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ABSTRACT The performance of fingerprint-based indoor wireless localization systems (IWL-Ss) can be
enhanced using fingerprint clustering. The localization performance of clustered fingerprint-based IWL-Ss
is affected by several factors, including choosing the most optimal initial parameters and the appropriate
fingerprint similarity measurement metric. The problem of choosing the best initial parameter is solved by
using the affinity propagation clustering (APC) algorithm in this paper, which automatically calculates the
number of clusters and cluster centroid vectors. However, the choice of fingerprint similarity measure and the
selection of the best cluster centroid when there are multiple potential cluster centroids limit the performance
of the APC algorithm. To address this issue, this paper proposes modifying the conventional APC (c-APC)
algorithm, which will be referred to as the ‘‘m-APC algorithm.’’ The context similarity coefficient (CSC)
fingerprint similarity measure replaces the distance-based fingerprint similarity measure used by the c-APC
algorithm. Furthermore, the cluster centroids that are generated automatically are replaced by the centroid
that is obtained by averaging all fingerprints within a cluster. Using the k-NN localization algorithm and four
online fingerprint databases, the performance of the m-APC+CSC algorithm is determined and compared
to the c-APC algorithm using cosine, Euclidean, and Shepard distances as fingerprint similarity measures.
Based on simulation results, the m-APC algorithm reduced the position root mean square error (RMSE) and
mean absolute error (MAE) by about 12% and 8%, respectively, when compared to the c-APC algorithm
when both used the CSC as a fingerprint similarity measure. Furthermore, the m-APC+CSC algorithm
achieved an 8% and 9%, respectively, position RMSE and MAE reduction over the c-APC algorithm using
cosine, Euclidean, and Shepard distances as similarity measurements. The m-APC+CSC algorithm should,
however, be used on a reasonably sized fingerprint database with at least four wireless access points (APs)
for better localization performance.

INDEX TERMS APC algorithm, context similarity coefficient, fingerprint, k-NN, position RMSE, RSS.

I. INTRODUCTION
The indoor wireless localization system (IWL-S) uses a
position-dependent signal parameter (PDSP) obtained from
the received signal transmitted by the IU with a local-
ization algorithm to determine the location of an indoor
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user (IU) [1], [2]. The IWL-S employs several PDSPs,
the most common of which is the received signal strength
(RSS) [3], [4]. The fingerprinting and trilateration local-
ization algorithms are the two most commonly used
RSS-based localization algorithms, and this paper focuses
on the fingerprinting algorithm. This is due to its improved
localization accuracy, scalability, and robustness to the mul-
tipath effect [1], [3]. Fingerprint-based localization using
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RSS measurement is in two phases, namely the offline and
online phases [1], [3], [5]. The offline phase involves the
generation of an RSS fingerprint database using RSS mea-
surements collected from spatially deployed wireless access
points (APs). The fingerprint database is made up of RSS
measurement vectors, also known as fingerprints, that have
been mapped to the reference locations (RLs) where they
were obtained. During the online phase, an IU is instanta-
neously located using the instantly acquired fingerprint. This
is done by comparing the IU’s instantly acquired fingerprint
with the fingerprint stored in the database. Algorithms such as
Kalman filters, k-nearest neighbours (k-NN), support vector
machines (SVM), and the Gaussian mixture model (GMM)
have been used to determine the location of an IU in the online
phase [1], [3], [5], [6], [7].

