with low weight and
power consumption was required. Therefore, Jetson Nano
was used as the embedded computer, and the YOLOv5s
model was used as the deep learning technology suitable
for embedded computers [11]. YOLOv5 has been utilized in
various fields, such as the detection of kiwifruit defects [12],
boulders from planetary images [13], and fabric defects [14].
The performance of power line recognition using the SPLD
was evaluated by the intersection over union (IoU) and F1-
score. Additionally, the IoU and F1-score were compared
with them through LaneNet, U-Net and BiSeNet V2, which
are deep learning models that use semantic segmentation.

FIGURE 1. Test drone equipped with the embedded computer and
camera for the SPLD.

LaneNet [15], [16], [17] and U-Net [18], [19], [20], [21]
have been used to recognize lines, such as lanes and power
lines. BiSeNet V2 [22] demonstrates highmodel performance
while having a fast inference speed. Finally, the SPLD was
mounted on the embedded system of the test drone. Tests for
power line recognition were conducted indoors and outdoors.

II. METHODS
A. EXPERIMENTAL PROCEDURE
The training and test images of power lines used in deep
learning were obtained directly through drone flight, and
399 and 35 images, respectively, were used. The images
contained more than one power line; the images used for
training contained 1146 power lines, and the images used
for testing contained 78 power lines. The performance of the
SPLD was compared with learning the same data through
the U-Net, LaneNet and BiSeNet V2. Their performance was
evaluated using the IoU and F1-score, which are commonly
used for performance evaluation in semantic segmentation.
The IoU evaluates the performance by determining how
well the predicted value overlaps with the actual value, and
the F1-score evaluates the performance using the harmonic
average of precision and recall.

Also, indoor and outdoor tests were conducted using a
test drone equipped with an embedded computer, as shown
in Fig. 1. The specifications of the test drone and the
embedded systems are listed in Table 1. An indoor experiment
was conducted with a virtual environment. In the virtual
environment, two power lines with a thickness of 3 mm were
installed against the paddy field image as the background, and
the test drone was placed at a distance of 1 m. An outdoor
experiment was conducted using the test drone in a paddy
field located in Gimje-si, Jeollabuk-do. The test drone flew
within 5–10 m from the power line and detected the power
line.

B. SEGMENTATION OF POWER LINES
1) YOLOV5
In this study, YOLOv5 was used as the deep learning model
for power line learning and detection. The structure of
YOLOv5 consists of three parts: a backbone that extracts
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TABLE 1. Specifications of the test drone and embedded systems.

features, a neck that improves performance by fusing the
extracted features, and a head that converts features into
bounding box parameters. The backbone is a CNN that
extracts feature maps of various sizes from the input
images through multiple convolutional and pooling layers.
Convolution with batch normalization and leaky-ReLU
(CBL), cross-stage partial (CSP), and spatial pyramid pooling
(SPP) techniques were used. CBL is a block composed of
a convolutional layer, batch normalization, and leaky-ReLU
activation function, and is used to extract features. CSP
performs a convolution operation on only one part of a feature
map and integrates it with the rest of the feature map. As only
some of the feature maps pass through the convolutional
layer, the amount of computation can be reduced, and the
flow of the gradient can be efficiently performed in the
backpropagation process, which can improve performance.
SPP improves the performance by max pooling feature
maps with filters of various sizes and then merging them
again. In the neck part, feature maps of various sizes are
fused. A path aggregation network is used to fuse low-
and high-level features to improve performance. The head
converts the feature output from the neck into the network’s
final output using a convolution layer. The final output
of the network includes the bounding box parameters, the
probability that an object exists with, and the probability
that a class exists with. YOLOv5 is divided into YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x. The performance of
themodel improves as one goes from s to x, but the processing
time increases [11]. In this study, the YOLOv5s model was
used because of the performance limitations of the embedded
computer.

