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ABSTRACT The primary NDTmethod for welding defects is the image-based detection. Currently, the best
performance for image-based detection is based on the transformer model. However, with its high accuracy,
it has many limitations, such as large model parameters, large data sample requirements, and expensive
computer resources. This model has a weaker ability to capture local features compared with global features.
In this study, an improved and optimized welding defect detection and identification framework named Fast
Multi-Path Vision transformer (FMPVit) is proposed based on the transformer model. This model uses a
multilayer parallel architecture and enhances the local information capture ability of the model through
advanced multiscale convolution feature aggregation and the addition of a new local convolution module.
Finally, a validation test is carried out using an open dataset of weld seams. The model is proven to exhibit
an evident performance improvement over the mainstream model baseline.

INDEX TERMS Deep learning, weld detection classification, line laser, one-dimensional sequential time
series.

I. INTRODUCTION
Welding inspection or inspection of the quality of welding
products is used to ensure the integrity, reliability, safety,
and availability of welding product structures [1]. It is
widely used in the aerospace, aviation, automobile, machin-
ery, shipbuilding, and other industries. Although industrial
production has matured, improper manual operation, envi-
ronmental instability, and other problems may still lead to
various welding defects in industrial products. Commonweld
defect types in steel plates are shown in Figure 1, including
burr, concave, porous, and no defects. Welding defect detec-
tion technology can improve the production efficiency of the
manufacturing industry, accelerate the production cycle of
products, and reduce labor and material costs [2].

Conventional welding inspection methods, which are car-
ried out by experienced professionals with the naked eye
and professional tools, not only lead to low inspection
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efficiency but also have disadvantages such as misjudgment,
sparse sampling, visual fatigue, and difficulty in ensuring
the quality of inspection results. Modern welding testing
methods can be divided into destructive testing (DT) and non-
destructive testing (NDT) methods, depending on whether
the test method is destructive. NDT is highly efficient and
safe; it is the current mainstream welding defect detection
method [3]. In welding NDT, most methods use images as
the input, and the convolutional neural networks (CNNs) are
employed.

Various models of the CNN stand out in ImageNet compe-
titions and have high efficiency for image recognition [4]. The
rapid development of CNNs in the field of computer vision
has also led to the growth of the NDT of welding defects.
AlexNet, ResNet, and other CNNs have been widely used
in the field of NDT of welding defects and have achieved
good recognition and detection results [5]. Although the CNN
has the advantages of high generalization, fast recognition
efficiency, and sensitivity to local features, their ability to
capture global features is relatively weak [6].
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FIGURE 1. Common types of weld defects: (a) burr, (b) concave, (c)
porosity, and (d) no defects. The left is an RGB image and right is line
laser image.

Transformer model-based attention mechanisms have con-
tinuously emerged in the field of natural language processing
and have developed into a recognized high-performance
model structure [7]. With the first application of the vision
transformer in the field of computer vision images, the
model has become a competitor to CNNs [8]. It not only
outperforms many popular CNN models in terms of com-
putational efficiency and accuracy but also asserts huge
development potential in the future. The transformer over-
comes the limitation that the RNNmodel cannot be calculated
in parallel. Compared with a CNN, the number of operations
required to calculate the correlation between two locations
does not increase with distance. However, the transformer
can also focus more on global features than CNNs can [9].
Therefore, Multi-Path Vision transformer (MPVit) was pro-
posed, which combines the advantages of convolution and a
transformer [44].

In the industrial welding process, the scale of weld defects
is relatively small compared with that of other defects, which
results in fewer features in the image, making it more difficult
for the model to capture such features. When identifying
weld defects that are not evident, the effect of relying only
on the CNN model is sometimes poor, and the advantage in
this respect is not evident. In contrast to ordinary images,
weld images are generally more regular and single, with
more concentrated areas and fewer features. Although exist-
ing models have a higher recognition efficiency for ordinary
images, their effect on weld images is unsatisfactory. The
Multi-Path Vision transformer (MPVit) model combines the
comprehensive advantages of the CNN and transformer,
which are excessively redundant and still have deficiencies
in small-scale target recognition. However, this model is too
complex for weld defect detection, difficult to train, and
requires a large number of samples. Therefore, we propose

a new method called Fast Multi-Path Vision transformer
(FMPVit) for welding defect detection, which is based on the
aggregation optimization of local and multi-scale features.
The public weld dataset and popular public datasets were
compared with the popular neural network model.

