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ABSTRACT The pit on the bottom metal surface is one of the important indicators of cylindrical lithium
battery surface defect detection. There are many complex factors in the detection of pit: non-uniform
illumination of images, uneven reflection of the metal surface, low surface finishing, stains, rust and
scratches. To solve these problems, a method for pit detection based on machine vision is proposed. Firstly,
the grayscale distribution curve is extracted along the vertical direction of the bottommetal surface. Secondly,
the grayscale difference model which is not sensitive to illumination distribution and noises is used to extract
gray discontinuous points in a grayscale distribution curve. According to the reflective feature of the metal
surface, the adaptive threshold of discontinuous points extraction is determined based on mean background
subtraction. Finally, three feature parameters including gray value features and region features are used as
the input of support vector machine (SVM) classifier to train and extract the pit region. The algorithm is
evaluated on the self-built image database. The experimental results indicate the non-uniform illumination
and uneven reflection have no effect on pit detection. Compared with the related well-established methods,
our proposed algorithm can provide a better detection effect—the Recall, Precision and FNR are 0.982,
0.991 and 0.018 respectively.

INDEX TERMS Machine vision, grayscale difference model, cylindrical lithium battery, defect detection,
mean background subtraction.

I. INTRODUCTION
Cylindrical lithium battery is widely used in many fields such
as instrumentation, transportation and medical equipment.
The emergence of the new energy electric vehicle industry
has greatly promoted the development of cylindrical lithium
batteries. With the increasing demand of users’ requirements
for cylindrical lithium battery and the aggravation of market
competition, surface defect detection is an important process
for product quality evaluation [1]. Pit is a serious defect
on the bottom metal surface of cylindrical lithium battery,
which changes the physical structure of the battery, and
endangers the quality of the battery seriously. Therefore, the
pit detection is an important index. During the production
process, due to the collision or friction between the battery
and the production equipment, the external stress on the
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bottom metal surface of the cylindrical lithium battery
exceeds the strength of the material itself, resulting in pits.
The actual depth of the pit is greater than 0.1mm. This paper
mainly studies the detection of pits on the bottom surface,
as shown in Fig. 1.

Pits may appear anywhere on the bottom metal surface.
Fig.2 shows two coated lithium battery images with pits.
The study object of this paper is a low-contrast image with
irregular texture features. These pits are of different sizes,
shapes, depths, and orientations due to the different external
forces. So, the pits have various imaging effects on different
metal surfaces of different reflection properties.

At present, the pit detection of cylindrical lithium battery
is mainly implemented manually. This detection approach
will fatigue the eyes of the observers, which may lead to
lower efficiency and reliability of the defect detection result.
Therefore, the detection algorithms based on machine vision
are developed gradually. The vision-based algorithms can
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FIGURE 1. The bottom surface of a cylindrical lithium battery.

FIGURE 2. Lithium batteries with pits.

offer a more objective assessment than human inspectors.
According to the current literatures, there are few researches
on the method of detecting pit on the bottom metal surface of
cylindrical lithium battery. We perform the literature search
of the research on surface detection based on machine vision
techniques. Generally, the existing detection methods are
categorized into four groups: Statistical, spectral, model-
based and machine learning. These researches have achieved
good results. However, many researchers have studied the
surface detection under the condition that the background
is uniform and the defects have high-contrast against the
background. The current methods are not applicable to the
object studied in this paper, and the specific reasons are as
follows.

1) The current methods rely on the gray value of the
image [2], [3], [4], and the defect in the uniform background
is easy to be extracted. However, when the captured image
has uneven background brightness due to the variation of
illumination and unsatisfactory environment, the defects
with small changes in brightness will be overwhelmed
by the brightness of the background. It is difficult to
achieve a satisfactory segmentation effect. For example,
Liu et al. [4] proposed a new self-reference template guided
image decomposition algorithm for strip steel surface defect
detection. Combined with the statistical characteristics of a
large number of defect-free images, a specific template can
be built for each test defect image. Then, a total variation
(TV)-based image decomposition algorithm guided by the
self-reference template is developed to decompose test image
into structural component and textural component. This
method depends on the Lagrange multiplier of the constraint
selection.

2) The current methods rely on the grayscale difference
of adjacent pixels [5], [6], [7], [8]. It will have a good
detection effect for the pit whose gray value is much
higher or lower than the gray value of its neighborhood.

However, it is impossible to separate shallow pits with a small
brightness variation range and low brightness contrast with
the background, and noise will reduce the accuracy of the
algorithm. For example, our research group [8] proposed a pit
detection algorithm based on concave-convex curve segment
and BP neural network. The temporal averaging and outlier
elimination method are used to fuse the six images to obtain
the datum image, and the spatial filtering method based on
sliding window and Nyquist sampling theorem is used to
weaken the influence of noise on the datum image. Finally,
a concave-convex curve segment merging algorithm and the
BP neural network is used to formulate a detection model
to realize pit detection. For the gray level of shallow pits,
which is close to the gray level of the background, it is
not guaranteed that the minimum point is a real pit, so the
detection effect for shallow pits is not good.

