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ABSTRACT Machine learning is a branch of artificial intelligence that provides computers the ability to
create or improve algorithms without being explicitly programmed by directly learning from data. It is
widely used in automation or decision-making tasks in fields such as image or speech recognition, sentiment
analysis, or self-driving cars. However, its application in the field of communication networks is limited
by the lack of appropriate research resources, such as rich datasets for training or the definition of a
standard set of features. In this context, a standard latent space dimension is proposed by performing an
autoencoder-based dimensionality reduction process. Different network security datasets are projected onto
a lower-dimensional space to determine a standard or convergent dimension. The convergent dimension is
determined by identifying the threshold above which diminishing returns begin to occur in the autoencoder
loss as the latent space dimension increases. The experimental validation showed that four machine learning
classification models, trained with a standard latent space of ten dimensions, performed as well as the
models that used the non-reduced versions of the datasets in terms of F1-score and accuracy. Furthermore,
aWilcoxon statistical test showed that themean accuracy of all classificationmodels trainedwith the standard
latent space dimension had a difference of less than 0.0235 in comparison to the models trained with the
original inputs. A negligible difference in accuracy is a significant outcome because researchers can use
only the latent space to perform experiments with certainty that the performance of ML models will not be
constrained.

INDEX TERMS Standardization, machine learning, autoencoder, latent space, network security.

I. INTRODUCTION
The massive adoption of the Internet and its convenient use
as a connectivity medium has driven a significant evolution
of communication networks. Consequently, networks have
turned into heterogeneous, dynamic, and systematically com-
plex systems. Thus, designing, deploying, managing, and
maintaining networks based on traditional techniques is noto-
riously difficult to perform. As mentioned byWang et al. [1],
one of the most important advantages of machine learning
(ML) is the capability to address complex problems that
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require classification, regression, and decision-making with
results close to or even better than those obtained by human
beings.

According to Mahadevkar et al. [2] and Samant et al. [3],
ML techniques have gained a greater maturity in specific
domains such as computer vision or natural language under-
standing. In others, such as communication networks, the
application of ML approaches is still at an early stage.
Revising the state of the art reveals the lack of publicly
available and rich network traffic datasets for the network
research community. In this regard, Barut et al. [4] mention
that the lack of comprehensive open datasets not only restricts
the evaluation of ML-based proposals to perform network
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traffic analytics by researchers but also the community is
affected due to the inability to reproduce state-of-the-art
results. Besides, it is worth mentioning that the available open
datasets are mainly focused on security topics. Thus, for the
application of ML to improve, for example, the provision of
quality of service, it will require the creation of an ad-hoc
network dataset.

On the other hand, the state of the art also reveals a lack of
consensus regarding the set of features to be considered when
creating the dataset. Regarding Network Intrusion Detection
Systems (NIDSs), Sarhan et al. [5] mentions that network
features are selected based on the author’s domain knowl-
edge and the available data collection tools. As a result, the
available datasets are quite different in terms of feature sets;
therefore, each dataset includes a part of the security events
that could be identified. According to Holland et al. [6], the
selection and adequate representation of network traffic fea-
tures, which is related to feature exploration and engineering,
determine the effectiveness of ML to a large extent. Thus,
considering the most relevant features for the inference pro-
cess will guarantee a proper model performance.

In this context, determining a standard set of features for
network datasets represents a valuable contribution. On one
hand, ML-based proposals could be tested in different net-
work setups. On the other hand, testing an ML model in a
different network setup would not require repeating the entire
feature engineering process, model selection, and parameter
tuning. Nonetheless, as mentioned earlier, the dataset’s num-
ber of features or dimensions is defined based on domain
knowledge. Since researchers and practitioners have differ-
ent points of view, the resulting datasets are heterogeneous.
Thus, reaching an agreement about the number and kind of
features to be considered is not an easy task. While analyzing
network datasets, it is important to note that some features are
irrelevant and redundant for the inference process. Besides,
datasets have some features in common. Hence, projecting
the data to a lower-dimensional subspace that captures the
relevant part of the data is an interesting alternative to explore
towards providing a standard set of features. In this light,
this work proposes identifying a standard low-dimensional
or latent space to allow the network research community to
performML-based analytics with the available open datasets.