The key contributions of this paper are:
1. The proposed method can improve the efficiency

of small-scale target identification, such as weld defects.
It achieves higher recognition accuracy and lower training
costs by reducing the complexity of the model.

2. A fast multiscale convolution feature-priority aggre-
gation module was proposed. The module reduces the
redundancy of the three transform structures in the stacking
stage of the MPVit model and significantly reduces the com-
plexity of the original model.

3. We introduce local-to-global feature interaction (LGF)
to take advantage of both the local connectivity of the convo-
lutions and global context of the transformer.

In addition, the latest published weld dataset JPEGWD
was used in the experiment, which includes 12000 RGB
weld images of four different defect types. We also tested
our method using LSWD-MTF, which is a two-dimensional
time-series image dataset of LSWD encoded by the Markov
Transition Field (MTF) method.

II. RELATED WORK
In welding image classification, deep learning methods have
performed better than traditional machine learning methods.
Many researchers have proposed NDT methods for welding
defects based on deep-learning CNN. For example, Je-Kang
et al. proposed a CNN-based method that uses a single RGB
camera to examine welding defects on the transmission sur-
face of an engine. This method consisted of two steps. In the
first step, to extract the welding area from the captured image,
a CNN-basedmethod is used to detect the center of the engine
transmission in the image. In the second stage, the extracted
area is identified by another CNN as having either defects
or no defects [11]. Zhang et al. designed an 11-layer CNN
classification model based on weld images to identify weld
penetration defects. The CNN model makes full use of arcs
and combines them in various ways to form complementary
features. The test results showed that the designed CNN
model performed better than previous models [12]. Dong
et al. proposed a multitask deep CNN for defect classifi-
cation; they built a stack of encoder–decoder autoencoders
to learn feature representations from ordinary images. For
defect detection, this method can obtain results nearly as good
as those of a supervised learning method without any data
annotation [13]. Chen et al. focused on establishing an end-
to-end automatic detection model for X-ray welding defects
based on a deep learning algorithm to improve the accuracy
and efficiency of detection. The characteristic information of
welding defects is considered in their study, and the method
of fast region-based CNNs (R-CNNs) is improved. A residual
neural network (ResNet) was used to improve feature extrac-
tion ability [14].
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The attention mechanism-based transformer model has
continuously emerged in the field of natural language pro-
cessing and developed into a recognized high-performance
model structure [15]. With the first application of vision
transformer in the field of computer vision images, this
model has become a competitor to CNN [16]; it not
only outperforms many popular CNN models in terms
of computational efficiency and accuracy but also has a
huge potential for development in the future. The trans-
former overcomes the limitation that the RNN model
cannot be calculated in parallel. Compared with a CNN,
the number of operations required to calculate the cor-
relation between two locations does not increase with
distance [17].

As a newly emerging deep-learning model, the transformer
is no less advanced than the CNN model despite its short
history, and its performance even exceeds that of conventional
mainstream CNNs. The transformer model first gained a
dominant position in the field of natural language processing
owing to its high-performance recognition effect; it gradually
rose in the field of computer vision (CV) once it became a
strong competitor of CNNs. Some researchers have studied
transformers in the field of NDT of welding defects. For
example, Wang et al. [18] proposed a deep learning method
based on a classic vision transformer to realize welding pen-
etration recognition, constructed an image dataset composed
of four different categories, and trained it from scratch to
explore its feasibility in welding penetration recognition.
Finally, ImageNet was used for pretraining to solve the
problems of complex models and insufficient data, and the
verification accuracy was improved by 4.45%. To explore
the extensibility of the transformer, Gao et al. [19] proposed
an improved structure called the variant swin transformer,
based on the applicability of the swin transformer (SwinT).
A new window shift scheme was designed to further enhance
feature conversion between windows and increase the capa-
bility of the framework for defect detection. Considering
the built private dataset, the overall framework, named the
Cas-VSwin transformer, is superior to most existing models.
Zhang et al. [20] proposed a novel network structure called
the DRCDCT-Net. It was designed as a dual routing structure
comprising a characteristic attention deficit diagnosis module
(FAD) and cross-domain joint learning deficiency diagnosis
module (CJLD). With the transformer as the core design, the
FAD is primarily responsible for handling defect classifica-
tion tasks with sufficient samples and relieving the problem
of interdependence among features that are difficult for the
CNN to learn. With the designed cross-domain joint learning
network as the core, CJLD deals with the task of defect
classification with extremely scarce samples and decou-
pling image domain features. The model achieved accuracy
of 99.7 ± 0.2% and 90.0 ± 0.6% in the Northeastern
University (NEU)-CLS and SEVERSTAL public datasets,
respectively. Although the overall performance of the trans-
former method was better than that of the CNNmethod, some
problems persisted.