3) The current methods describe deficiently about weak
signals, and the effectiveness of feature extraction is compar-
atively low. The current methods are impossible to achieve
effective detection of defects with different depths at the same
time [9], [10], [11]. In [11], this system employs a baseline
convolution neural network (CNN) to generate feature maps
at each stage, and then the proposed multilevel feature fusion
network (MFN) combines multiple hierarchical features into
one feature, which can include more location details of
defects.

4) In recent years, the target detection methods based
on deep learning have been achieving good performances
on automatic defect detection [12], [13], [14] and surface
classification [15], [16]. Hu et al. [12] proposes a hybrid
multi-dimensional features fusion structure of spatial and
temporal segmentation model for automated thermography
defects detection. A novel inspection scheme for rail surface
defects is presented for limited samples with line-level label,
which regards defect images as sequence data and classifies
pixel lines [13]. In [14], the VGG19 is firstly used to
pre-train the steel surface defect classification task and the
corresponding DVGG19 is established to extract the feature
images in different layers from defects weight model. Then,
the SSIM and decision tree are used to evaluate the feature
image quality and adjust the parameters and structure of
VGG19. On this basis, a new VSD network is obtained
and used for the classification of steel surface defects.
However, the detection method based on deep learning needs
to collect and label a large number of defective samples.
As the enterprises strictly control the rate of defective
products, defects are rare in products, which makes deep
learning-based defect detection methods are rarely applied in
actual detection.

In summary, fewer researches are on the detection
method of pit on the bottom surface of cylindrical lithium
battery, especially for shallow pits with uneven background
brightness and low contrast in the case of non-uniform
illumination and uneven reflection. There is still a cer-
tain gap between the accuracy of the existing methods
and the actual demand in practical application. Aiming
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at the above problems, we propose a detection method
based on the grayscale difference model with an adaptive
threshold and mean background subtraction. This method
provides higher robustness to non-uniform illumination and
uneven reflection, and effectively improves the effect of pit
detection.

The proposed method is as follows: First, Canny, least-
square circle fitting and Huber function are used to segment
the bottom metal surface. Second, the gray discontinuous
points of grayscale distribution curve are extracted based on
mean background modeling and grayscale difference model.
Then, the candidate pit regions are obtained. Finally, we use
gray value features and region features as the inputs of the
SVM classifier to exclude the non-pit textures.

The rest of this paper can be divided into the following
parts: Section II presents the apparatus system design. Sec-
tion III analyzes the image characteristics. In Section IV, the
proposed pit detection method is detailed. The experiments
and results are detailed in Section V. Finally, the conclusion
is drawn in Section VI.

II. SYSTEM OVERVIEW
The imaging equipment is mainly composed of four units:
transmission unit, image acquisition unit, data processing
unit and sorting unit. First, the lithium batteries are put
into the feeding trough of the transmission unit, and then
they are transferred forward on the roller conveying platform
which is composed of two groups of rollers with different
diameters under the drive of the motor. As shown in Fig. 3,
the movement route of the lithium batteries is marked
by the yellow arrows. Then the camera is triggered by
the photoelectric switch, encoder and programmable logic
controller to acquire an image while the lithium battery is
transported to the area of the image acquisition unit. The pit
is a non-planar defect, and the illumination in an image is
uneven. In order to capture the clearest pit image, the image
acquisition unit takes 6 pictures of each battery at an equal
angle of 60◦. Because the pit detection has slight correlation
with color, we use a monochrome area-array CCD camera
and a white flat light source in the image acquisition unit.
The camera is a XIME MQ013MG-E2 and contains 1280 ×

1024 active pixels. The lens is a Computar M2514-MP2. The
illuminant is a BTS-100 × 100W-24V side backlight.
The most suitable method for detecting depressions is

low-angle illumination. The illumination angle is the angle
between themain direction of the light cast by the light source
and the direction of the optical axis of the camera’s imaging.
The lower the illumination angle, the more helpful it is to
highlight the pit defect. We conduct the lighting experiments
on the self-built image database. The experimental results
indicate that the optimal imaging effect can be achieved when
the illumination angle is 35◦. Next, the images of bottom
surface are stored in the computer connected to the imaging
equipment. Finally, the computer sends the detection result to
the programmable logic controller, and the automatic sorting
unit to sort the batteries.

FIGURE 3. The structure of the imaging equipment.