In order to identify a standard latent space dimen-
sion, the dimensionality reduction technique is applied to
five Intrusion Detection Systems (IDS) datasets. Accord-
ing to Li et al. [7], noisy and redundant information could
be removed by obtaining a low-dimensional intrinsic space
from an original high-dimensional space. In general, dimen-
sion reduction methods try to minimize information loss
by preserving the original structure of the dataset. Differ-
ent techniques have been proposed considering the linear or
non-linear relationships present in the data. Maaten et al. [8]
argue that traditional linear dimensionality reduction tech-
niques such as principal component analysis (PCA) struggle
to handle complex non-linear data. Since real-world data is

non-linear in nature, non-linear techniques such as autoen-
coders might offer an advantage. In the presented work,
autoencoders are used for the dimensionality reduction pro-
cess. The common latent space is identified by analyzing the
autoencoder loss as a function of the number of dimensions.
The experiment consists of measuring the loss as the dataset
dimension increases from 1 to the original size of the feature
set. The objective is then to determine a threshold where
diminishing returns start to occur as the dimension increases.
Experiments carried out on five datasets reveal that dimen-
sions greater than 10 do not provide significant improve-
ments in the autoencoder loss. To validate this finding, four
classification models corresponding to two neural networks
and two extra trees classifiers were trained with the reduced
versions of the datasets, using the standard latent space of
10 dimensions, and non-reduced datasets. For the analysis,
the F1-score and accuracy evaluation metrics were used. The
experiments were validated with an equivalence test. The
results show that the reduced versions of the datasets produce
results as good as the non-reduced versions with a statistical
accuracy difference of less than 0.0235.

The remainder of the article is organized as follows. In
section II, a background regarding autoencoders is provided,
and an analysis of the related works is carried out. In
section III, the proposal of a standard latent space dimension
based on dimensionality reduction is described. To better
understand the approach and validate the proposal, training
and testing processes with four machine learning models are
presented in section IV. Finally, the conclusions of the article
and future works are reported.

II. BACKGROUND AND RELATED WORKS
This section introduces the need for mechanisms to reduce
the dimensionality of datasets with particular attention to
describing autoencoders. Then, the performed efforts regard-
ing the definition of a standard representation of network
datasets found in the state of the art are analyzed.

A. AUTOENCODER-BASED DIMENSIONALITY REDUCTION
According to Fournier and Aloise [9], working with a large
number of dimensions in the feature space causes the vol-
ume of the data space to increase exponentially fast with
the dimension and, therefore, the data becomes sparse. This
problem, called curse of dimensionality, leads to the problem
of overfitting as the machine learning model can easily get an
accurate solution due to the data sparseness [10]. In order to
tackle this problem, high-dimensional data can be projected
into a lower-dimensional or latent space using different linear
or non-linear techniques. In this light, Wang et al. [11] high-
light the ability of a special three-layered neural network, des-
ignated as autoencoder, to perform dimensionality reduction
on non-linear data. Compared with other techniques, autoen-
coders stand out for the capability of detecting repetitive
structures. Besides, when dataset features present complex
relationships and using only one autoencoder is not enough
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FIGURE 1. Reference architecture for autoencoders. Hidden layers
establish a bottleneck. Thus, regardless of the number of input
dimensions, the hidden layer provides a fixed dimension for the latent
space.

to reduce the dimension, creating stacked autoencoders rep-
resent a feasible solution.

Ferreira et al. [12] define autoencoders as unsupervised
neural networks that encode input data from Rd into Rd ′

and
decode the resulting latent space of dimension d ′ to obtain
the original input (d ′ < d). Fig. 1 shows the reference
architecture of autoencoders. The encoder function e and the
decoder function d of an autoencoder with one hidden layer
are as follows:

e(x) = σ (Wx + b) (1)

d(z) = σ ′(W′z + b′) (2)

where W ∈ Rd×d ′

, x ∈ Rd , b ∈ Rd ′

, z ∈ Rd ′

, σ and σ ′

are non-linear activation functions and W′ as well as b′ with
adequate size. Parameters W, b, W′ and b′ are calculated by
using backpropagation in such a way that the reconstruction
loss is minimized as follows:

min
W,b,W′,b′

∑
i

D(xi, d(e(xi))) (3)

where D represents a dissimilarity measure such as mean
squared error or cross-entropy. The data points in Rd are
represented by x.

The hidden layer performs the dimensionality reduction
as the number of neurons is lower. The neurons of the input
layer are fully connected to the neurons of the hidden layer
by applying the learned weights (encoder function). Thus,
the relevant information of the original dataset is preserved
by projecting it into a lower-dimensional subspace. As men-
tioned by Motoda and Liu [13], the encoder (equation 1) per-
forms a feature extraction process since a set of new features
is extracted from the original features through a functional
mapping (a non-linear combination of the original attributes).

A different approach for dimensionality reduction consist in
applying a feature selection technique. A subset ofM features
is chosen from the original set of N features (M < N ) based
on a certain criterion. Thus, the feature space is optimally
reduced. According to Zebari et al. [14], as the feature extrac-
tion technique transforms a considerable number of attributes
into a set of reduced features, a lesser information loss and a
higher discriminating power can be guaranteed in comparison
with the feature selection technique.

Although dimensionality reduction is leveraged in this
work towards the definition of a standard way of apply-
ing different machine learning models on different network
datasets, it is worth mentioning that a reduced version of
a dataset provides additional benefits. For instance, fewer
computational resources are consumed as data processing
complexity is reduced. Besides, the concentration of relevant
information enhances not only the classification, clustering,
regression, and visualization of data but also the stability and
interpretability of the learning model.