Other NDT methods include magnetic particle testing,
eddy current testing, magneto-optical imaging testing, ultra-
sonic testing, infrared testing, penetrant testing, and phased
array ultrasonic testing [10]. Some NDT methods use sig-
nals for direct detection; however, some researchers also use
two-dimensional images for detection. Because the dimen-
sions of the one-dimensional signal description features are
low and description of some defects is unclear, the detec-
tion performance is poor. Compared with one-dimensional
signals, two-dimensional image detection is more stable,
which can be better applied to a depth learning model,
taking full advantage of its existing benefits. For example,
some researchers [36] coded the one-dimensional structured
light centerline of the weld surface into the correspond-
ing two-dimensional time series image, which realized the
dimensions of the weld defect and improved the depth learn-
ing model for the two-dimensional image.

III. METHODS
The detection of weld defects is a small-sample detection, and
the problem of excessive redundancy exists in the transformer
model, which leads to difficulty in training the model and a
poor effect; moreover, the solution of data enhancement is
too cumbersome. Therefore, in the field of welding defect
detection, a lightweight model that combines the advantages
of CNN and transformers and realizes small-sample training
is necessary.

A. ARCHITECTURE
Figure 2 shows the FMPViT architecture. MPVit has an
extended multi-path, based on ViT and XCiT [21], as well as
an added convolutionmodule. Although theMPVit model has
a significantly improved detection performance and accuracy,
it has become more complex and requires more training
resources. For a small weld-defect detection dataset, the
MPVit model is too large and difficult to train. To solve these
problems, we use a variety of transformer architectures for
reference and are committed to building a single transformer
path-stacking framework combined with convolution mod-
ules [22], [23]. The goal of building the FMPVit model is
to have a faster reasoning speed and lower computing cost,
while achieving a higher performance than MPVit. As shown
in Figure 2, we construct a four-stage feature hierarchy to
generate feature maps at different scales. The characteris-
tics of the MPVit model often require more computation;
therefore, we adopted a series of measures to reduce the com-
plexity of the MPVit model. To reduce the linear complexity
of the model, only a single transformer structure is used for
each stacking stage based on the MPVit model. In addition,
a transformer encoder that decompositions self-attention in
catCoaT [24] is used, and the convolutional stem block in
LeViT [25] is used to improve the present low-level repre-
sentation to prevent the loss of significant information.

As shown in Figure 3, we propose a new NDT frame-
work for welding defects, i.e., FMPVit, based on the MPVit
model, which has a faster training speed and higher accuracy
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FIGURE 2. Fast multi-path vision transformer (FMPViT) architecture.

while considering local and multi-scale features. In FMPVit,
a fast multistage transformer structure is constructed, and a
new 3 × 3 convolution is embedded to enhance the model’s
convolutional local feature capture ability. This solves the
problem of the transformer lacking local features compared
with the convolutional network. In addition, by aggregat-
ing the multiscale features of each stage into a transformer,
the excess transformer path structure of the original frame-
work was reduced, which significantly reduced the model
complexity and improved the overall model performance
efficiency. Notably, this is different from the existing vision
transformers.

The excessive complexity of the model is not desirable
in the field of NDT for weld defects. Because the sample
size of a welding dataset is usually small, data enhance-
ment is time-consuming and energy-intensive during the
training process, and transfer learning for small samples
makes the training process more complex. Overfitting and
unstable training often occur during the large-scale model
training. Therefore, it is necessary to reduce the path length
and complexity of the model. It is also important to reduce
the complexity of the model while considering its accuracy.
Based on the multistage transformer architecture design with
smaller complexity, we merged all redundant transformer
structures in the MPVit model and proposed a fast multiscale
patch embedding module.