The localization performance of the fingerprint-based
I-WLS depends on several factors, one of which is the size
or density of the fingerprint database. The density of the
fingerprint database is a function of the number of RL from
which the fingerprints are generated, and the number of APs
deployed. The larger the size of the fingerprint, the better the
localization accuracy; however, this comes at the expense of
localization time. The primary objective of any I-WLS is to
accurately and instantly determine the location of an IU given
the PDSP measurement vector. To solve this localization
time and accuracy trade-off, researchers proposed fingerprint
database clustering [8], [9], [10], [11], [12], [13]. Fingerprint
database clustering is the process of grouping similar finger-
prints in the fingerprint database based on their characteristics
or features. This process drastically reduces the localization
time; however, the accuracy of the clustering process affects
the localization accuracy. There are two kinds of clustering
algorithms [14], [15], [16]: location-domain clustering algo-
rithms and signal-domain clustering algorithms. Location
domain clustering algorithms group fingerprints based on
their physical location or spatial features and are commonly
used in applications such as indoor localization and mapping,
where fingerprints are collected at various points throughout
an indoor environment. Location domain clustering algo-
rithms include k-means, c-means, and density-based spatial
clustering (DBSCAN) [11], [13], [17], [18]. Signal-domain
clustering algorithms, on the other hand, use signal charac-
teristics or waveform features to cluster data. This method is
common in applications such as speech recognition, image
recognition, and sensor data analysis, where the data points
represent signals or waveforms. Signal-domain clustering
algorithm examples are spectral clustering and wavelet clus-
tering. This article will focus on location-domain cluster-
ing algorithms. Some location domain clustering algorithms
have performance limiting factors ranging from the selection
of optimal initial parameters to their computational inten-
sity [9], [19], [20]. For example, the number of clusters to be
generated and cluster centroid RSS vectors for the k-means
and c-means algorithms must be optimally chosen. So also,
the DBSCAN also requires optimal selection of initial param-
eters but not the number of clusters or cluster centroid RSS

vectors. The minimum number of fingerprints in the neigh-
bourhood and the radius of the neighbourhood are the param-
eters that require optimal initial selection. Furthermore, the
DBSCAN is computationally intensive. A clustering algo-
rithm that has overcome all these performance limitations
associated with k-means, c-means, and DBSCAN is the affin-
ity propagation clustering (APC) algorithm [13], [21], [22].
It does not require the number of clusters to be specified in
advance as it does so automatically and simpler to implement
than the DBSCAN [13]; as such, it will be adopted in this
paper.

As previously stated, the APC algorithms automatically
determine the number of clusters and the centroid RSS vector
for each cluster [13], [23], [24]. However, there are instances
where a cluster could have more than one potential cluster
centroid. If such a thing happens, the algorithm chooses
the fingerprint with the highest net responsibility to serve
as the centroid. This process is computationally complex
and subjective [13], [25] and this will subsequently affect
the clustering accuracy of the APC algorithm. To solve this
issue and improve clustering accuracy, this paper proposes a
modified APC (m-APC) algorithm. The modification made
to the conventional APC (c-APC) algorithm has to do with
the selection of the centroid RSS vector for each cluster.
Regardless of the clustering algorithms used, fingerprint clus-
tering necessitates the use of similarity measurement metrics
to determine the similarity between fingerprints [13]. The
c-APC algorithm uses the distance similarity metric to cluster
fingerprints. The Euclidean distance between fingerprints is
calculated, and fingerprint pairs with values close to zero are
considered very similar and should be in the same cluster.
Cosine and Shepard distance are two other commonly used
similarity measure metrics [13]. The distance between fin-
gerprint pairs is insufficient to determine how similar the two
fingerprints are. Other considerations include the type of data,
data distribution, measurement scale, computational com-
plexity, interpretability, RSS measurement behavior in each
fingerprint, and non-linear and linear relationships between
fingerprints. As an alternative to the distance-based similarity
measure, the context similarity coefficient (CSC) is proposed
as a similarity measure metric to further improve the clus-
tering accuracy of the m-APC algorithm. In contrast to the
distance-based similarity measure, which relies on closeness,
the CSC considers the behavior of each RSS measurement in
a fingerprint during clustering [26], [27].

The rest of the paper is structured as follows: Section II
contains a brief discussion of fingerprint database clustering
using the c-APC algorithm. Section III then presents the
proposed m-APC algorithm with CSC-based similarity mea-
sure. Section IV presents simulation results and discussion,
followed by a conclusion and future work in Section V.