III. IMAGE CHARACTERISTICS ANALYSIS
A. IMAGE CHARACTERISTIC ANALYSIS OF BOTTOM
METAL SURFACE
1) GRAYSCALE DISTRIBUTION OF IMAGE
The bottom metal surface is mainly represented by the light
and dark speckle texture in vision. Fig. 4 presents two bottom
metal surfaces with pit images, two longitudinal scan lines
A1 and A2 are drawn in the vertical direction and two
transverse scan lines B1 and B2 are drawn in the horizontal
direction. A2 and B1 pass through the pit. Observing the
three-dimensional grayscale distribution maps, as shown in
Fig. 4(b), the gray value range of the bottom metal surface
image with various metal materials is different. Each image
has a different contrast and brightness. Noise pixels locate
in a wide range and the background has a large dynamic
intensity range because of non-uniform illumination, low
surface finishing and rust.

2) GRAY VALUE CHANGES OF IMAGE ALONG THE VERTICAL
DIRECTION
Fig. 4(c) shows the grayscale distribution curves of the
longitudinal scan lines on the metal surface. Due to the non-
uniform illumination, the curves show a downward trend
from top to bottom indicating that the image is getting
darker and darker from top to bottom. That is, the image
tends to have a large intensity variation along the vertical
direction. Because of the low surface finishing and variation
of surface reflection, the gray values between adjacent pixels
fluctuate with different amplitudes.We can see the fluctuation
amplitude of the curve in the pit is slightly larger than that in
the neighborhood.

3) GRAY VALUE CHANGES OF IMAGE ALONG THE
HORIZONTAL DIRECTION
Fig. 4(d) shows the grayscale distribution curves of the
transverse scan lines on the metal surface. We can find that
the pit-free areas have a small intensity variation along the
horizontal direction. The gray values between adjacent pixels
also fluctuates in different amplitude, and the fluctuation
amplitude of the pit is slightly larger than that in the
neighborhood.

From what has been discussed above, because of the non-
uniform illumination, the variation of reflection property of
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FIGURE 4. Characteristic analysis of bottom metal surface in two
samples: (a) Original image, (b) Three-dimensional grayscale distribution,
(c) Longitudinal grayscale distribution curve, (d) Horizontal gray
distribution curve.

FIGURE 5. Different types of pits: (a) Rectangle deep pit, (b) Ellipse deep
pit, (c) Ellipse shallow pit, (d) Arch shallow pit.

the metal surface and rust, the gray distribution of the bottom
metal surface is inequal, and the background brightness is
inconsistent. The gray level shows irregular distributions
in the whole image. Therefore, traditional defect detection
methods cannot be directly applied.

From what has been discussed above, because of the
non-uniform illumination, the variation of reflection prop-
erty of the metal surface and rust, the gray distribution
of the bottom metal surface is inequal, and the back-
ground brightness is inconsistent. The gray level shows
irregular distributions in the whole image. Therefore,
traditional defect detection methods cannot be directly
applied.

B. IMAGE CHARACTERISTIC ANALYSIS OF PIT
The pits do not share common texture or shape features,
as shown in Fig. 5. The pit is composed of dense dark patches
and bright patches. Dark patches are grayish black and bright
patches are bright white in vision. Dark patches are usually
not as obvious as bright patches. The pits studied in this paper
are mainly divided into deep pits and shallow pits. As shown
in Fig. 5(a), 5(b), the deep pits have obvious depressions. The
deep pits appear brighter as compared to the pit-free region.

FIGURE 6. Grayscale distribution curve of the shallow pit.

FIGURE 7. The bottom surface image with scratch.

FIGURE 8. Grayscale distribution curve of the scratch.

The shallow pits have a low degree of depression and blurred
outline, as shown in Fig. 5(c) and 5(d). There is a slight
difference between the shallow pit and its neighborhood,
which is hard to distinguish by human eyes. Since the shallow
pits are difficult to detect, Fig. 5(c) is used as an example for
analysis.

Although the longitudinal and transverse gray distribution
curves have obvious fluctuations when they pass through
the pit, according to the light source irradiation direction,
the longitudinal gray distribution curves can reflect the gray
mutation characteristics between dark area and the bright area
of pits. The grayscale distribution curve of longitudinal scan
line in Fig. 5(c) is shown in Fig. 6. It can be seen that the
grayscale contrast between the shallow pit and pit-free area is
low. The gray value in the pit area shows a trend of decreasing
first and then increasing due to reflection and shadow.We can
see the gray value between adjacent pixels in the shallow
pit fluctuates slightly, which is similar to that of the pit-free
surface.
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FIGURE 9. Absolute grayscale distribution range of pits, pit-free regions,
and scratches.