B. FAST MULTI-SCALE PATCH EMBEDDING
To make better use of the fine-grained and coarse-grained
visual tokens, a convolution operation with overlapping
patches was used, similar to CNNs [26] and CvT [27].
By changing the size and filling amount of the convolu-
tion kernel, a same-size feature map with different feature
information can be obtained. As shown in Figure 2, visual
tokens of different sizes with the same sequence length can
be generated with patch sizes of 3 × 3, 5 × 5, and 7 × 7.
During implementation, because the continuous convolution
operations of the same channel and filter size enlarge the
receptive field (e.g., two 3 × 3 equal 5 × 5, and three
3 × 3 equal 7 × 7), the use of 3 × 3 convolution ker-
nel substitution requires fewer parameters, thereby reducing
complexity. We used three consecutive 3 × 3 convolutions
with the same channel size; the fill was 1 and step length was
s, where s was 2 when the spatial resolution was reduced; oth-
erwise, it was 1. Because MPViT has more embedding layers
owing to its multi-path structure, we reduce the parameters
and computation of the convolutional local feature overhead
by adopting 3 × 3 depthwise separable convolutions [28],
which consist of 3 × 3 depthwise convolution followed by
1 × 1 pointwise convolution in the embedding layers.
For fast multiscale patch embedding, we proposed a differ-

ent multiscale patch aggregation method. The polymerization
process is illustrated in Figure 4. In this process, the size of
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FIGURE 3. (a) Most advanced MPVIT models [44] use multi-scale patches and multi-path transformer encoders. (b) Our FMPViT uses multi-scale
patch embedding, each multi-path embedded patch using only one independent transformer encoder.

the output feature matrices of the three convolution kernels
(3 × 3, 5 × 5, and 7 × 7) was unified by padding to zero,
and the three output features were superimposed by matrix
addition. Finally, the superimposed features are input into a
single transformer module to realize the early aggregation of
the token, which can minimize the calculation amount of this
module while ensuring that the multi-path and multi-scale
convolution features are not lost.

Because the convolution results of different sized convolu-
tion kernels are different for different images and input of a
single transformer structure is generally the token of a single
image, it is necessary to unify the same size when merging
three different feature maps. The process of zero padding is
described in detail as follows.

We assume that, before padding, the input size is (H ,W ),
filter size is (FH ,Fw), output size is (OH ,Ow), padding is P,
and step length is S. The output size after padding is obtained
using Equations (1) and (2).

OH =
H + 2P− FH

S
+ 1 (1)

OW =
H + 2P− FW

S
+ 1 (2)

After the output matrices A, B, and C of the three different
paths (3 × 3, 5 × 5, and 7 × 7) were patched with zero to
unify their sizes, the final aggregate matrix D was obtained
by summing their matrices, as shown in Equation (3).

D = A+ B+ C (3)

Because FMPViT has more embedding layers owing to
its multi-path structure, a 3 × 3 deep separation convolution
and 1 × 1 point convolution are adopted to reduce the model
parameters and computational overhead. A 3 × 3 separable
convolution improves the efficiency of the model, whereas
a 1 × 1 point convolution reduces the dimensions, increases
the depth of the model, and improves its nonlinear expression
ability.

C. CONVOLUTION LOCAL FEATURE
As shown in Figure 5, to enable the model to effectively
capture local features, we added a new 3× 3 convolution ker-
nel to the local convolution module. Two 3 × 3 convolution

kernels are equivalent to a 5× 5 convolution kernel. Although
the two 3 × 3 convolution kernels must be convolved twice,
the actual convolution operation efficiency of the convolution
kernel is higher, there are fewer parameters, and the com-
puter processing speed is faster. This optimization method
appeared in early VGG networks [29]. In addition, replacing
a 5× 5 convolution kernel with two 3× 3 convolution kernels
increases the depth (number of layers) of the network, and the
nonlinear expression of features is enhanced, which was also
proven in later experiments [30]. We reduce the number of
model parameters and computational overhead by adopting
3 × 3 depthwise separable convolutions, which consist of
3 × 3 depthwise convolutions followed by 1 × 1 pointwise
convolutions in the embedding layers.