II. FINGERPRINT DATABASE CLUSTERING USING C-APC
ALGORITHM
Unlike the k-means and c-means algorithms, the c-APC algo-
rithm is a clustering algorithm that uses a message-passing
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technique to automatically determine the number of clusters
as well as the centroid RSS vector of each cluster given a
fingerprint database [23], [24], [25]. The process starts with
the creation of a similarity matrix, which is done by calculat-
ing the similarity between fingerprint pairs using any of the
available similarity measurement metrics, such as Euclidean
distance, cosine similarity, and Shepard distance. Following
the generation of the similarity matrix, the iterative updat-
ing of two matrices, namely the responsibility matrix and
the availability matrix, occurs. These two matrices are used
to select exemplars for each cluster’s centroid RSS vector.
The following is a step-by-step implementation of the APC
algorithm [21], [25]:
Step 1: Generation and initialization of similarity matrix:

The similarity matrix, S(i, j), is first generated using
either Euclidean distance, cosine similarity, or Shep-
ard distance as similarity measurement metric. For N
number of RLs, the size of S(i, j) is N × N .

Step 2: Generation and initialization of the availability
and responsibility matrices: The availability matrix,
A(i, j) and responsibility matrix, R(i, j) are also gen-
erated and all have the same dimension as S(i, j).
At the initial stage, both are set to 0, that is A(i, j) =

0 and R(i, j) = 0.
Step 3: Iteratively update the R(i, j) and A(i, j) matrices: For

each iteration, the R(i, j) and A(i, j) matrices are
updated using (1) and (2) respectively as shown
below [22].

R(i, j) = S(i, j) − max[A(i, k) + S(i, k)], k ̸= j (1)

A(i, j) = min[0,R(i, j) + sum(max[0,R(k, j)])],

k ̸= j; k ̸= i (2)

Step 4: Determine exemplar vector: Calculate the exemplar,
E(i) vector using (3) as shown below [22].

E(i) = argmax[R(i, k) + A(i, k)], 1 ≤ k ≤ N (3)

Step 5: Determine the clusters: Once exemplar vectors are
determined, fingerprint clusters can be formed. Each
fingerprint, i belongs to a cluster with E(i) as the
centroid RSS vector.

Step 6: Repeat steps 3 to 5 until convergence: Repeat steps 3
to 5 until the algorithm converges, which is when the
E(i) stops changing.

The steps 1–6 mentioned earlier are the basic steps
involved in implementing the c-APC algorithm. In the next
section, the proposed m-APC algorithm with the CSC-based
similarity measure is presented.

III. PROPOSED M-APC ALGORITHM WITH CSC-BASED
SIMILARITY MEASURE
The clustering algorithm proposed in this paper is presented
in this section of the paper. It is based on a modification of
the c-APC algorithm presented in Section II and replaces the
distance-based similarity measure matrix with a CSC-based
similarity measure matrix. The CSC similarity-based matrix

generation process is introduced first. This is followed by the
proposed c-APC algorithm modification.

A. GENERATION OF CSC-BASED SIMILARITY MATRIX
The similarity matrix in the c-APC algorithm is generated
using distance-based similarity measure metrics such as the
Euclidean distance, cosine, and Shepard distance. However,
for large fingerprint datasets, these similaritymeasuremetrics
are not computationally efficient. Furthermore, they do not
consider the behavior of each RSS measurement in the fin-
gerprints being compared, nor do they capture the non-linear
relationship between the fingerprints [26], [27]. When look-
ing for similarities between fingerprints, these factors must
be considered. As a result, this study proposes using a
CSC-based similarity measure to determine fingerprint simi-
larity. The CSC similarity measure is a pattern-basedmeasure
that considers the behavior of each RSS measurement in the
fingerprint as well as the linear and non-linear relationship
between the fingerprints being compared. Additionally, it is
more interpretable, robust to noise, and computationally effi-
cient for sizable datasets [26].

Unlike distance-based methods, which use closeness to
determine fingerprint similarity, the CSC uses patterns in the
fingerprints to determine similarity. For example, in Figure 1,
four RSS vectors obtained at four RLs from three APs are
shown.