C. IMAGE CHARACTERISTIC ANALYSIS OF SCRATCH
Due to the influences of material, equipment, and the process
craft, the bottom metal surface appears scratches which
are not defects. The scratches can seriously interfere with
detection. As shown in Fig. 7, these scratches are of different
sizes, shapes and orientations, and they are bright white in the
image.

The grayscale distribution curve of longitudinal scan line in
Fig. 7 is shown in Fig. 8. Similar to the grayscale distribution
of pit, scratches have a high grayscale relative to the general
metal surface.

The absolute grayscale distribution range of pits, pit-free
regions, and scratches in the image dataset, as shown in Fig. 9.
It can be seen that their gray distribution ranges overlap
each other with little difference. Therefore, it is difficult
to detect pit from the background image by the general
threshold segmentation algorithm. And there is no obvious
distinction between the pit-free area and shallow pit area in
the distribution of typical texture feature values after our test.

From what has been discussed above, it is found that
there are different amplitude fluctuations on the grayscale
distribution curve due to the uneven reflection of the bottom
metal surface. The fluctuation of gray distribution curve
corresponding to the pits is generally larger than that of
the pit-free regions. There is a certain grayscale difference
between the pit and the background. Therefore, we propose
a pit detection method based on the reflective feature of the
bottom metal surface.

IV. PROPOSED METHOD
In this section, we present a pit detection method based
on the grayscale difference model and mean background
subtraction. The grayscale difference model is a new model
proposed in this paper to detect pit texture, which is used to
extract gray discontinuous points in gray distribution curve
with an adaptive threshold. The proposed detection method
of the pit mainly consists of four parts: bottom metal surface
image extraction, candidate pit pixels extraction, candidate
pit regions segmentation, and non-pit textures exclusion. The
flowchart of this method is shown in Fig. 10, and the details
are presented in the following sections.

A. BOTTOM METAL SURFACE IMAGE EXTRACTION
The input image not only contains battery, but also has
complex background areas such as transmission chains,

FIGURE 10. Flowchart of the proposed pit detection method.

FIGURE 11. Process of bottom metal surface image extraction.

baffles, etc. These factors might affect the pit detection
process. So, the bottom metal surface region should be
first extracted in order to improve the execution speed of
the algorithm and reduce interference in the subsequent
procedures.

First, according to the characteristic that the battery and
background have a certain gray difference, we use Canny
operator [17], [18], least-square circle fitting [19], [20], [21]
and Huber function [22] to separate the shrink film and metal
surface. Then, cutting the smallest surrounding rectangle
of the metal surface region of the input image. The above
process is shown in Fig. 11. The subsequent procedures are
performed on the metal surface image I , containing R rows,
C columns.

B. CANDIDATE PIT PIXELS EXTRACTION
1) GRAYSCALE DISTRIBUTION OF IMAGE
Image coordinate system definition: the x-axis represents
the row where the pixel is located, the y-axis represents the
column where the pixel is located. To suppress noise, we first
use a median filter on the image I with a rectangle mask of
size 17 × 17 and returns the filtered image I . We compare
the gray values of the same column of pixels in the image I
and the smoothed image I , as shown in Fig. 12. Then we
extract the grayscale distribution curve along the longitudinal
direction.
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FIGURE 12. Grayscale distribution curves of the shallow pit and the curve
after smoothing.

2) GRAYSCALE DIFFERENCE MODEL
After a grayscale distribution curve is extracted, it is divided
equally into several segments, each segment contains n data
points. The sum of all gray values in the grayscale distribution
curve of segment k is defined as:

S (k) = G (y, v) (1)

where (y, v) represents discrete coordinates as v∈{0,1, . . . ,
m-1}, m is the data length of each grayscale distribution
curve, and m≤R. The constant y is the image column coor-
dinate where the data is located. The value of the grayscale
distribution curve at any coordinates (y, v) is denoted G(y, v).
And S(k) represents the sum of all gray values in the grayscale
distribution curve segment k , satisfying k∈{0, 1, 2, · · ·, p},
p≤(m− n)/2n − 1. The basic generating principle of the
grayscale distribution curve segment is shown in Fig. 13.
Each block represents the gray value of pixel position (y, v)
in the image.

We use the method of interval subtraction to increase the
range of grayscale difference. The grayscale differencemodel
is denoted as:

D(k) = S(k + 1) − S(k) (2)

where S(k+1) represents the sum of all gray values in the
grayscale distribution curve segment k + 1. S(k) represents
the sum of all gray values in the grayscale distribution curve
segment k . D(k) represents the grayscale difference function.