2) LEARNING POWER LINES USING YOLOV5
A power line is not a single object with clear boundaries,
such as a car, tree, or animal, but rather a continuous object
with unclear boundaries. Therefore, it is inappropriate to use
learning data based on existing labeling methods. Labeling
for power line learning was performed with several bounding
boxes, whose size was 0.05 times the size of the image. This
bounding box size has been shown to be optimal for power
line detection in a previous study [10]. The size and labeling

FIGURE 2. Labeling using a bounding box of size 0.05 times the size of
the image.

TABLE 2. Specifications of the deep learning computer for learning.

TABLE 3. Hyperparameters for training power lines.

method of the bounding box of the power line for learning
are shown in Fig. 2. A total of 22,315 power line labeling
procedures were performed using 399 learning data. The
training image size was 416 × 416 pixel, then the bounding
box size was 21×21 pixel. The specifications of the computer
used for learning are listed in Table 2. The hyperparameters
for training the YOLOv5 are listed in Table 3. To find optimal
hyperparameters, the Hyperparameter Evolution library was
used [11]
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FIGURE 3. (a) horizontal power lines (b) diagonal power lines (c) curved
power lines.

3) POST-PROCESSING ALGORITHM FOR POWER LINE
SEGMENTATION
Power lines were recognized with multiple bounding boxes,
and they were segmented through a post-processing algo-
rithm. If there is only one power line in the image, it is
simply integrated by connecting the detected bounding boxes.
However, if there are multiple power lines in an image,
multiple bounding boxes are randomly detected, making it
difficult to classify the power lines individually. Therefore,
a post-processing algorithm is needed to classify and integrate
the detected bounding boxes. The power line can appear in
three major shapes, as shown in Fig. 3. When the shapes
of all power lines are horizontal, as shown in Fig. 3a,
a segmentation of the power lines can indicate that the
bounding boxes existing on the same horizontal line among
the center points of the detected bounding boxes are the
same. However, if they are diagonal or curved, as shown in
Fig. 3b and 4c, there are cases where there are two power lines
on the same horizontal line, such as the black dot in the red
box. To solve this problem, the power lines were segmented
according to the flowchart in Fig. 4. First, the x- and y-axis
pixel values are extracted from the center points of several
bounding boxes where the power line is detected based on
the image pixel, and these points are sorted in ascending order
based on the x value. The first point among the sorted center
points becomes the first center point of the power line in the
image. The second center point becomes the next center point
of the same power line as the first center point if the difference
in y value between the first and second center points is smaller
than the set threshold, and if it is larger, it becomes the first
center point of another power line. The third center point is
determined whether it is a new power line or the next center
point of a previously recognized power line by comparing
the difference in y values with the previous center points.

FIGURE 4. Flowchart of the SPLD.

In this study, a threshold of 10 pixels was set based on the
size of the bounding box during labeling. As illustrated in
Fig. 5a, a bounding box is labeled per power line when the
pixel difference between two adjacent power lines on the
y-axis is greater than 10 pixels. If the pixel difference is
less than 10 pixels, the bounding box would overlap with
other power lines. In such cases, the two adjacent power lines
are labeled as a single bounding box, as shown in Fig. 5b.
By repeating this method, several power lines in the image
could be recognized individually. In order to correct the deep
learning detection error, power lines composed of 5 or fewer
center points are considered not to be power lines.

For example, if two power lines are detected as shown
in Fig. 6a, the center points of the bounding boxes of the
detected power lines are sorted in the order ofP1, P2, P3,
P4, P5, P6, P7, P8. Among the sorted center points, the first
center point P1 becomes the first center point of power line B.
When P1 and P2 are compared, the difference between their
y values, 1y, is larger than the set threshold; therefore, P2 is
treated as a different power line fromP1, and thenP2 becomes
the first center point of power line A. The difference in y value
between P3 and P1 is larger than the set threshold, but one
between P3 and P2 is within the set threshold. Therefore, P3
is segmented into the second center point of power line A.
In addition, because the center points are rarely accurately
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FIGURE 5. (a) the case where the difference between the two power lines
is more than 10 pixels (b) the case where the difference between the two
power lines is less than 10 pixels.