B. TOWARDS A STANDARD REPRESENTATION OF
NETWORK’s DATA
Standardization of datasets is an important step to motivate
academia and industry to massively adopt machine learning
techniques in communication networks. Thus, different pro-
posals have been presented in alignment with this standard-
ization goal.

Sarhan et al. [5] propose considering the network traffic
in terms of flows. A standard version of flows is proposed
as the basic unit to create datasets. In order to build network
flows, NetFlow is the preferred option as it is the de-facto
industry standard. Thus, a NetFlow-based standard set of
features for NIDS datasets is conceived. Although a standard
representation of network flows is helpful, themain drawback
is the manufacturer lock-in effect as Cisco develops NetFlow.
Nonetheless, the authors in a different work [15] compared
the NetFlow-based set of features and the set created with
the CICFlowMeter tool across three network datasets. The
best results in terms of accuracy were obtained with NetFlow.
On the other hand, licensed tools such as nProbe are required
to format the raw network traffic captures (pcap files) into
NetFlow format, which might represent a constraint.

In contrast to considering network flows, Holland et al. [6]
have developed a standard packet representation designated
as nPrint. Raw network packets are transformed into an inher-
ently normalized, binary representation while the underlying
semantics of each packet is preserved. Authors demonstrate
that a standard format of packets simplifies the integration of
network traffic analysis tasks with state-of-the-art automated
ML pipelines (AutoML). Although live packet capture makes
it possible to identify the root cause of network problems,
the main drawback of this approach is the large data storage
capacity required. On the other hand, packet capture makes it
difficult to identify long-term historical patterns and network
trends, which is more feasible with flow-based approaches.
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Regarding using packets or flows to produce feature rep-
resentations of network traffic for machine learning func-
tioning, Bronzino et al. [16] highlight the need to explore
different representations to find the appropriate operating
point of a given ML model. In this light, the authors propose
a traffic refinery that performs passive traffic monitoring and
in-network feature transformations to provide different net-
work traffic feature representations. The tool allows defining
a service class and the corresponding features to be collected.
The system processes the flows that belong to a given ser-
vice class and performs transformations such as aggregation
or sampling to create the data representation of the class.
According to the authors, the traffic refinery system includes
default service classes and features, but user-defined traf-
fic representations are also supported. Nonetheless, defining
additional service classes may be challenging since functions
in charge of updating the flow state metrics and aggregating
the collected features must be coded. On the other hand,
although a framework to define the set of features of interest
contributes to encouraging the use of ML in the networking
community, the standardization of network datasets is con-
strained as the researcher or practitioner criterion drives the
dataset creation process.

NetML [4] represents an interesting initiative towards the
provision of standard network datasets. To this end, the
authors have compiled datasets for malware detection and
application categorization. These datasets have been released
as an open challenge that serves as common ground for exper-
imenting and benchmarking ML-based approaches. NetML
provides two curated datasets for malware detection. The first
one is created using the raw traffic data from Stratosphere
IPS. The second one is based on the raw traffic capture files
of the CICIDS2017 dataset. The raw traffic capture files of
the ISCXVPN2016 dataset are used to create a curated ver-
sion for traffic classification. In order to extract the features
from the raw captures, the Intel accelerated feature extraction
library is used. The tool provides features regardingmetadata,
TLS, DNS, and HTTP. Curated datasets are intended for flow
classification tasks with different granularity. For instance,
the top-level classifies traffic flows as benign or malware.
The mid-level identifies applications such as Facebook or
skype. Finally, the fine-grained level identifies specific types
of malware such as portScan and application traffic such
as skype audio. Although NetML aims to provide a com-
mon dataset for the research community, the code required
to curate different datasets is not included in the GitHub
repository. Thus, extending the provided baseline might be
cumbersome.

Sharafaldin et al. [17] have developed an IDS dataset,
designated as CICIDS2017, in accordance with the cri-
teria for a comprehensive and valid IDS dataset proposed
by Gharib et al. [18]. Besides, the dataset includes common
updated attacks such as DoS, DDoS, Brute Force, XSS, SQL
Injection, Infiltration, Port Scan, and Botnet. In order to
obtain the dataset, the network traffic features are extracted

from several pcap files using the flow-based feature extrac-
tor CICFlowMeter. Considering that 80 features can be
extracted, the best feature set for detecting each attack is
determined through the RandomForestRegressor algorithm.
The main drawback of proposals based on feature extraction
tools such as NetFlow or CICFlowMeter is the lack of flexi-
bility in determining the set of features of interest. Although
the extraction tools attempt to provide a common set of
features, certain ML-based solutions might require features
not provided by the tool.