The D(k) of pit region should be positive according to the
direction of illumination, and its absolute value should be
the maximum value. Therefore, the D(k) of pit region should
satisfy:

D′(k) = k|[D (k) > 0] (3)

Dmax(k) = k| max
k=0,1,2...,p

[
|D′ (k) |

]
(4)

where D′(k) represents the obtained data sets of positive
grayscale difference, Dmax(k) represents the maximum value
in the absolute value ofD (k) . The fluctuations caused by the
uneven reflection of metal surface is eliminated by

P(k) ∈

{
true, Dmax(k) > T
false, otherwise

(5)

FIGURE 13. Illustration of the grayscale difference model.

where P(k) represents the curve segment k that can be used
as candidate pit pixels in each grayscale distribution curve.
And T is the grayscale difference threshold whose value will
be discussed in the next step.

After obtaining the value of k , the start position and the end
position of candidate pixels on the gray distribution curve can
be obtained, as in (6), (7).

rs = 2nk + 5 (6)

re = 2n(k + 3) (7)

where rs and re represent the start position and end position
respectively. [rs, re] is the set of candidate pit pixels. In order
to get a whole pit area, the number of pixels is increased. The
value of n should be less than half of the height of all pits to
obtain all candidate pit pixels and ensure their continuity for
subsequent feature screening. According to the statistics of
the samples in the dataset, n is set as 6.

3) MEAN BACKGROUND SUBTRACTION
As aforementioned, the grayscale difference threshold T
plays a decisive role. The algorithm for selecting optimum
threshold value dominates the overall performance of the
proposed method. For all images in the dataset, most
background pixels take high value similar to the pits, it is
difficult to separate pits by a fixed threshold. Therefore,
we use an adaptive threshold method. In order to highlight
the difference between the pit and the background in gray
intensity and reduce the influence of illumination variation
and uneven reflection, a background subtraction method
based on mean gray value is proposed in this paper.

Background subtraction is a widely used approach for
segmenting out objects of interest in the sequence of
video frames [23]. The rationale in the approach is
that of detecting the moving objects from the difference
between the current frame and a reference frame called
the ‘‘background model’’ [24], which contains no objects
of interest. Background subtraction algorithm includes four
major steps: preprocessing, background modeling, fore-
ground detection and data validation [25]. Background
modeling is the core of background subtraction algorithm,
and many different methods have been proposed over the
recent years [26], [27], [28], [29], [30], [31].

Inspired by background subtraction, we introduce it to the
threshold problem of grayscale difference model. We present
mean background subtraction algorithmwhich remodels each
image. Fig. 14 shows the flowchart of mean background
subtraction.
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FIGURE 14. The flowchart of mean background subtraction.

First, because the image I tends to have a smaller intensity
variation along the y-axis, the mean value of each row of
the image I is calculated, and the background image is
established according to the mean value. Then, the difference
image is obtained by subtracting the image I . The difference
image Id is defined as:

Ibm (x) = mean(Iy (x)) (8)

Id = I − Ibm (9)

where Ibm (x) denotes the image background model of row x,
Iy(x) denotes the image I of row x along the y-axis.
The background image Ibm is shown in Fig. 15(b). The

meaning of the scan lines in Fig. 15 is the same as Fig. 4.
The difference image Id is shown in Fig. 15(c). As shown in
Fig. 15(d) and 15(e), the background image has a fixed value
along the y-axis, and the change rule along the x-axis is the
same as image I , which means it is suitable for background
subtraction. The difference image has a uniform background.

4) THRESHOLD SELECTION
Because of the non-uniform illumination and the uneven
reflection of the metal surface, a fixed threshold cannot
satisfy all the images well. Considering that pit pixels
can be regarded as outliers in the gray value distribution
of image Id , we propose an adaptive threshold method
based on Chebyshev inequality which can adapt to the
statistical characteristics of the detected images. According
to Chebyshev inequality [32], in any data set, the proportion
of data X that is λ times the standard deviation above the
average is at most 1/λ 2:

P{|X − µ| ≥ λσ } ≤ 1/λ
2 (10)

The grayscale difference threshold T is defined as [33]:

T = µd + λσd (11)

where µd and σd denote the mean and standard deviation of
gray levels in the image Id , respectively. The value of λ is
determined by the proportion of defects in the image in the
dataset and statistics of the experiment.

C. CANDIDATE PIT REGIONS SEGMENTATION
After the above detection of each grayscale distribution curve,
the candidate pit region is determined by width of pit. The
curve judged as having candidate pit pixels is marked as 1,

FIGURE 15. Mean background subtraction: (a) Image I , (b) Background
image Ibm, (c) Difference image Id , (d) Longitudinal gray distribution
curve, (e) Horizontal gray distribution curve.

otherwise it is marked as 0. It is found that the minimum
width of pits is 10 pixels, and the maximum width of pits is
178 pixels through the statistics of the samples in the data set.
The criteria for determining candidate pit region are defined
as:

U ∈

{
true, 8 < Nc ≤ 180
false, otherwise

(12)

where Nc denotes the number of adjacent curves all marked
as 1, and U denotes the region that is considered to be
candidate pit regions whose location are determined by using
(6) and (7).