The RSS vectors 1 and 3 share the same pattern and thus
have a high degree of similarity. RSS vectors 2 and 4 have
the same RSS pattern as well, making them very similar. The
CSC uses a normalized scale of 0 to 1 to determine the degree
of similarity between fingerprints. A CSC value of 0 denotes
high similarity, whereas a CSC value of 1 denotes dissimilar-
ity. The degree of similarity, that is the CSC value between
two fingerprint vectors ri and rj of size M is determine as
follows [26]:

First determine the term-wise total vector, tij between vec-
tors ri and rj using (4) as follows:

tij = ri + rj for i ̸= j (4)

Determine the probability of the outcome, p of vector ri
using (5).

p =

∑M
n=1 ri(n)∑M
n=1 tij

(5)

Determine the expected value, < ri (n) > for each RSS in
vector ri using (6).

< ri (n) >= p× tij (6)

Determine the error for each RSS in vector ri using (7).

error (n) =
< ri (n) > −ri (n)√
tij(n) × p× (1 − p)

(7)
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FIGURE 1. Fingerprint RSS vector pattern for 4 RLs.

The CSC value between vectors ri and rj is determined
using (8).

CSC(ri, rj) =

∑M
n=1

(
(error(n))2 ×

√
tij(n)

)∑M
n

√
tij(n)

(8)

The CSC value obtained from (8) indicates the degree
of similarity between vectors ri and rj. The CSC value of
each fingerprint pair in the database is calculated and used to
create the CSC-based matrix that will be used with the APC
algorithm. Given a fingerprint database with N fingerprint
vectors, the CSC-based similarity matrix is obtained as (9).

Scsc
(
ri, rj

)
=

 CSC(r1, r1) · · · CSC(r1, rN )
...

. . .
...

CSC(rN , r1) · · · CSC(rN , rN )


1 ≤ i ≤ N ; 1 ≤ j ≤ N (9)

where CSC(ri, rj) is the CSC value between the i-th and j-th
fingerprint vectors obtained using (8).

The diagonal elements of Scsc
(
ri, rj

)
are replaced with the

median of all the elements in Scsc
(
ri, rj

)
as shown in (10)

to eliminate self-similarity and enable the APC algorithm to
converge fast.

diag
(
Scsc

(
ri, rj

))
= median

(
Scsc

(
ri, rj

))
(10)

Thus, the final CSC-based similarity matrix for use with
the APC algorithm, Scsc_apc

(
ri, rj

)
is obtained as (11).

Scsc_apc
(
ri, rj

)
=

median(Scsc
(
ri, rj

)
) · · · CSC(r1, rN )

...
. . .

...

CSC(rN , r1) · · · median(Scsc (rN , rN ))

 (11)

The CSC-based generated similarity matrix is used instead
of the distance-based generated similarity matrix. The modi-
fication to the c-APC algorithm is presented in the following
subsection.

B. DEVELOPMENT OF THE M-APC ALGORITHM
The c-APC algorithm described in Section II generates the
exemplars that represent the cluster centroid RSS vectors
automatically. Each cluster may have several exemplars. This
makes determining which of the exemplars should be used

as the cluster centroid more difficult. Another issue is that a
member of one cluster may also be an exemplar of another.
The c-APC algorithm is modified to address these issues.
The automatically generated exemplar for each cluster is
removed and replaced with another RSS vector generated
by averaging all fingerprints in each cluster. The step-by-
step implementation of the m-APC algorithm is presented as
follows:

Step 1: Perform steps 1 through 6 of the c-APC algorithm in
Section II.

Step 2: Find the mean RSS vector for each cluster by taking
the mean of all fingerprints in that cluster.

Step 3: Use the mean RSS vector obtained in Step 2 as the
centroid RSS vector for each cluster.

The m-APC algorithm requires further execution of the
c-APC algorithm using the additional steps 2 and 3 as pre-
sented in this section of the paper after the c-APC algorithm
using steps 1-6 in Section II with (11) as the similarity matrix.

The performance of the m-APC+CSC algorithm is
assessed in the following section, and its results are contrasted
with those of the c-APC algorithm using similarity metrics
such as cosine, Euclidean distance, and Shepard distance.

IV. SIMULATION RESULT AND DISCUSSION
This section determines the performance of the proposed
algorithm in Section III. The simulation setup and perfor-
mance analysis parameters are presented first, followed by
a comparison of localization performance.