In general, the revision of state of the art reveals that most
proposals are focused on proposing a standard feature set
or providing a framework to automate the feature extraction
process. These efforts significantly contribute toward stan-
dard datasets that boost the adoption of machine learning
techniques in networks. However, at this point, it is necessary
to perform an in-depth analysis of the current open datasets
to determine features in common. In addition, exploring the
different latent spaces that could be obtained from an original
dimension results interesting to determine the latent space
where datasets converge. This standard latent space could
help to further understand the impact of different features
in the performance of the ML models, as well as provide a
complementary interpretation of what a standard features set
might be.

III. STANDARD LATENT SPACE DIMENSION
Considering that the success of applying machine learning
techniques in networks depends largely on the available
datasets, analyzing public datasets in pursuing common pat-
terns or similarities represents a step towards standardization.
This section presents the proposal of a standard dimension for
the latent space. To this end, a dimensionality reduction pro-
cess is performed with different network datasets to identify
similar behavioral patterns in the resulting latent spaces.

A. PROBLEM DESCRIPTION
The starting point assumes that network datasets have certain
similarities and, therefore, a projection to a lower subspace
where all datasets converge can be determined. It is essential
to mention that different latent spaces for each dataset are
obtained. A common latent space for all datasets is not deter-
mined. Exploring different latent spaces aims to determine
a numerical value related to the number of dimensions or
features. Fig. 2 shows the workflow defined for determining
the point where the latent spaces of the different datasets
converge. The following sections describe the steps of the
workflow in detail.

B. DATASETS SELECTION
The revision of related works allowed identifying the widely
used datasets in networking. It is worth mentioning that
most of the datasets are focused on security topics, and the
Canadian Institute for Cybersecurity1 provides most of them.

1https://www.unb.ca/cic/datasets/index.html
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FIGURE 2. Workflow proposal to determine the standard latent space dimension. The objective is to observe the
behavior of the autoencoder loss as a function of the latent space dimension in different datasets to identify similar
patterns.

With the aim of performing a comprehensive analysis, five
datasets for network intrusion detection systems have been
considered which are designated as: CIC-IDS2017,2 UNSW-
NB15,3 NF-UNSW-NB15-v2,4 CSE-CIC-IDS2018,5 and
NSL-KDD.6 Regarding the diversity of attacks, Hnamte
and Hussain [19] performed an extensive survey that listed
37 datasets that could be used for shallow or deep learning-
based intrusion detection systems. This survey aids in making
choices based on the characteristics and limitations of a given
dataset.

Datasets are structured as network flows. The traffic flows
are labeled to differentiate attacks from benign traffic and
recognize a subtype of attack. Table 1 summarizes the charac-
teristics of the datasets under analysis in terms of the number
of instances (labeled flows), number of features, number of
attack categories, and the proportion of attacks with respect
to the total number of instances. Datasets are provided in
different formats, such as raw pcap files or more readable
CSV files. The CSV files are used because the present work
focuses on exploring the different projections into a lower-
dimensional subspace instead of creating a new set of fea-
tures. For a further revision of the structure of each dataset,
the reader could visit the URLs listed above as footnotes.

C. DATA PREPROCESSING
According to Kotsiantis et al. [20], ML algorithms may pro-
duce less accurate and less understandable results if the

2https://www.unb.ca/cic/datasets/ids-2017.html
3https://research.unsw.edu.au/projects/unsw-nb15-dataset
4https://staff.itee.uq.edu.au/marius/NIDS_datasets/#RA6
5https://www.unb.ca/cic/datasets/ids-2018.html
6https://www.unb.ca/cic/datasets/nsl.html

quality of data is not as required. In this regard, the data pre-
processing step helps solve several of problems such as noisy
data, redundancy data, and missing values, among others.
The authors mention that data cleaning, normalization, trans-
formation, feature extraction, and selection represent some
techniques considered in the preprocessing step. Nonetheless,
there is not a single pipeline that meets all the requirements.
The techniques used in this work are detailed next to obtain
the final training set used within the dimensionality reduction
step and the subsequent validation.

• Dataset cleaning: This step consists of removing flow
instances that contain features with a NaN or Inf values.

• Feature selection: Features related to ports, IP addresses,
and timestamp information are removed. As stated by
Sarhan et al. [5], this selection is required to avoid intro-
ducing circumstantial flow bias into the model.

• Feature Transformation: This step involves feature
encoding and normalization. Categorical features are
mapped to numerical values using label encoding. Then,
all features are normalized using the min-max method to
have the same scale within the autoencoder.

• Output representation: Regarding the output labels,
0 and 1 are used to differentiate the benign traffic from
attack categories when implementing binary classifiers.
On the other hand, as stated by Bhattacharya et al. [21],
categorical data, such as types of attacks, must be con-
verted into a suitable format for ML algorithms. Thus,
when implementing multiclass classification models,
the attack category labels are mapped to numerical val-
ues using one-hot encoding.