D. SVM CLASSIFIER
After the candidate pit regions segmentation above, there
are still some non-pit textures such as scratches. To exclude
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FIGURE 16. Sketch map of absolute neighborhood.

non-pit textures, all target textures are first divided into
two classes: (a) pit, (b) noise and scratch. These textures
share similar features of human vision system. But they are
different in geometric shape and grayscale according to the
analysis above. Therefore, the regions to be classified are
first mapped back to the region containing the texture in the
image I . Then gray value features and region features are
used as the input of SVM classifier to train and extract the
pit region.

1) FEATURE VECTOR GENERATION
Most of the pixels in the pit region are composed of dark
pixels and bright pixels, and the gray value of the bright pixels
are higher than that of the neighborhood. Therefore, the gray
value of pixels in the pit region is mostly higher than the mean
gray value of its neighborhood. We define a texture feature
descriptor called absolute neighborhood contrast to denote
the contrast between the pit and its neighborhood. As shown
in Fig. 16, region Rc is the absolute neighborhood of region
Ra. They are adjacent and have no intersection.
Step 1:Use gray-scale morphology [34] to dilate region Ra

with a rectangular structuring element to obtain region Rb.
Step 2:Obtain region Rc by using (13). Region Rc contains

the remaining points after Rb removes all points in Ra.

Rc = (x, y) |(x, y) ∈ Rb and (x, y) /∈ Ra (13)

Step 3: Calculate the absolute neighborhood contrast by
using (14).

Cna =
⌊I (x, y) − µRc⌋

Aa
(14)

where Cna is the absolute neighborhood contrast, I (x, y)
denotes the pixel gray value of the (x, y) coordinates in the
image I , µRc denotes the mean gray value of region Rc, Aa
denotes the area of region Ra. ⌊∗⌋ represents rounding down.

Since the shallow pits have similar gray levels with
background, we further define region gray difference:

α =

 l∑
q=9( 34 l)

g (q) −

9( 34 l)−1∑
q=1

g (q)

 / l∑
|q=1

g (q) (15)

where q denotes a pixel from the regionRawith the gray value
g(q), 9(∗) denotes that ∗ is rounded, l denotes the number of
pixels of region Ra.
As shown in Fig. 7, the bright spots of most scratches are

concentrated, but pits have an irregular combination of bright
and dark spots because of its different reflections due to a

certain depth. Therefore, we use a region feature descriptor β

which represents the roundness of the region.
Step 1: Cut the classified region Ra of image I , obtain

image I ′.
Step 2: Segment the image I ′ by the Otsu’s method [35]:

All pixels of image I ′ with gray values greater or equal to T ′

are selected and obtain the segmented output region Rd.
Step 3: Calculate the roundness of segmented output

region Rd by using (16).

β = 1 −
σdc

dc
(16)

where dc denotes the mean distance between the contour and
the center of the region, σdc denotes the deviation from the
mean distance. dc and σDistance are given by

dc =

∑
|p− pi|
A

(17)

σ 2
dc =

∑
(|p− pi| − dc)2

A
(18)

where p denotes the center of the region, pi denotes the
contour pixels of the region, A denotes the area of the contour.

The absolute neighborhood contrast Cna, region gray
difference α, and roundness β constitute the feature vectors
of the target texture F = [Cna, α, β].

2) PIT EXTRACTION BASED ON SVM CLASSIFIER
SVM adopts the principle based on structural risk mini-
mization and is suitable for solving high-dimensional, small-
sample, nonlinear pattern classification problems [36], [37].
In the two classes of target texture, some samples are
randomly selected as training samples for SVM (Fi,Y i) , i =
1, 2, · · · , u, where u is the number of training samples and Fi
denotes the feature vector of the i-th sample. Y i = 1 indicates
that the texture belongs to class 1, Y i = −1 indicates that the
texture belongs to class 2. The purpose of training is to build a
texture recognition model. After the SVM is trained, it can be
used to detect the texture. We use RBF as the kernel function
of SVM [38]. Using the RBF kernel can not only realize
the linear division of the original training data in the high
dimensional space, but also not have a lot of consumption
in calculation.

K (x, z) = e−γ ∥x−z∥2 (19)

where z denotes the center of the kernel function, and γ is the
width parameter of the kernel function.

Finally, we set the gray value of the non-pit texture area to
0. The output detection result is obtained as a binary image,
in which the white part is the pit.

V. EXPERIMENT AND ANALYSIS
We present the analysis of the parameter λ , and compare the
proposed method with well-established methods.