A. SIMULATION SETUP AND PARAMETER
The localization performance of the algorithms presented
in Sections II and III will be evaluated using experimen-
tally generated fingerprint databases found in [28]and [29].
Additionally, both algorithms will also be evaluated using
two publicly available databases, INCR_IndoorLoc [30] and
MSI_IndoorLoc [31] from the International Conference on
Indoor Positioning and Indoor Navigation (IPIN) of 2016 and
2017, respectively. The characteristics of these four databases
can be seen in Table 1.
The SEUG_IndoorLoc database was generated using

Wi-Fi technology in a small meeting space containing only
tables and chairs, so there was no unnecessary interference
from other transmitting equipment or the environment [28].
A coverage area of 33 m2 is provided by the meeting room,
which measures approximately 6 m by 5.5 m in size. There
are 3 APs in total, and 49 RL fingerprints were collected at
4 m intervals. The IIRC_IndoorLoc database was generated
in a room with a coverage area of about 161 m2 using ZigBee
technology [29]. A total of 4 Zigbee nodes were used, and
fingerprint measurements were collected at about 194 RLs.
Researchers from the Italian National Council of Research
(INCR) in Pisa generated the INCR_IndoorLoc database, one
of the databases used at the IPIN 2016 International confer-
ence [30]. The fingerprint measurements were made along
two perpendicular sections of the corridor inside a structure
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TABLE 1. Characteristics of the four databases considered for
performance analysis.

that was 36 m by 36 m in size. The database contains fin-
gerprint measurements obtained from 325 RLs using a total
of 127 Wi-Fi APs. Another database used at the 2017 IPIN
international conference isMSI_IndoorLoc. It was developed
as part of a research initiative to create an indoor positioning
system for automated industrial vehicles [31]. The fingerprint
measurements were taken using 11 APs over a total area of
1000 m2 at a university building that resembles an industrial
floor plant. The database contained 4973 RLs’ fingerprint
measurements.

For the localization algorithm, the k-NN algorithm is con-
sidered with k = 3. The performance comparison of all
clustering algorithms is carried out using a computer with
the following characteristics: an Intel (R) Core (TM) i5-2400
CPU at 3.10 GHz, 12 GB of RAM, theWindows 10 operating
system, and MATLAB R2020a.

B. LOCALIZATION PERFORMANCE COMPARISON
The localization performance of the m-APC+CSC algorithm
is determined in this section of the paper. This is first com-
pared to the c-APC algorithm using CSC as a similarity mea-
sure (termed the ‘‘c-APC+CSC algorithm’’). Second, using
cosine, Euclidean distance, and Shepard distance as similarity
measurements, the m-APC+CSC algorithm is compared
to the c-APC algorithm. For the comparisons, position
mean absolute error (MAE) and position root mean square
error (RMSE) will be used as the localization performance
metrics [32], [33], [34].

1) COMPARISON BETWEEN M-APC+CSC AND C-APC+CSC
ALGORITHMS
This subsection employs CSC as a fingerprint similarity mea-
sure to assess the enhancement in localization performance
brought about by the modification to the c-APC algorithm.
The number of clusters, sizes of clusters, and members per
cluster are identical for m-APC and c-APC. The cluster
centroid represents the only difference. The position RMSE
and MAE obtained using the m-APC+CSC algorithm are
obtained and compared with the c-APC+CSC algorithm
using the 4 fingerprint databaseswith characteristics shown in
Table 1 and k-NN as the localization algorithm.With graphic
representations shown in Figures 2 and 3, respectively,
Tables 2 and 3 compare the RMSE and MAE of the two
algorithms.

TABLE 2. Position RMSE error comparison between m-APC+CSC and
c-APC+CSC algorithms.