After data preprocessing, the resulting datasets consist
exclusively of numerical input features normalized between
0 and 1, and the corresponding label encoded outputs.
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TABLE 1. Datasets characteristics before data preprocessing.

D. DIMENSIONALITY REDUCTION
After providing the datasets with a suitable format, the next
step consists of obtaining a set of reduced versions from the
original dimensions. This set will be used in a subsequent
step for an in-depth analysis. The dimensionality reduction
is performed using the autoencoder architecture depicted in
Fig. 1. The architecture consists of an input feature layer,
a dimensionality reduction layer, and a feature reconstruction
layer.

In order to implement the neural networks that support
the autoencoder, the open-source library Keras7 is used. The
input layer is in charge of receiving the features vector.
Both the reduction and reconstruction layers are fully con-
nected dense layers. The reduction layer applies a ReLU
activation function to introduce the desired non-linearity into
the dimensionality reduction technique. The reconstruction
layer applies a sigmoid activation function to map the out-
puts (predicted inputs) between 0 and 1, which is needed
to compare those outputs to the original normalized inputs.
Adam is selected as the optimizer using the default Keras
hyperparameter configuration with an initial learning rate of
1 × 10−3. Regarding the loss function, binary cross-entropy
is used as follows:

−
1
N

N∑
i

M∑
j

xij log
(
x̂ij

)
(4)

whereN is the batch size,M is the original size of the dataset,
xij is the value of the min-max normalized feature, and x̂ij is
the prediction of the feature reconstructed by the decoder.

The number of neurons allocated to the reduction layer of
an autoencoder corresponds to the latent space dimension in
which the original features are projected. Since the dimen-
sionality reduction process is intended to provide a wide set
of latent spaces for subsequent analysis, it is required to use as
few dimensions as possible while keepingmost of the original
dataset information. Finding the optimal number of neurons
is not as simple as choosing the best performing model after
conducting a grid search in the latent space dimension. The
reasoning behind this statement is that increasing the number
of neurons up to the total number of original features will
constantly improve the performance of the model due to the
nature of an autoencoder.

In this light, the dimensionality reduction process must
focus on achieving a balance between information loss and

7https://keras.io/

generalization power while exploring the latent spaces that
can be obtained from the original size. A grid search in the
latent space is mandatory, preserving the bottleneck principle
of autoencoders. This approach obtains a family of autoen-
coders, all trained with the original feature set. However,
each is configured with a specific number of neurons in the
middle layer to obtain a specific latent space. The training
process runs for 3 epochs using a batch size of 64. A relatively
small batch size is used, considering the small proportion
of attack flows available in the datasets. On the other hand,
considering the large number of instances on the datasets and
the small batch size used, 3 epochs are sufficient to allow the
autoencoder loss function to converge.

E. AUTOENCODER LOSS PLOTTING
This step shows the behavior of the autoencoder loss as
a function of the latent space dimension. To this end, the
number of neurons of the hidden layer is modified from
1 to the original size of the dataset being analyzed. Then,
for each resulting latent space dimension, the autoencoder
loss is measured. In order to provide a reliable measure of
the autoencoder loss in the presence of computational ran-
dom noise, confidence intervals of 95% are calculated by
repeating the measuring process 10 times. This confidence
interval represents the certainty about the difference between
the obtained measure at a fixed confidence level [22].

The red dots of Fig. 3 represent the sample mean of the
autoencoder loss for different dimensions of the latent space.
The behavioral pattern in the figure is present in all datasets
and represents an expected result since the reconstruction
loss tends to be minimal as the dimension increases to the
original size. Moreover, it is important to note that mini-
mal increments in the dimension size result in significant
improvements in the loss below a certain threshold.

F. CURVE FITTING
The plot of the autoencoder loss allows understanding the
behavior concerning different dimensions of the latent space.
As mentioned before, there is a threshold where improve-
ments in the loss start to be negligible. In order to determine
this threshold, a mathematical expression for the loss that
allows applying calculus principles is required. In this light,
a curve fitting process is applied by using the Curve Fitting
toolbox of Matlab. The best results are obtained with the
power function in the form of f (x) = ax−b

+ c. The resulting
fitted curves for all datasets are depicted in Fig. 3 in orange
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FIGURE 3. Behavior of the autoencoder loss as a function of the latent space dimension for five network intrusion detection systems datasets. The
resulting plots show how diminishing returns start to occur in the same interval (8th - 10th dimension) for all datasets.

color. The values for the coefficients a, b and c are also
included.