A. IMAGE DATASET
The image dataset of bottom surface of the coated lithium
battery is established, which is used to verify the algorithm.
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All the images are captured in a real industrial environment.
The steps of establishing the dataset are as follows. Firstly,
the image acquisition device is used to collect grayscale
images of the bottom surface, forming the image dataset
SUT-BYE. The resolution of each image is 600 × 540.
SUT-BYE contains lithium batteries with different metal
surface materials, so there are various imaging effects.
To ensure the integrity and clarity of pit, the image acquisition
unit takes 6 images of each battery at an equal angle of
60◦. Finally, in order to verify the algorithm, the image
dataset SUT-BYE is divided into two sub datasets for testing.
The image dataset SUT-BYE-1 has 1254 pit defect images,
containing 209 lithium batteries, and the image dataset SUT-
BYE-2 has 660 pit-free images, containing 110 lithium
batteries.

B. EVALUATION METRIC
For further evaluation, a quantitative analysis is performed.
The recall (Rc), precision (Pr), and false negative rate (FNR)
are three measurement indexes to evaluate the performance
of the defect detection. They are defined by

Rc =
TP

TP+ FN
(20)

Pr =
TP

TP+ FP
(21)

FNR =
FN

TP+ FN
(22)

where TP denotes the number of the lithium battery with pits
correctly identified as pits, FP denotes the number of the
lithium battery with non-pits that are misjudged as pits, FN
denotes the number of the lithium battery with pits that are
misjudged as non-pits. For the image dataset SUT-BYE-1,
in the 6 images of the same battery, the number of images
detected as pit is greater than or equal to 1 indicates that
the pits are correctly detected. For the image dataset SUT-
BYE-2, in the 6 images of the same battery, the number of
images detected as pit is greater than or equal to 1 indicates
the detection is wrong.

C. ANALYSIS OF PARAMETER
The parameter λ in (11) determines the threshold value T of
grayscale difference model and directly affects the Recall and
Precision of defects. The selection criterion of λ is that all
the pixels in the suspected pit area are included in the set of
candidate pit pixels. If the value of λ is too high, the missed
detection rate will be high. On the contrary, if the λ is too low,
there will be too many misjudgments in the detection results
and increase the burden of subsequent detection. Fig. 17
shows the effect of candidate pit pixels extraction results with
different values of λ . The white areas denote the extracted
candidate pit region. If the value of λ is too low, many
background pixels that do not belong to the pit area will be
extracted. If the value of λ is too high, the pit cannot be
detected. λ = 5.1 achieves the best performance, since it can
not only detect pits but also suppress noise well.

FIGURE 17. Candidate pit pixels extraction results with different values
of λ : (a) Surface image, (b) λ = 1.1, (c) λ = 3.1, (d) λ = 5.1, (e) λ = 7.1.

FIGURE 18. Detection performance with different λ .

FIGURE 19. Wrongly judged samples in the image dataset: (a) Missed pit
texture, (b) Misjudged pit texture.

A detailed comparison of detection performance in our
testing dataset is presented in Fig. 18. There is an inverse
relationship between Rc and Pr. Generally, Rc increases with
the decrease of Pr, so, how to provide a reasonable tradeoff
between Recall and Precision is an important indicator to
measure a detection system. In order to meet the detection
requirements of enterprise, Rc is more important than Pr
because a missed pit may result in more loss than a wrongly
detected pit. When λ is 5.1, Rc, Pr and FNR are 0.982,0.991,
and 0.018 respectively, outperforms others. So, we set
λ = 5.1.

Furthermore, we study the wrongly judged samples, and
the typical representatives are shown in Fig. 19. The pits
misjudged could be divided into two categories. The first
category is shown in Fig. 19(a), the grayscale contrast
between the shallow pit and pit-free area is low, which
is not obvious in vision, and it causes the loss of region
gray difference texture characteristic. The second category
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FIGURE 20. Statistics result of feature quantity: (a) The distribution curve
of Cna, (b) The distribution curve of α, (c) The distribution curve of β.

is shown in Fig. 19(b), it can be seen that there are obvious
indentations in the metal surface image due to the film
coating. Therefore, there is a significant gray difference in the
misjudged area, which is similar to the texture characteristics
of the pit, resulting in the wrong judgment.

D. ANALYSIS OF THE FEATURE VECTOR EFFICIENCY
In order to illustrate the effect of the selected feature vectors
on the pit detection, the following samples are selected
from the image database to analyze the effect of the feature
vector on pit texture and non-pit texture. Forty metal surface
images with shallow pits and twenty pit-free metal surface
images with interference noise are randomly selected. One
pit area is manually extracted from each pit defect image,
and two different areas are randomly selected from each pit-
free image. The absolute neighborhood contrast Cna, region
gray difference α, and roundness β are calculated respec-
tively. The distribution of each feature vector is shown in
Fig. 20.