FIGURE 6. (a) Result of power line recognition through YOLOv5s using
multiple bounding box method (b) Result of power line recognition using
the SPLD.

located on the power line, the area of the power line is
assumed to be 4 pixels above and below the center point.
Finally, individual areas of power lines A and B are detected
by connecting each point above and below the center points
as shown in Fig. 6b.

C. DEEP LEARNING USING SEGMENTATION
1) LANENET
In this study, the performance of the proposed the SPLD
method was compared with that of LaneNet. The architecture
of LaneNet is shown in Fig. 7. The LaneNet treats lane
detection as an instance segmentation problem and trains it
as an end-to-end system. It can handle lane changes without
being limited by the number of lanes that the network can
detect. The LaneNet consists of a segmentation branch and
an embedding branch. The segmentation branch is trained
to output a binary segmentation map that indicates the
pixels that belong to a lane. To construct the ground-truth

FIGURE 7. LaneNet architecture.

segmentation map, the points of all ground-truth lanes are
connected to form a connected line per lane. Ground-truth
lanes are drawn even if they are covered by cars or do not have
explicit visual lane segments, such as dotted or faded lanes.
The position of a lane is learned to be predicted even when it
is covered. The embedding branch is trained using a one-shot
method based on distance measurement learning to classify
the next-best pixels identified by the segmentation branch.
Using the clustering loss function, the embedding branch is
trained to output embeddings for pixels in each lane such that
the distance between pixel embeddings belonging to the same
lane is short, whereas the distance between pixel embeddings
belonging to different lanes is large. Pixel embeddings in the
same lane are clustered together to form a unique cluster per
lane. The LaneNet is being studied for lane departure for
autonomous vehicles or lane detection for trajectory planning
decisions [15], [16], [17].

2) U-NET
In this study, the performance of the proposed the SPLD
method was compared with that of the U-Net. It consists of
a contracting path (left) and an expanding path (right). The
contracting path has the general structure of a convolutional
network. It consists of repeatedly applying two 3 × 3
convolutions (unpadded convolutions), followed by a 2 ×

2 max pooling operation, each using a ReLU and stride for
downsampling. At each downsampling step, the number of
channels in the feature map is doubled. Every step in the
expanding path consists of upsampling the feature maps,
a 2 × 2 convolution that halves the number of channels
in the feature maps, and a 3 × 3 convolution and ReLU
for concatenation with the truncated feature maps in the
contracting path. Cropping is necessary because the border
pixels are lost in every convolution. In the final layer, a 1 ×

1 convolution is used to map the 64-component feature
vector to the desired number of classes. The network has
23 convolutional layers. To allow seamless tiling of the output
partitioning map, the input tile size needs to be chosen such
that all 2 × 2 max pooling operations are applied to layers of
even x and y sizes. The U-Net is being studied in areas, such
as lane recognition for autonomous vehicles [18], [19], road
area extraction for remote sensing [20], and road network
information extraction using satellite images [21].

3) BISENET V2
To speed up model inference, current approaches almost
always sacrifice low-level details, resulting in signifi-
cant accuracy reduction. Bilateral Segmentation Network
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FIGURE 8. BiSeNet V2 architecture.

FIGURE 9. Results of power line detection and error correction using the
SPLD.

(BiSeNet) V2 handles these spatial details and categorical
semantics separately to achieve high accuracy and high
efficiency for real-time semantic segmentation. BiSeNet V2
consists of three parts: Detail Branch, Semantic Branch, and
Guided Aggregation Layer. The Detail Branch consists of
wide channels and shallow layers. These capture low-level
details and create high-resolution feature representations.
Semantic branches are composed of narrow channels and
deep layers to obtain high-level semantic context. Semantic
Branches are lightweight because they use reduced channel
capacity and fast downsampling. The Guided Aggregation
Layer reinforces interconnection and fuses the two types
of functional representation. Moreover, booster training
strategies are used to improve segmentation performance
without additional inference costs. The booster training
strategy inserts a segmentation head into a semantic branch
in the training phase and discards it in the inference
phase [22]. The architecture of BiSeNet V2 is shown in
Fig. 8.