G. LATENT SPACE ANALYSIS
This process aims to observe the behavior of the result-
ing latent spaces to determine whether a point of conver-
gence exists. This point of convergence is represented by the
threshold on the latent space dimension where diminishing
returns in the autoencoder loss start to occur as the dimension
increases. Above this threshold, increasing the latent space
dimension is pointless due to the lack of significant improve-
ments in the loss. As observed in Fig. 3, this threshold is
approximately at the ninth dimension for the CIC-IDS-2017
dataset. From the plots of the remaining datasets, it is possible
to notice that the threshold is also around the ninth and tenth
dimensions. In order to analytically determine the threshold
for each dataset, the second derivative criterion is used.

The first derivative represents the instantaneous rate of
change of the dependent variable with respect to the indepen-
dent variable [23]. Thus, the growth, constancy, or decrease
of the dependent variable might be analyzed in detail. The

second derivative is not intended to measure the growth or
decrease of the original function but rather the growth or
decrease rate. In this light, the second derivative is used to
observe how fast or slow the autoencoder loss decreases as
the latent space dimension grows. Equation 5 represents the
second derivative of the fitted curves of Fig. 3.

f ′′(x) =
ab(b+ 1)
xb+2 (5)

where x represent the dimension of the latent space; a and b
are the coefficients of the fitted curves.

The second derivative values are calculated by replac-
ing the variable x in equation 5 with the corresponding
latent space dimensions (from 1 to the original size of the
dataset). For instance, 77 values are calculated for the sec-
ond derivative of the CSE-CIC-IDS2018 dataset fitted curve.
These results show that at the beginning of the interval
(dimension = 1 and 2), a fast or significant decrease rate
of the loss with respect to the dimension occurs. However,
from the tenth dimension, the decrease rate of the loss expe-
riences a significant slowdown and, therefore, can be consid-
ered negligible. Thus, the ninth dimension is determined as
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FIGURE 4. Obtaining the reduced versions of the datasets. (a) The encoder provides the reduced
versions as the latent space is configured with a fixed dimension of 10. (b) The reduced versions are
composed of 10 features that result from a non-linear combination of the variable set of features
performed by the encoder.

the threshold. Dimensions that exceed this threshold do not
improve the autoencoder loss.

The thresholds determined for all datasets are included in
Fig. 3. Theminimum threshold (dimension= 8) was obtained
for NF-UNSW-NB15-v2 dataset, while the maximum thresh-
old (dimension = 10) was obtained for NSL-KDD dataset.
These findings are significant as they allow identifying an
interval where the dimension of the latent spaces converges.
The existence of a convergence point was the starting hypoth-
esis which has been supported by these experiments. Based
on these results, the tenth dimension is selected as the stan-
dard value for the latent space.

IV. EXPERIMENTAL VALIDATION
The exploration of different datasets representations to a
lower subspace allowed establishing a dimension where
all datasets converge and, therefore, it becomes standard.
In order to validate this finding, neural networks and extra
trees classification models are trained with the reduced and
non-reduced versions of the datasets. Extra trees, a more
randomized kind of random forest, are used due to the consid-
erable speed-up, and therefore CPU efficiency, compared to
random forests which can be beneficial when working with
large datasets in terms of both examples and features [24].
On the other hand, neural networks are the preferred choice
to obtain a better prediction accuracy as multiple nonlinear
measures in estimating the output are introduced. In addition,

neural networks have great architectural flexibility to solve
problems across multiple domains, leveraging structured and
unstructured data [25].

To obtain the reduced versions, the dimensionality reduc-
tion process is performed again with all the original datasets
considering a standard latent space dimension. As Fig. 4(a)
depicts, the encoder receives different datasets with variable
set of features and provides a fixed latent space composed of
10 features per dataset (d ′

= 10). As mentioned in section II,
the encoder performs a feature extraction and therefore a new
set of features or latent space is obtained. Fig. 4 (b) depicts the
graphical interpretation of the latent space. Note that although
a dimensionality reduction is performed, the resulting dataset
preserves the n instances from the original dataset.

After obtaining all the latent spaces, it is required to eval-
uate the performance of the ML models. Fig. 5 depicts the
pipeline defined for this purpose. In order to differentiate the
datasets, the reduced version is colored in red and the non-
reduced version is colored in blue. In general, binary clas-
sifiers differentiate between benign and attack traffic, while
multiclass classifiers identify the subtype of attack. The accu-
racy and F1-score classification metrics are used to evaluate
the results of the defined ML pipeline. Accuracy measures
the percentage of correctly classified instances, as presented
in Eq. 6 where TP = True Positives, TN = True Negatives,
FP= False Positives, and FN= False Negatives. Meanwhile,
the F1-score is a harmonic mean between precision and recall
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FIGURE 5. Pipeline proposal for the standard latent space dimension validation. LS is used to denote Latent Space. The
pipeline is required to compare the performance of ML models when the reduced and non-reduced versions of
datasets are used. Besides, it is required to determine if the difference in performance is significant.

(Eq. 9), which provides an adequate assessment of the model
when the dataset has an imbalance between classes [24].