It can be seen that the three feature vectors can indepen-
dently describe the corresponding aspects of the pit. They
have varying degrees of discernment, but none of these
features can uniquely distinguish the pit. It shows that the
combination of the three features in this paper are reasonable
and can serve as a basis for detecting pit textures.

FIGURE 21. Segmentation results on pit defect images.

FIGURE 22. Segmentation results on pit-free images.

E. PERFORMANCE COMPARISON WITH RELATED
METHOD
To illustrate the detection performance of the proposed
algorithm, it is compared with other surface detection meth-
ods in the image dataset SUT-BYE: image decomposition
algorithm [4], edge detection [7] and concave-convex curve
segment method [8]. The parameters of all methods are
obtained under the premise that the pit miss rate is the lowest
during the experiments. The Lagrange multiplier is set at
2.1 in [4]. The edge detection uses Canny operator with
three parameters:5, 5, 15 in [7]. The pit detection results of
proposed method and other methods on pit images are shown
in Fig. 21. And the segmentation results of proposed method
and other methods on pit-free images are shown in Fig. 22.
The white areas are the segmentation results.

The pits in Fig. 21 have different depths and sizes. The
deep pits are given in Fig. 21(a1) and (a2), the shallow pits
are given in Fig. 21 (a3), (a4) and (a5). For deep pits, the
other methods can segment most of the pits, but because
of non-uniform illumination and uneven reflection, some
pit-free areas are also segmented and cannot extract the
complete pit region. For shallow pits, the other methods
cause missed detection. For example, the method in [7] is
limited by the controlling parameters, it cannot accurately
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TABLE 1. Comparison of detection performance.

detect shallow pits, as shown in Fig. 21(e3) - (e5). This
is because these detection methods are limited by local
features, they cannot detect pit that has low-contrast against
the background. The shallow pits may be identified as
background. Similarly, the brighter parts without pits may
also be identified as pits. Our method finds the qualified
pixels on the grayscale distribution curve which can reflect
the small changes in the brightness of shallow pits, so it can
accurately and completely segment pits of different depths,
as shown in the sixth column of Fig. 21. The threshold
selected by our method is higher than the slight amplitude
fluctuation on the grayscale distribution curve, so it can
eliminate the effects of uniform illumination and uneven
reflection.

Fig. 22 shows the segmentation results on pit-free images.
Fig. 22(a1) - (a4) contain scratches with high gray values
and high contrast with their neighborhood, which interfere
with the pit detection and result in false detection in other
methods. Because of the more specific features proposed in
this paper, the pits and non-pit textures can be effectively
distinguished, and the zero-information graph is given,
as shown in Fig. 22(f1) - (f4).

Table 1 further demonstrates the comparison of detection
performance between our method and the other methods
mentioned above. It can be seen that our method obtains
better results in Rc, Pr and FNR compared with others.
In terms of the time consumption, our method and the other
methods are all at the millisecond level. It needs to be
mentioned that the proposed method, takes longer execution
times than other methods.

To sum up, the experimental results show that other
methods do not adequately consider the characteristics of
pit, scratch and noise, due to the limitation of local features
and template size, resulting in poor detection results. In this
paper, we define a grayscale difference model which can
truly describe the features of pits. It can segment pits with
different depths and sizes completely, and get better segmen-
tation results. Therefore, the proposed algorithm achieves
improvement in pit detection accuracy as compared to other
methods and is more suitable for shallow pit detection.
As long as the contrast between pit and neighborhood can
be highlighted on the test image, the algorithm proposed
in this paper can be used to detect pits on different
surfaces.

VI. CONCLUSION
Based on the analysis of image features and pit features,
we propose a new approach for automatically detecting pit
defects with low contrast in cylindrical lithium battery images
using the grayscale difference model, mean background
subtraction and texture analysis, which is fast, robust and
accurate. The experimental results have demonstrated that
the proposed algorithm can detect shallow pits that has
low-contrast against the background more effectively. This
will be helpful to promote the defect detection based on
machine vision in industry. The main conclusions of this
paper are described as follows.

(1) The proposed algorithm in this paper can solve the
influence of non-uniform illumination and uneven reflection
of the metal surface on pit detection.

(2) The proposed gray value features and region features
can effectively distinguish between pits and non-pit textures.
This method has universality and practical application value.

(3) The proposed algorithm can be widely used in the
detection of weak signal with low contrast between targets
and background in the case of non-uniform illumination and
uneven reflection.

The algorithm in this paper mainly aims at the on-site
detection needs of enterprises, and directly designs a defect
detection algorithm based on machine vision that can reflect
the characteristics of pits. In future work, we plan to apply
this algorithm to other defect detections, further improve the
efficiency and robustness against illumination variation.
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