D. LOCAL-TO-GLOBAL FEATURE INTERACTION
The self-attention mechanism in the transformer can better
capture long-term dependencies, i.e., the global context infor-
mation; however, the capture ability of structural features and
local relationship features is weak [31], [32], which can be
compensated by local convolution. The CNN uses the same
weight to process each patch in the image in terms of trans-
lation invariance and local connectivity [33]. This inductive
bias encourages the CNN to exhibit a stronger dependence on
texture when classifying visual objects [34]. Combining the
advantages of the CNN’s local feature capture with the advan-
tages of the transformer’s global feature capture can enhance
the image feature information acquisition of the model.
Therefore, a local-to-global feature interaction module was
proposed for FMPVit. We used a deep residual bottleneck
block, which comprises a 1 × 1 convolution, two 3 × 3 depth
convolutions, and 1 × 1 convolution composition, with the
same channel size and residual connection [35]. The local and
global features are aggregated by concatenation as follows:

Ui = Concat([Ri,Li,0,Li,1, . . . ,Li,j]) (4)

Xi+1 = P(Ui) (5)

The 2D-reshaped global features from each transformer
Li,j ∈ RHi×Wi×Ci , Ri ∈ RHi×Wi×Ci represent local feature,
where j is the index of the path, i is the stage number,
Ui is the aggregated feature, and P(·) is a function which
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FIGURE 4. Fast multi-scale patch embedding process.

FIGURE 5. Convolutional local feature.

learns to interact with features, yielding the final feature
Xi+1 ∈ RHi×Wi×Ci+1 with the size of next stage channel
dimension Ci+1.

E. MODEL CONFIGURATION
To reduce computational burden, the effective factored
self-attention proposed in CoaT was used as follows:

FactorAtt (Q,K ,V ) =
Q

√
C
(softmax (K )TV ), (6)

where Q,K ,V ∈ RN×C are linearly projected queries, keys,
values, respectively; N, C denote the number of tokens and
embedding dimension, respectively. The factor self-attention
method reduces the FMPVit model parameters and FLOPs
and improves the overall efficiency of the model. We did
not use the traditional multi-path structure in FMPVit, but
reduced it to a transformer path through the method described

in Section III-B, which greatly reduced the resource expendi-
ture of the model. The application of the factor self-attention
method to the FMPVit model maximized the overall effi-
ciency of the model.

In addition, we found that after reducing the original
three-path transformer, the multiscale aggregated single-path
FMPVit showed better performance in classification, with
a faster training speed and higher accuracy. This demon-
strates that aggregating multiscale features into a single
transformer path in advance is an effective approach.
We built three different versions of FMPVit: the original
basic scale FMPViT-Base (∗M), expansion of two layers
of FMP-Transformer Block and medium-scale FMPVit-
Base+(∗M) of MS-PatchEmbed, and expansion of four
layers of FMP-Transformer Block and large-scale FMPVit-
Base++(∗M) of MS-PatchEmbed. All FMPVit models used
eight transformer encoder heads. Table 1 shows the details of
the FMPVit models.

TABLE 1. FMPViT configurations.

IV. EXPERIMENT
A. EXPERIMENT SETTING
The Python programming language based on Python3.7 envi-
ronment was used in the experiment, and the mainstream
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TensorFlow framework was built on PyCharm. The frame-
work environments used were Keras 2.2.4, PyTorch-GPU
2.2.0, CUDA 10.1, and CuDNN 7.6. The hardware exper-
imental environment was a single all-in-one NVIDIA
RTX 3090 GPU and an Intel Core i9 CPU. Table 2 lists
the detailed parameter settings for the experimental environ-
ment. All network models had the same setup parameters and
dataset.

B. EXPERIMENT DATASET
1) JPEGWD DATASET
In the field of weld defect detection, only a few large-scale
weld image datasets are currently available. The published
weld datasets are limited; therefore, to better guarantee the
experimental results, two datasets that are currently avail-
able are used. One is Joint Photographic Experts Group
Welding (JPEGWD), a JPEG format industrial weld image
dataset newly published by Chen et al. [36], from the artifi-
cial intelligence laboratory of Beijing ByteDance Technology
Co., Ltd. The other is the Linear Structured Light Weld-
ing (LSWD) and Linear Structured Light Welding Markov
Transfer Field (LSWD-MTF), which was newly published by
Liu et al. [37].

As shown in Table 2, the JPEGWD weld dataset consists
of 12000 images; is the only RGB image dataset containing
common weld defect types. Based on the image of the defect
type in the dataset, the dataset was subdivided into four weld
types: burr, concave, hole, and no-defect. This results is two
versions of the dataset, each comprising 4000 images, i.e., the
weld dataset JPEGWD for four image types: burr, concave,
porous, and no-defect. The size of each image in the welding
dataset was 500 × 500, and the image format was JPEG.