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(6)

Precision =
TP

TP+ FP
(7)

Recall =
TP

TP+ FN
(8)

F1 − score =
2 ∗ (Precision ∗ Recall)
(Precision+ Recall)

(9)

The evaluation process is complemented with the
Wilcoxon statistical test on the accuracy metric. It is impor-
tant to note that the training process with the non-reduced
versions of the datasets aims to define a baseline of classifica-
tion metrics for both binary and multiclass classifiers. Thus,
the standard latent space dimension proposal is validated
by comparing the classification metrics obtained with the
reduced versions of the datasets against the baseline metrics.
In this light, the comparison of the baseline metrics presented
in this work against the state-of-the-art classification metrics
is not required.

Both neural network models are implemented by using
Keras. The binary neural network consists of an input layer,
an 8-neuron dense hidden layer with ReLU activation, and a
single-neuron output layer. The output layer applies sigmoid
activation to map the outputs between 0 and 1, a value that
can be rounded off and used to predict benign or attack
flows. The model is optimized with mean square loss using
the Adam optimizer. Regarding the multiclass classifier, the
neural network implementation consists of an input layer, a
15-neuron hidden layer with ReLU activation, and an output
layer with a number of neurons equal to the number of
categories represented on the dataset. The output layer applies
Softmax activation to transform the numerical values into
estimated probabilities corresponding to each attack category.

The model is optimized with categorical cross-entropy loss
using the Adam optimizer. Both neural networks are trained
for 10 epochs using a batch size of 32.

Extra trees classifiers are implemented by using the scikit-
learn8 open-source library. The binary extra trees model
uses 25 estimators, and the multiclass extra trees classifier
uses 50 estimators. Both models consider the square root of
the number of features when a split is performed. Besides,
entropy is used as the optimization metric.

ML models are trained separately with the original feature
set and with the latent space that has a standard dimension.
After the training process, the classifiers are evaluated with
the test set. The comparison between binary classifiers is per-
formed with the accuracy and F1-score classification metrics.
On the other hand, for the multiclass models, the accuracy per
class is considered. Then, a weighted average is calculated
with respect to the proportion of attacks.

A. RESULTS AND DISCUSSION
The training and testing processes of the considered ML
models were conducted for 10 iterations using a Monte
Carlo cross-validation. For each iteration, a random sample
of 75% of the dataset is considered for the training set,
while the remaining 25% is considered for the testing set.
10-fold cross-validation was considered; however, due to the
small proportion of attacks on the dataset, the assignment
of only 10% of the total instances to the testing set would
not be considered a representative sample of the dataset.
A Monte Carlo cross-validation is selected because it has
proved to be asymptotically consistent, especially when using
large datasets [26]. The classification metrics results were
averaged. Table 2 shows the mean accuracy of classifiers
trained with the original and latent space inputs. F1-score is
also shown for binary classifiers. As noted from the table,

8https://scikit-learn.org/stable/
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TABLE 2. Classification metrics obtained with the reduced and non-reduced versions of the datasets under analysis.

FIGURE 6. Results of the Wilcoxon equivalence test. The NSL-KDD dataset
presents the highest difference value (0.0235). However, this value is
practically negligible and, therefore, the use of a fixed ten-dimensional
latent space provides results as good as the full-dimensional datasets.

multiclass and binary classifiers trained with the reduced
versions (LS inputs) of the five network datasets performed
as well as those models trained with the non-reduced ver-
sions. These remarkable results validate the use of a standard
latent space dimension. In summary, feeding an ML model
with a fixed ten-dimensional network dataset (a reduced ver-
sion) allows to successfully accomplish the classification task
regardless of the original number of dimensions or features of
the dataset.

Considering that a dimensionality reduction technique is
employed, losing a certain percentage of information is

unavoidable as the original dataset structure is projected into
a lower subspace. Consequently, the mean accuracy achieved
by a ML model trained with the non-reduced versions of
the dataset should be as good or better than the ML model
trained with the reduced version. However, reducing the
training dataset size significantly decreases the training time,
computational costs, and memory requirements. To deter-
mine whether the classification results between the reduced
and non-reduced versions of the datasets have a significant
effect on the classification accuracy, a statistical analysis
must be performed. In this work, the effectiveness of using
a standard latent space dimension is validated by conduct-
ing a Wilcoxon signed-rank equivalence test on the accu-
racy results of both cases (reduced and non-reduced). The
Wilcoxon test is required to verify that the minimal difference
in accuracy is not attributed to randomness. According to
Demšar, a Wilcoxon test is appropriate for comparing ML
models because it is non-parametric, which means that a
normal distribution is not assumed [27].