In all four fingerprint databases, the m-APC+CSC algo-
rithm outperforms the c-APC+CSC algorithm in terms of
position RMSE and MAE, as shown in Tables 1 and 2.
The position RMSE obtained by the m-APC+CSC and
c-APC+CSC algorithms, for example, are 1.02m and 1.30m,
respectively, representing a 21% reduction, while the position
MAEs are 1.25 m and 1.30 m, respectively, representing
a 4% reduction, using the SEUG_IndoorLoc database. For
the IIRC_IndoorLoc, INCR_IndoorLoc, andMSI_IndoorLoc
databases, respectively, the percentage reduction in position
RMSE achieved by the m-APC+CSC algorithm over the
c-APC+CSC algorithm is 10%, 5%, and 15%. Addi-
tionally, for the IIRC_IndoorLoc, INCR_IndoorLoc, and
MSI_IndoorLoc databases, respectively, the percentage
reduction in position MAE achieved by the m-APC+CSC
algorithm over the c-APC+CSC algorithm is 9%, 4%,
and 15%.

When considering all four databases, the m-APC+CSC
algorithm demonstrated an average percentage reduction of
12% and 8% in position RMSE and MAE compared to the
c-APC+CSC algorithm, respectively. This conclusion is sup-
ported by the position RMSE and MAE results presented
in Tables 2 and 3. These findings indicate that the mod-
ification to the cluster centroid assignment process in the
c-APC algorithm, which resulted in the m-APC algorithm,
was responsible for the observed reductions of 12% and 8%
in position RMSE and MAE, respectively.

2) M-APC+CSC ALGORITHM VS C-APC ALGORITHM WITH
COMMONLY USED SIMILARITY MEASURE
The previous subsection compared the performance of the
m-APC and c-APC algorithms using CSC as a similar
measure for both algorithms. The c-APC algorithm mod-
ification reduced position RMSE and MAE by 12% and
8%, respectively. The m-APC+CSC algorithm’s localiza-
tion performance is compared to the c-APC algorithm in
this section using cosine, Euclidean, and Shepard similarity
measurements. Tables 4 and 5 compare the m-APC+CSC
algorithm’s position RMSE andMAE to the c-APC algorithm
using cosine, Euclidean, and Shepard distances as similarity
measurements for all fingerprint databases in Table 1, with
graphical representations in Figures 4 and 5.

The results from Table 4 indicate that the m-APC+CSC
algorithm generally outperforms the three c-APC algorithms
in terms of reduced position RMSE for all four databases.
The position RMSE result for the SEUG_IndoorLoc dataset
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TABLE 3. Position MAE error comparison between m-APC+CSC and
c-APC+CSC algorithms.

FIGURE 2. Position RMSE comparison between m-APC+CSC and
c-APC+CSC algorithms.

FIGURE 3. Position MAE comparison between m-APC+CSC and
c-APC+CSC algorithms.

shows that all four algorithms perform similarly, with
position RMSE values ranging from 1.01 m to 1.02 m.
This implies that all four algorithms have comparable
localization performance. However, there is a noticeable
difference in the IIRC_IndoorLoc database. The position
RMSE for the m-APC+CSC algorithm is 1.95 m, while for
the c-APC+cosine, c-APC+Euclidean, and c-APC+Shepard
algorithms, it ranges from 3.00 m to 3.35 m. This shows
that the m-APC+CSC algorithm outperforms the other
algorithms with an average reduction of about 38% in
position RMSE. The performance variations between the
algorithms are less pronounced for the INCR_IndoorLoc
and MSI_IndoorLoc databases. All four algorithms’ position
RMSE values are generally within a small range. Even though
m-APC+CSC consistently achieves the lowest or similar

FIGURE 4. Position RMSE comparison between the m-APC+CSC algorithm
and the c-APC algorithm using Cosine, Euclidean, and Shepard as
fingerprint similarity measure.

position RMSE values, the variations between the algorithms
are typically not very significant.

The position RMSE comparison results in Table 4 demon-
strate, in summary, that the m-APC+CSC algorithm outper-
forms other algorithms, particularly on the IIRC_IndoorLoc
and MSI_IndoorLoc databases, where it achieves a notice-
ably lower position RMSE. In total, the m-APC+CSC algo-
rithm reduced position RMSE by 29%, considering these two
databases. For the SEUG_IndoorLoc and INCR_IndoorLoc
databases, the performance variations between the algorithms
in terms of position RMSE are less noticeable.