TABLE 2. JPEGWD dataset settings.

2) LSWD DATASET
The LSWD dataset was collected by the line-structured
light equipment described in this section; 1680 original
line-structured light images were sorted out under short time,
including burrs (798), depressions (421), holes (108), and
no defects (353). In the experiment, the steel plate welds
were marked at 0.5-cm intervals, and the image data of
the weld line structured light were collected twice; the first
time, by the way of the line structured light and weld line
perpendicular, and the second time, the original structured
light images of the weld line were acquired with an angle
of 30◦ between the line structured light and weld line. There

were 1680 original structured light images of the weld line
obtained at 0.5-cm intervals. The four types of defects were
manually classified and labeled. The size of the original
line-structured light image was 1280 × 520 pixels. Because
the original experiment sample is small, in the following
experiments, the unified use of scaling, rotation, and other
data expansion methods was adopted to expand the dataset
and obtain better experimental results. This resulted in a total
of 6720 structured light images, and Table 3 presents the
dataset setup.

LSWD-MTF is a two-dimensional color time-series
image obtained using the MTF coding method from
one-dimensional weld height information data in the LSWD
dataset, and the dataset images correspond to the LSWD
dataset one-by-one. Equation (7) describes the coding
principle.

M =


Wij|x1 ∈ qi, x1qj · · · Wij|x1 ∈ qi, xn ∈ qj
Wij|x2 ∈ qi, x1 ∈ qj · · · Wij|x2 ∈ qi, xn ∈ qj

...
. . .

...

Wij|xn ∈ qi, x1 ∈ qj · · · Wij|xn ∈ qi, xn ∈ qj


(7)

When a time series X is given to define the packet number
box Q of the time series and each Xi in the time series
is assigned to the respective storage box qj(j ∈ [1,Q]),
the weighted adjacent matrix W , which can be constructed
as Q × Q, is converted from the first-order Markov chain
count-point box. W is not sensitive to the distribution of X ,
which overcomes the disadvantage of insensitive sequence
time dependence. The LSWD-MTF dataset corresponding to
the LSWD was obtained by encoding the one-dimensional
weld information into the MTF two-dimensional time-series
image, and the size and quantity parameters of the two
datasets were consistent. The one-dimensional weld height
information of the original line-structured light is encoded
into the corresponding two-dimensional information using
Equation (7), and the corresponding MTF two-dimensional
color time-series image can be generated using the Python
pseudo-color library. Table 3 presents the number, configura-
tion, and generation effects of the datasets.

TABLE 3. LSWD dataset settings.

C. EXPERIMENT PROCESS
The performance of FMPVit was evaluated based on the
JPEGWED and LSWD weld datasets. The two datasets have
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the same weld defect category, including burr, concave,
hole and no-defect. The comparison results of JPEGWED
and LSWD weld datasets are shown in Tables 4, 5, and 6.
To highlight the advantages of the model, we used the main-
streamCNNmodel andmainstream visual transformer model
in the comparative experiment. Mainstream CNN mod-
els include VGG-16 [38], ResNet50 [39], GoogleNet [40],
DenseNet [41], and MobileNet [42], and mainstream
vision transform models include Vit [43], Swin [44], and
MPVit [45]. In FMPVit, the Adam optimizer [46] was used
to train 300 iterations; the batch size was 64, and the initial
learning rate was 0.001. This was scaled using the cosine
attenuation learning rate scheduler, and each image was
cropped to 224× 224 pixels, which is consistent with Table 3.

TABLE 4. Experimental comparison results of different models in
JPEGWD weld dataset.

Table 4 presents the experimental comparison results of
different models in the JPEGWDweld dataset. In Table 4, two
experimental routes can be seen: the CNN and transformer.
In the mainstream CNN model route, the accuracy rate of
the JPEGWD dataset gradually increased with an increase
in model complexity and parameter quantity. The highest
accuracy rate for this route was 82.78% for the MobileNet
network. In the mainstream transformer model route, the
JPEGWD dataset also presents the same trend; however,
in FMPVit, not only the accuracy and GFLOPs improved, but
the complexity and parameters of its model are also greatly
reduced.