III. EXPERIMENTAL RESULTS
A. POWER LINE RECOGNITION
Fig. 7 shows part of the result of recognizing the power
line using the SPLD for the test image. The blue box is the
detection result of YOLOv5s using the multiple bounding
box method, and the red box is the area of power lines
recognized by the SPLD. As shown by the yellow box in

the upper image of Fig. 7, the power line bounding boxes
detected by YOLOv5s did not recognize some parts of
power lines. However, the SPLD result shows that this error
was corrected and the entire power line was recognized.
In addition, as shown in the yellow box in the lower image,
even when YOLOv5s recognizes non-power lines as power
lines, the SPLD normally excluded it from recognized power
lines.

B. PERFORMANCE EVALUATION OF POWER LINE
RECOGNITION
Fig. 10 shows examples of five different types of power lines
among the 35 test images and the results of recognizing power
lines using the U-Net, LaneNet, BiSeNet V2 and SPLD.
Image 1 in Fig. 8 shows a case in which there were three
power lines on different backgrounds. The U-Net detected
only one power line on a light background, while LaneNet
detected one on a light background and another on a dark
background. However, the SPLD and BiSeNet V2 detected
all three power lines. Image 2 shows an example of a short
power line in the upper-left corner. The U-Net, LaneNet
and BiSeNet V2 recognized the short power line, but the
SPLD excluded it from the recognition result because it was
composed of 5 or fewer center points. The characteristics of
the differences in the detection results of each method can
be confirmed in the case where two power lines were closely
attached, as shown in Images 3 and 4. The U-Net recognized
each power line. In the case of the LaneNet, nearby several
power lines were recognized as a thick power line. The
Bisenet V2 did not correctly recognize the two adjacent
power lines in Image 3. However, in Image 4, two nearby
power lines were recognized as one power line. As mentioned
in the method section, two power lines within 10 pixels
were labeled as one power line to create training data and
trained with YOLOv5s. So, as shown in Image 3 and 4, the
SPLD recognized the power line to pass through the center
of the two power lines. The result obtained using the U-Net
shows that the power line was well recognized against a light-
colored background, such as the sky. However, the power
line was not recognized against a dark background, such
as a paddy field or mountain. The results obtained using
the LaneNet show that power lines were recognized against
both light and dark backgrounds. However, some parts of the
power line were not recognized, or the area of the power lines
was recognized as thick. BiSeNet V2, SPLD results show
that the power line was recognized on both light and dark
backgrounds. BiSeNet V2 sometimes incorrectly detected
ridges as power lines, but the SPLD did not incorrectly detect
ridges as power lines. The SPLD can also provide information
about the number of power lines and their location in
images.

Table 4 shows the IoU and F1-score of the U-Net,
LaneNet, Besenetv2 and the SPLD using 35 test data.
It also shows the FPS when power lines are recognized in
real-time using an embedded computer. The F1-scores of
the U-Net, LaneNet and BiSeNet V2 were 0.431, 0.465 and
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FIGURE 10. (a) Power line recognition results using U-Net (b) Power line recognition results using LaneNet (c) Power line recognition results using the
BiSeNet V2 (d) Power line recognition results using the SPLD.
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FIGURE 11. (a) Indoor test environment (b) three horizontal power lines
(c) three diagonal power lines (d) three curved power lines.

0.663, respectively, and that of the SPLD was 0.674. The
IoU of the U-Net, LaneNet and BiSeNet V2 were 0.295,
0.309 and 0.507, respectively, and that of the SPLD was
0.528. The difference in performance is due to the recognition
characteristics of the three methods mentioned above. This
shows that the SPLD is better suited for recognizing power
lines in agricultural environments. Among the studies that
evaluated the performance of recognizing lines or objects by
deep learning with the IoU and F1-score, when recognizing
lanes [17], when recognizing road networks using satellite

FIGURE 12. (a) Outdoor test environment (b) two horizontal power lines
(c) one horizontal power line and two diagonal power lines.