By extending the analysis to Table 5 for the position MAE,
it is possible to come to the same conclusion from the position
RMSE result analysis. All algorithms demonstrated compa-
rable position MAE performance for the SEUG_IndoorLoc
and INCR_IndoorLoc databases, with MAE values ranging
from 1.23 m to 1.25 m for the SEUG_IndoorLoc database
and 1.60 m to 1.67 m for the INCR_IndoorLoc database.
For the IIRC_IndoorLoc database, the m-APC+CSC algo-
rithm obtained an MAE of 2.19 m, which is on average
37% lower than the MAE of the other algorithms. The
m-APC+CSC algorithm has the lowest position MAE in
the MSI_IndoorLoc database, with a value of 2.51 m, while
the MAE values for the other algorithms range from 2.57 m
to 2.77 m. This results in a position MAE reduction of
about 19%.

In conclusion, based on the results of the position
RMSE and MAE metrics, it can be inferred that the
m-APC+CSC algorithm outperforms the c-APC+cosine,
c-APC+Euclidean, and c-APC+Shepard algorithms on the
IIRC_IndoorLoc and MSI_IndoorLoc databases. Its perfor-
mance is slightly comparable with the other algorithms on
the SEUG_IndoorLoc and INCR_IndoorLoc databases. The
percentage improvements in position RMSE achieved by
the m-APC+CSC algorithm over the other algorithms for
SEUG_IndoorLoc, IIRC_IndoorLoc, INCR_IndoorLoc, and
MSI_IndoorLoc databases are −1%, 35%, −8%, and 4%,
respectively. This amounts to an overall percentage reduction
of approximately 8% in position RMSE compared to the other
algorithms across all the databases. As for the position MAE,
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TABLE 4. Position RMSE comparison between the m-APC+CSC algorithm and the c-APC algorithm with cosine, Euclidean, and Shepard as fingerprint
similarity measure.

TABLE 5. Position MAE comparison between the m-APC+CSC algorithm and the c-APC algorithm with cosine, Euclidean, and Shepard as fingerprint
similarity measure.

FIGURE 5. Position MAE comparison between the m-APC+CSC algorithm
and the c-APC algorithm using Cosine, Euclidean, and Shepard as
fingerprint similarity measure.

the percentage of reduction achieved by m-APC+CSC over
the other algorithms for SEUG_IndoorLoc, IIRC_IndoorLoc,
INCR_IndoorLoc, and MSI_IndoorLoc databases is −0.8%,
33%, 2%, and 3%, respectively. This amounts to an overall
percentage reduction of approximately 9% in position MAE
compared to the other algorithms across all the databases.

The modifications made to the c-APC algorithm in the
m-APC+CSC algorithm, specifically the cluster centroid
assignment process and the use of a CSC-based fingerprint
similarity measure, have led to a notable improvement in
the accuracy of indoor localization across all four databases.
The CSC is a pattern-based similarity measure algorithm,
and the more APs there are, the more distinctive the fin-
gerprint patterns are, and the more accurately the algorithm
can measure the similarity between two fingerprint vectors.
The APC algorithm is well known for its extremely poor
performance and high computational complexity for large
fingerprint database sizes. As a result, the m-APC+CSC
algorithm is suggested for use on a moderately sized finger-
print database with at least four APs.

V. CONCLUSION AND FUTURE WORKS
This paper proposes a clustering algorithm based on the
modification of the cluster centroid assignment process to
the c-APC algorithm and the use of a CSC-based similarity

matrix in place of the conventional distance-based similar-
ity measure matrix. Contrary to distance-based similarity,
the CSC similarity measure is based on patterns and has
a number of benefits. These benefits include the behav-
ior of fingerprints and the non-linear relationship between
fingerprint considerations. The localization performance of
the proposed m-APC+CSC algorithm is assessed using the
k-NN localization algorithm and contrasted with the c-APC
algorithm using cosine, Euclidean distance, and Shepard dis-
tance. The m-APC+CSC algorithm performed better with
fingerprint databases generated with at least four APs. Future
work will focus on enhancing the m-APC+CSC algorithm
to achieve outstanding performance with larger fingerprint
database sizes as well as evaluating the performance of the
clustering algorithm against other machine learning localiza-
tion algorithms.
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