To effectively highlight the performance of the model,
we divided the JPEGWD weld dataset into two categories
according to the presence or absence of defects and named
the weld dataset JPEGWD-2CLASS. The weld data samples
were all obtained from JPEGWD, changing only the four
categories into two categories: with or without defects. Owing
to the small number of defect-free samples in the dataset,
dataset enhancement methods such as zooming, rotating,
and cropping are used for data enhancement [47]. There
were 6000 images with and without defects in the enhanced
dataset. The same experimental environment parameters and
models were used in the experiments, and the results are listed
in Table 4.

TABLE 5. Experimental comparison results of different models in LSWD
weld dataset.

Table 5 presents the experimental comparison results of
the different models for the LSWD weld dataset; it lists
the two experimental routes: CNN and transformer. As the
LSWDweld dataset had better image quality and recognition,
it performed very well in the overall experiment. Among the
mainstream CNN model routes, the highest accuracy rate of
the LSWD dataset exceeds that of the transformer model
route by 97.72%. Compared with other models in Table 5,
it is worth noting that in FMPVit, not only the accuracy and
GFLOPs improved but also the complexity and parameters of
its model reduced significantly.

TABLE 6. Experimental comparison results of different models in
LSWD-MTF weld dataset.

In the LSWDweld dataset, the author provided a version of
the two-dimensional color time series image dataset encoded
by the proposed MTF method [48], which was also used
in our comparative experiments. The dataset and sample
numbers individually correspond to the original LSWD weld
dataset samples. We call this version of the weld dataset
LSWD-MTF. The same experimental environment and net-
work model parameters were used in this experiment. The
final experimental results are listed in Table 6. The parameters
of the transformer series model are more complex than those
of the CNN series model, but the accuracy and GFLOPs
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TABLE 7. Ablation experiment analysis of FMPVit model based on JPEGWD weld dataset.

TABLE 8. Ablation experiment analysis of FMPVit model based on JPEGWD weld dataset.

are significantly higher than those of the CNN series model.
Moreover, in the transformer series models, FMPVIT has
excellent performance as well as the highest accuracy and
GFLOPs, whilemaintainingminimumparameter complexity.

D. ABLATION STUDY
For the FMPVit model, we performed ablation experiments
with different layers; the specific configurations are listed in
Table 1. We used the JPEGWD weld dataset for comparative
experimental research, as listed in Table 7. The FMPVit-
Base++ model version with the largest number of layers is
more accurate; however, it exhibits greater model complexity
and number of parameters. The basic version of FMPVit
can have fewer model parameters and lesser complexity
while maintaining a small gap with the high-stack version,
which is beneficial for reducing the model training time.
In Table 7, we can see that the accuracy of the FMPVit
and MPVit models improved by 2–3% on JPEGWD. While
maintaining the improvement, all versions of FMPVit have
a smaller model size and faster reasoning speed, which is
commendable.

We analyzed the ablation experimental results of different
configurations of the FMPVit model. Two configurations
stand out as the two improved parts of the proposed model;
one is the newly added 3 × 3 convolution module, and
the other is the multi-scale multi-path convolution, which is
pre-aggregated into a single transformer module. The results
of the ablation experiments for all the configurations are
listed in Table 8; the two configurations improve the accu-
racy and efficiency of the model relative to MPVit. The
addition of the convolution module has a greater impact on

model improvement but consumes more model parameters.
The improved method of early aggregation not only improves
the performance of the model but also greatly reduces the
number of model parameters and computational resources.

V. CONCLUSION
Based on the transformer model, this study proposed
an improved and optimized welding defect detection and
recognition framework, namely, a Fast Multi-path Vision
Transformer (FMPVit). The performance of the transformer
networkmodel in weld defect detection was studied, although
the CNNs are widely used in the field of NDT weld defect
detection. The experiment shows that the new CNN module
and single transformer module in the model could be com-
bined with higher accuracy and smaller model size, while
reducing the path. Compared with the mainstream network
model, the FMPVit proposed in this study can more effec-
tively capture the global and local feature information of the
weld image, exhibiting better performance. This can improve
the accuracywhile ensuring that themodel is sufficiently sim-
plified. The model adopts a multilayer parallel architecture
and combines the advanced multiscale convolution feature
priority aggregation with a new local convolution module
to enhance its local information capture ability. Finally, the
LPEGWD and LSWD universal weld datasets prove that the
model exhibits an evident performance improvement at the
baseline of mainstream models.
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