For the equivalence test, the accuracy difference between
the results obtained by the implemented ML classifiers is
designated as delta (1). Thus, the smallest value 1 such
that the statistical test would hold up to a confidence level
(α) of 0.05 is calculated. The results are summarized in
Fig. 6. As can be noted, there is statistical evidence that the
accuracy of all classification models is reduced by less than
0.0235 when a standard latent space dimension is used for
the training process. Furthermore, in most cases, the accu-
racy difference does not exceed 0.005. A virtually negligi-
ble difference in accuracy is a significant outcome because
researchers can use only the latent space to perform experi-
ments with certainty that the performance of ML models will
not be constrained.
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In comparison with the non-reduced versions, the obtained
latent spaces present a significant reduction in size. For
instance, the original version of UNSW-NB15 is 775 MB
while the corresponding latent space is 186.5 MB. A size
reduction of 75.94% is achieved, which decreases the train-
ing time without worsening the previously obtained baseline
classification metrics. Similarly in the CSE-CIC-IDS2018
dataset, a 70.72% reduction is achieved from 352.4 MB to
103.2 MB. The latent spaces with a standard dimension of
10 of the five datasets used in this work are published in a
GitHub repository9 along with the code of the experiments
developed to validate the presented proposal. Published latent
spaces are intended to provide the network research commu-
nity with reduced standard versions of datasets to encourage
the use of ML. Therefore, different ML pipelines could be
tested with different fixed-dimensional latent spaces.

V. CONCLUSION AND FUTURE WORKS
Compared with other knowledge domains, such as computer
vision, the networking domain is experiencing a slow adop-
tion of machine learning techniques to improve processes
related to design, management, deployment, and performance
tuning, among others. The main reason behind this claim is
the lack of appropriate resources for the network research
community. Thus, network datasets receive special attention
as they represent the fundamental part that enables applying
ML techniques. In this context, the proposal of a standard
set of features composed of those most relevant to the clas-
sification process represents an important contribution to the
provision of appropriate resources that guarantee the promo-
tion of ML usage. The classical application of dimensional-
ity reduction involves eliminating redundancies or irrelevant
features to improve the learning process. However, a dif-
ferent approach has been proposed in which dimensionality
reduction is used to achieve standardization across security
datasets. Standardization is achieved by identifying the com-
monalities between the datasets. In this study, we identified
the dimension of the latent space where different datasets
converge. Therefore, this convergence dimension can be con-
sidered a standard.

As mentioned in the background section, the relevant
features might be determined by applying a dimensionality
reduction process, either by means of feature extraction or
feature selection. This work has presented a workflow to
explore the different latent spaces or reduced versions that
can be obtained from a full-dimensional dataset. To this end,
the encoder part of an autoencoder is configured to per-
form a feature extraction operation. A comprehensive anal-
ysis of five datasets for network intrusion systems is carried
out. The selected datasets range from 148,517 to 3,056,488
instances, 41 to 78 features, and 10 to 40 attack categories.
Hence, a diversity of datasets in terms of characteristics and
sizes is guaranteed. The experimental results have allowed

9https://github.com/grimloc-aduque/Standard-Latent-Space-Dimension-
For-Network-Intrusion-Detection-Systems-Datasets

determining a point of convergence of the latent spaces,
which can be considered a standard dimension. To validate
this finding, Artificial Neural Networks and Extra Trees were
trained and tested with the reduced and non-reduced versions
of the datasets. The results shown that ML models obtained
practically the same accuracy with a minimal difference.
In a further step, a Wilcoxon statistical test was performed
to quantify such difference in terms of mean accuracy. The
test provided a difference of less than 0.0235, which can be
considered negligible and, therefore, the use of a fixed ten-
dimensional latent space is supported.

Although determining a standard latent space dimension
represents an important step towards standardization, the lack
of a single dataset with a standard dimension that could
be applied to different ML-based solutions still persists.
To address this concern, the five obtained latent spaces should
be further processed to determine a unified standard latent
space that could be distributed to the research community.
On the other hand, the presented work might be extended
by applying the feature selection as dimensionality reduction
technique. In this light, an identification of the most rele-
vant features on the five datasets under analysis should be
performed. Then, with the reduced versions of the datasets,
a search should be conducted to identify common features or
intersect regions. The resulting set of features could be con-
sidered standard. This extended experimental scenario would
allow determining which dimensionality reduction technique
provides the best results in terms of performance metrics.

Regarding feature extraction, advanced techniques such
as stacked autoencoders may be explored to further ana-
lyze the behavior of latent-space convergence when datasets
present complex relationships. A comparison between the
results provided by encoders that implement a single hid-
den layer and multiple hidden layers would enrich the dis-
cussion on a standard latent space dimension for network
datasets.

In addition, considering the significant advances that arti-
ficial intelligence has experienced recently, the research com-
munity has made efforts to release new network datasets that
must be used to analyze whether this standard latent-space
dimension is also identified on these new datasets. Similarly,
further analysis will be required with datasets of a single
attack class, such asDistributedDenial-of-Service, to observe
how the latent-space dimension changes in comparison with
datasets composed of several attack classes.
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