TABLE 4. Power line recognition performance according to deep learning
model.

images [21], and when recognizing small objects in urban
remote sensing images [23], the IoU was calculated as
0.511–0.651 and the F1-score was calculated as 0.829–0.890.
The IoU and F1-score of the SPLD are similar to other
studies. The FPS of U-Net, LaneNet, and BiSeNet V2 were
0.436, 0.015, and 5.80, respectively, and the SPLDwas 10.05.

C. THE SPLD TEST USING EMBEDDED SYSTEM
Fig. 11a shows indoor virtual environment conditions and
the test drone equipped with the embedded system running
the SPLD. In this virtual environment, three power lines
were set in horizontal, diagonal and curved shapes, and
these power lines were successfully recognized as shown in
Fig. 11b,11c and 11d. Fig. 12a shows the test drone detecting
power lines in a paddy field in real-time. During a drone
flight, the SPLD recognized power lines of various shapes
and numbers, and Fig. 12b and 12c show their examples.

IV. CONCLUSION
This study was conducted to develop a power line recognition
technology for the safe flight of agricultural spraying drones.
The segmented power line detection (SPLD) method was
proposed to recognize power lines. The SPLD detects
power lines by YOLOv5s using the multiple bounding
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box method and recognizes the area of individual power
lines by post-processing for power line segmentation. When
recognizing multiple power lines using only YOLOv5s,
there were cases where some of the power lines were not
recognized and cases where non-power lines were incorrectly
recognized as power lines. The SPLD recognizes continuous
power lines as each area by connecting each point above and
below the center points of the recognized bounding boxes.
It recognized not only multiple power lines but also diagonal
or curved power lines.

The performance of the SPLD was evaluated using the
IoU and F1-score, which were 0.528 and 0.674, respectively.
As a result of performing power line recognition under the
same conditions using the U-Net, LaneNet and BiSeNet V2,
the F1-score was 0.431, 0.465 and 0.663, and the IoU was
0.295, 0.309 and 0.507, respectively. The performance of
the SPLD was better than those of the U-Net, LaneNet and
BiSeNet V2. The U-net was weak in recognizing power
lines in the background of mountains or fields, and the
LaneNet recognized power lines as too thick, and BiSeNet
V2 performed well in recognizing power lines overall, but
there were cases where it mistook ridge for power lines. The
SPLD corrects detection errors when a part of the power line
is not recognized or when a non-power line is incorrectly
recognized as a power line. The SPLD can recognize the
shape and location of multiple power lines, and provide
information about the number of power lines in images.
As the SPLD was developed based on YOLOv5s, it could
operate even in low-end deep learning embedded systems.
In this study, the SPLD was performed on a low-end deep
learning embedded system, Jetson Nano, and this system
was installed on a drone. Power line recognition tests were
conducted in an indoor virtual environment and an outdoor
paddy field. Through tests, it was confirmed that power line
recognition using the SPLD could be performed in real-time
using embedded systems. The average FPS was 10.05. The
FOV of the used camera, 69◦

× 42◦ (V×H), can capture
all power lines in the drone’s flight path. The limitation of
this technology is that two or more adjacent power lines are
recognized as one power line when they are located within
10 pixels based on the y-axis pixel. Future tasks will include
developing technologies to distinguish adjacent power lines
within 10 pixels, to recognize power lines even in low-
visibility situations, and to measure the distance between
a drone and power lines. This technology is expected to
be used for safe flight of agricultural drones to prevent
power line collisions and in fields requiring power line
recognition, such as transmission line inspection and drone
reconnaissance. The STRNet [24] and SDDNet [25] models
used deep learning techniques to segment concrete crack
images in real-time under complex backgrounds, and were
tested on a GPU environment. It is expected that SPLD can
be used to segment concrete cracks in real-time on embedded
computers. This technology could also be applied to fields
that require the recognition of thin and long objects, such as
electric poles and parking lines.
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